HPC Linear Algebra

Chris Kauffman

Last Updated:
Tue Feb 14 02:29:33 PM CST 2023

Logistics

Assignments

- A1 grading in progress, look for results in the next day
- A2 will go up by Thu and feature MPI Coding

MSI Accounts

- MSI has set up class accounts for students in 5451
- Should allow you to ssh X500@mesabi.msi.umn.edu
- UMN User/Password/Duo Authenication to get on mesabi
- Off campus requires UMN VPN enabled

Today

- Complete Discussion of MPI Collective Communication
- Overview of some Linear Algebra Libraries

Hand-Coded Matrix Algebra

- Very common for students to learn how to code up some basic linear algebra routines
- In reality, prototype and production code benefits from use of mature libraries for these

```
```

void matmult(

```
```

void matmult(
int arows, int bcols, int midim,
int arows, int bcols, int midim,
double A[][], // arows * midim
double A[][], // arows * midim
double B[][], // midim * bcols
double B[][], // midim * bcols
double C[][]) // arows * bcols
double C[][]) // arows * bcols
{
{
for (int i=0 ; i < arows ; ++i){
for (int i=0 ; i < arows ; ++i){
for (int j=0 ; j < bcols ; ++j){
for (int j=0 ; j < bcols ; ++j){
C[i][j] = 0.0;
C[i][j] = 0.0;
for (int k=0 ; k < midim ; ++k){
for (int k=0 ; k < midim ; ++k){
C[i][j] += A[i][k] * B[k][j];
C[i][j] += A[i][k] * B[k][j];
}
}
}
}
}
}
}
}
// try dgemm() instead

```
```

// try dgemm() instead

```
```

 important in HPC / Parallel
 Computing

BLAS: Basic Linear Algebra Subroutines

- Started in the 1970's and now WIDELY deployed
- Defines a set of numerical operations in 3 Levels

1. Vector/Scalar operations (add constant onto all vector elements) and Vector/Vector operations (dot product)
2. Matrix/Vector operations (mat-vec multiply)
3. Matrix/Matrix operations (mat-mat multiply)

- Interestingly these are all mostly $O(N), O\left(N^{2}\right), O\left(N^{3}\right)$ operations respectively
- The names for the function suck and take significant study to understand and use effectively $\operatorname{axpy}() ?$ ddot()? sgemm()? Are these rappers, hacker handles, or did someone just punch the keyboard repeatedly to name all the functions?
According to legend, all the function names are 5 letters or less as this was the limit imposed by the Fortran compiler which originally compiled them.

BLAS Introductory Example

dgemm () : Multiply 2 double precision, general format matrices

```
dgemm(opa, opb,
    // transpose A,B or not
    arows, bcols, midim, // matrix dimensions
    alpha, // scaling factor for product
    A, lda, B, ldb, // A and B matrix + cols
    beta, C, ldc) // answer scaling + storage + dim
C := alpha * opa( A )* opb( B ) + beta*C
```

Super transparent, excellent software engineering...

- Targets Fortran77: different calling conventions than C
- Complex due to flexibility: 4 variants based on opa, opb

$$
\begin{array}{ll}
C \leftarrow \alpha A B+\beta C & C \leftarrow \alpha A^{T} B+\beta C \\
C \leftarrow \alpha A B^{T}+\beta C & C \leftarrow \alpha A^{T} B^{T}+\beta C
\end{array}
$$

- Allows for scaling with alpha, beta but both often are 1
- Naming Convention: d ge mm ()
- d: double precision real
- ge: general matrix, not symmetric or banded
- mm: matrix multiply

C BLAS Example

- cblas are C language bindings to BLAS routines
- Slightly easier to understand, uses symbolic names for some (extra) arguments
- Accounts for C being Row-Major vs Fortran being Column-Major
// dgemm_example.c
// A : arows * midim matrix
// B : midim * bcols matrix
// B : arows * bcols matrix
// C <- A*B
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, arows, bcols, midim, alpha, A, midim, B, bcols, beta, C, bcols);

LAPACK: Linear Algebra Package

- Basic Operations like Matrix Multiply are covered in BLAS
- Many Linear Algebra problems come up in HPC
- Solve a Linear System: $A x=b$, find x give A, b
- Determine eigenvectors / eigenvalues for matrix A
- Calculate Singular Value Decomposition on A
- LAPACK builds on BLAS to provide algorithms for all of these
- Has many of the same properties as BLAS
- Netlib version Written in Fortran77
- Has bindings for C in LAPACKE
- Naming conventions are difficult: dgesv()
d: double precision real
ge: general format matrix
sv: "solve" linear system via a LUP decomposition
- LAPACK / BLAS often packaged together in single libraries

Implementations of BLAS+LAPACK

Package	Notes
Netlib	The official LAPACK. (BSD/Open Source)
ATLAS	Automatically Tuned Linear Algebra Software (BSD/Open Source)
GSL	GNU Scientific Library (GNU / Open Source)
Intel MKL	Intel's Math routines for their x86 CPUs. (Freeware/Closed Source)
ARM PL	ARM Processor Performance Libraries (Freeware/Closed Source)
NVBLAS	NVIDIA BLAS, optimized for CUDA / GPU execution
cuSOLVER	NVIDIA LAPACK, optimized for CUDA / GPU execution
\ldots	

- Note vendor implementations for specific processors / architectures: target efficient operation on these chips
- ATLAS is notable as on install, runs a series of benchmarks to set parameters in BLAS that give the best performance (Automatically Tuned)

Sparse Matrices

- Various scientific problems in HPC involve matrices with many Zero elements
- Referred to as sparse matrices especially when stored in data structures that reduce their size
- Contrast with dense matrices which we have assumed so far
- Example: LINKS matrix in Page Rank could benefit a lot from sparse storage
- BLAS / LAPACK deal with dense matrices, Sparse Matrices are their own beast

Example of a sparsity pattern in a large matrix: black indicates non-zero element, white is zero

Data Structures to Store Sparse Matrices

- Dense Matrices
- Use $N R O W \times N C O L$ space
- Provide $O(1)$ lookup for element (i,j)
- Easily provides $O(N)$ iteration through matrix elements
- Sparse Matrix formats
- Use $O(N N Z)$ storage: $N N Z$ is the Number of NonZeros
- Provide worse than $O(1)$ lookup for element (i, j)
- Store only elements that are nonzero, assume if an index is not present that it is zero
- Try to provide $O(N N Z)$ iteration through matrix elements
- Storage savings for sparse formats can be significant when matrix is mostly zeros $(N N Z \ll N R O W \times N C O L)$

Octave Example of Sparse Matrix Storage

octave:2> $\mathrm{A}=$ [
[10 20	20 0	0	0 0]	
[0 30	300	40	0 0]	
[0	050	60	70 0]	
[0	00	0	0 80]];	
octave:3> As = sparse(A);				
$\text { octave:4>B } \begin{aligned} \text { o }=[& A \operatorname{zeros}(4,94) ; \\ & \operatorname{zeros}(96,100)] ; \end{aligned}$				
octave:5> Bs=sparse(B);				
octave:6> whos				
Variables visible from the current scope				
variables in scope: top scope				
Attr$====$	Name	Size	Bytes	Class
	=	====	=====	=====
	A	4 x 6	192	double
	As	4 x 6	184	double
	B	100×100	80000	double
	Bs	100×100	036	double
	ans	1 x 1		double

Coordinate Format (COO)

- Store (row, col, val) for all non-zero elements
- Values/Indices stored in separate arrays
- Justify operational complexities:

1. Space requirement is $3 *$ NNZ
2. Finding element (i, j) is $O(\log (N N Z))$
3. Transpose is $O(N N Z)$

	0	1	2	3	4	5	
0	$[10$	20	0	0	0	$0]$	SAMPLE DENSE MATRIX
1	$[0$	30	0	40	0	$0]$	
2	$[0$	0	50	60	70	$0]$	
3	$[0$	0	0	0	0	$80]$	

NNZ $=8$, NROW=4, NCOL=6

VALUES	$=\left[\begin{array}{rrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}\right]$
ROW_INDEX	$=\left[\begin{array}{rrrrrrr} & 0 & 0 & 1 & 1 & 2 & 2 \\ 2 & 3\end{array}\right]$
COL_INDEX	$=\left[\begin{array}{llllllll} & 1 & 3 & 2 & 3 & 4 & 5\end{array}\right]$

Compressed Sparse Row Format (CSR)

- Save space by "compressing" rows : store only row start positions
- Length of Row I is ROW_START[I+1]-ROW_START[I]
- Justify operational complexities:

1. Space requirement is $2 *$ NNZ + NROW +1
2. Finding element (i, j) is close to $O(1)$
3. Transpose is $O(N N Z)$
$\left.\begin{array}{rrrrrrcl} & 0 & 1 & 2 & 3 & 4 & 5 & \\ 0 & {[10} & 20 & 0 & 0 & 0 & 0 & \text { SAMPLE DENSE MATRIX } \\ 1 & {[0} & 30 & 0 & 40 & 0 & 0] \\ 2 & {[0} & 0 & 50 & 60 & 70 & 0] \\ 3 & {[0} & 0 & 0 & 0 & 0 & 80\end{array}\right] \quad$.

NNZ $=8$, NROW=4, NCOL=6

Algorithms for Sparse Matrices

- BLAS / LAPACK do NOT work for sparse matrices
- Must utilize different algorithms
- Less standardization around sparse matrices but libraries / vectors exist
- Sparse BLAS spec exists but fewer implementations
- Factorization like in LAPACK require significant algorithm changes to work for sparse matrices
- Prof. Yousef Saad is our local expert in this area and is worth chatting up if you want to learn more

Related Materials

Stephen Boyd's EE364 Linear Algebra Oveview

https://stanford.edu/class/ee364b/lectures/
num-lin-alg-software.pdf

- Discusses many of the same items we talked about here
- Focus is on optimization problems like linear programming
- Very similar considerations

CSCI 5304 - Computational Aspects of Matrix Theory

- Great course on doing linear algebra for scientific problems
- Some coverage of BLAS/LAPACK and sparse matrices
- Often taught by Prof Saad who is a resident expert on all things Matrix/Sparse

