
Parallel algorithms for Dense Matrix Problems

Chris Kauffman

Last Updated:
Thu Feb 23 02:30:11 PM CST 2023

1

Logistics
Assignments
▶ A1 grades almost done
▶ Mini-Exam 1 grading at 50%
▶ Likely to have all grading done by next Mon
▶ A2 is delayed: new deadline posted to schedule
▶ Mini-Exam 2 date adjusted

Reading
Grama Ch 8 on Dense Matrix Algorithms
▶ Naive Matrix Multiply
▶ Cannon’s Algorithm
▶ LU Decomposition

Today: Matrix algorithms

2

Recall Matrix Transpose

▶ Common operation on matrices is a
transpose notated AT

▶ Interchanges rows/columns of A:
aij → aji

▶ Diagonal elements stay the same
▶ Algorithms that perform operations on

A can often be performed on AT

without re-arranging A - how?
Hint: consider summing rows of A vs
summing rows of AT

3

Exercise: Matrix Partitioning Across Processors

▶ Recall several ways to partition matrices across processors
▶ Diagram shows these

▶ Entry ij may be an individual element OR…
▶ Entry ij may be a Block: ex. Block (2,3) is the 100x100

submatrix rows 200-299 and cols 300-399
▶ Assume square matrices : #rows = #cols
▶ For Mat-Mult C = A × B, what is…

▶ Ideal partitioning for A and B in matrix multiply?
▶ Ideal partitioning for C = AT × B
▶ Ideal partitioning for C = A × BT

4

Answers: Matrix Partitioning Across Processors

▶ C = A × B
▶ Ideally A is row-partitioned, B is column partitioned
▶ Then block-partitioned C could be computed w/o

communication
▶ e.g. Proc 0 owns A[0,:] and B[:,0] so can compute C[0,0]

▶ C = AT × B
▶ Ideally A and B column-partitioned

▶ C = A × BT

▶ Ideally A and B row-partitioned
▶ Block-partitioning often used: not ideal for any version but

less communication required when both A and AT will b used
5

Naive Parallel Dense Multiplication: Overview

Block Partitioning Appears Frequently
▶ Specific applications may be able to select a favorable

partitioning (e.g. Row Partition for repeated mat-vec mult)
▶ Many applications use both A and AT so employ

block-partitioned matrices: middle-way approach which does
not favor rows or columns

▶ Parallel Libraries often use block partitions by default

Matrix Multiply with Blocks
▶ To compute Matrix-Matrix multiply, procs must (eventually)

multiply full rows by full columns to compute an output block
▶ Naive method: each Proc stores full rows/columns needed for

it to independently compute output block which it stores

6

Naive Parallel Dense Multiplication: Demo
▶ Distributed Parallel Matrix-Matrix Multiply
▶ Block Partition of Matrices A, B, C among processors
▶ Diagram shows 4 processors in a 2 × 2 grid

7

Exercise: Analysis of Naive Dense Mult.
Assumptions
▶ Matrices A and B are size N × N so N2 elements
▶ P processors in a

√
P ×

√
P grid (P is a perfect square)

▶ Each Proc has block with N2/P elements of A, B as a
(N/

√
P) × (N/

√
P) submatrix

▶ Simplified communication cost for All-to-All on a Ring with p
#procs in ring, ts comm startup time, tw per word transfer
rate, M message size:

tcomm = (p − 1)(ts + twM)

Questions
1. What is communication cost of this algorithm?
2. How much time does the final block matrix multiply take?
3. What is the memory requirement for each proc?
4. Downsides of this algorithm?

8

Answers: Analysis of Naive Dense Mult.
1. What is communication cost of this algorithm?

▶ #Procs in rows/cols is
√

P ~ ring size
▶ M = N2/P : message size is num elements on each proc
▶ 2 All-to-All shares : 1 for rows, 1 for cols

tcomm = 2(
√

P − 1) × (ts + tw(N2/P))
2. What is the memory requirement for each proc? E.g. how

many submatrices of A,B are on each proc?
▶ Full rows/cols on each proc
▶ Requires 2

√
P submatrices for each Proc

3. How much time does the final block matrix multiply take?
▶ Each proc has

√
P submats of A,B to multiply

▶ MatMult is for size s is O(s3); submat size s = N/
√

P

tmult = O((
√

P) × ((N/
√

P)3)) = O(N3/P)
4. Downsides of this algorithm?

▶ Major: The need to store
√

P sub matrices on all procs may
be prohibitive: 2

√
P × N2/P space on each proc

▶ Minor: Not much chance to overlap communication /
computation in the algorithm

9

Cannon’s Algorithm
▶ Proposed in Lynn Elliot

Cannon’s 1969 thesis
▶ Target was very small

parallel machines
implementing a Kalman
Filter algorithm in hardware

▶ “Communication”
happening between small
Procs with data in registers

▶ Scales nicely to large
distributed machines and
overcomes the large memory
requirement of the Naive
Mat-Mult Algorithm

10

https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter

Demo

11

Cannon’s Algorithm Pseudocode
Cannon_MM(i, j, Q){

PE(i,j) has blocks A1=A(i,j) and B1=B(i,j)
Q is the Block Dimension : A is Q*Q blocks

Allocate space A2, B2, Cij sized as A1

doboth send A1 to PE(i, j-i+Q % Q)
recv A2 from PE(i, j+i+Q % Q)

doboth send B1 to PE(i-j+Q % Q, j)
recv B2 from PE(i+j+Q % Q, j)

for(k=1 to Q){
copy A2 into A1, B2 into B1
Cij += A1 * B1

doboth send A1 to PE(i, j-1+Q % Q)
recv A2 from PE(i, j+1+Q % Q)

doboth send B1 to PE(i-1+Q % Q, j)
recv B2 from PE(i+1+Q % Q, j)

// optionally skip last comm
}

Cij now contains output block of C(i,j)
}

12

Exercise: Analysis of Cannon’s Algorithm
Assumptions
▶ Matrices A and B are size N × N so N2 elements
▶ P processors with block partitioning: initially N2/P elements

of A, B on each proc (assume P is a perfect square)
▶ Simplified communication cost for send/recv on a Ring:

tcomm = ts + twM

with p #procs in ring, ts comm startup time, tw per word
transfer rate, M message size.

Questions
1. What is communication cost of this Cannon’s algorithm?
2. Is this any better/worse/same as the Naive algorithm?
3. What is the memory requirement for each proc?
4. Is this any better/worse/same as the Naive algorithm?

13

Answers: Analysis of Cannon’s Algorithm
1. What is communication cost of this Cannon’s algorithm?

▶ In each step, each proc performs 2 send/recv ops
▶ Each send/recv is a block of size N2/P
▶ Block Dim Q =

√
P for square 2D Torus

▶ Total
√

P steps : can skip last comm step
tcomm = 2(

√
P − 1) × (ts + tw(N2/P))

2. Is this any better/worse/same as the Naive algorithm?
▶ Same communication cost as Naive algorithm

3. What is the memory requirement for each proc?
▶ O(N2/P) : 5 blocks as stated in pseudcode,
▶ 3 blocks for Aij , Bij , Cij

▶ 2 “workspaces” to allow send/recv of blocks:
▶ Eliminate workspace blocks in a refinement

4. Is this any better/worse/same as the Naive algorithm?
▶ Cannon’s O(N2/P) vs Naive O(

√
P × N2/P)

▶ Memory overhead is much better: constant number of blocks
rather than the need to store entire rows/cols on single procs

14

Lessons from Cannon’s Algorithm

▶ Illustrates “pipelining”: blocks used to compute partial results
then fed forward other processors

▶ Benefits greatly from a 2D Grid / Torus network which
facilitates local communications that arise in the algorithm

▶ While not as ideal as row/col partitioning for A, B, realistic
and relatively efficient

▶ Variants of central idea exist in some libraries such as
Scalapack which has a parallel xGEMM() using many similar
ideas

▶ Could really use some code support for
▶ 2D Coordinates for processors rather than linear rank…
▶ Sending/receiving in a ring…

15

http://www.netlib.org/scalapack/

MPI Tricks for Rings
Sendrecv in a Ring
MPI_Sendrecv() allows ring-link partnering
// sendrecv_ring.c
int left_part = (myrank - 1 + npes) % npes;
int right_part = (myrank + 1 + npes) % npes;
MPI_Sendrecv(&mine, 1, MPI_INT, right_part, 1,

&yours, 1, MPI_INT, left_part, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Sendrecv with Replacement
MPI_Sendrecv_replace() allows send/recv in the same buffer
// sendrecv_ring.c
int mydata = 10*myrank;
MPI_Sendrecv_replace(&mydata, 1, MPI_INT,

right_part, 1, left_part, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

In Cannon’s Alg, no longer need A1 / A2: can send/receive block
of A with a single buffer.

16

MPI Tricks for Grids: MPI_Cart_create()
MPI has special support for Grid/Torus network configs; allows
creation of a MPI_Comm that maps processors to a N-D grid
▶ 2D Torus for Cannon’s Alg

// cartesian_comm.c
int dim_len = 2; // Set up the Cartesian topology
int dims[2] = {sqrt(npes), sqrt(npes)}; // # rows/cols
int periods[2] = {1, 1}; // wrap-around rows/cols

// Create the Cartesian topology, with rank reordering
MPI_Comm comm_2d;
MPI_Cart_create(MPI_COMM_WORLD, // original comm

dim_len, dims, periods, // cartesian comm props
1, // re-order linear rank if beneficial
&comm_2d); // new communicator with 2D coords

// Get the rank and coordinates with respect to the new topology
int my2drank = -1; // may be differ from world rank
MPI_Comm_rank(comm_2d, &my2drank);

int mycoords[2] = {-1, -1}; // (i,j) coords
MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);

printf("Proc %2d (%s): my2drank %3d mycoords (%3d, %3d)\n",
myrank,processor_name,
my2drank,mycoords[0],mycoords[1]);

17

MPI Tricks for Shifting

Shifts are eased by the MPI_Cart_shift() function
▶ Calculates linear rank of source/dest procs for shift operations

in a Cartesian grid of procs.
▶ Data exchange via MPI_Sendrecv() is then direct

// cartesian_comm.c
int mydata = (100*mycoords[0])+mycoords[1];
int rowsend=-1, rowrecv=-1;

MPI_Cart_shift(comm_2d, 0, rowshift, &rowrecv, &rowsend);

MPI_Sendrecv_replace(&mydata, 1, MPI_INT,
rowsend, 1, rowrecv, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

18

Cannon’s Algorithm in MPI

▶ Grama Program 6.2 is Cannon’s Matrix Multiply algorithm
implemented via MPI

▶ Uses the tricks mentioned on the past 2 slides to ease
implementation burden

▶ See cannon_grama.c for a source code version of it
Note: I haven’t tested this code but everything from textbooks
always works out the box, right?

19

Linear Equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

Summarized in matrix form as

Ax = b

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

 , x =

x1
x2
...

xn

 , b =

b1
b2
...

bm

Usually given A, b, must find x. An inordinate amount of CPU
cycles are spent on this problem.

20

Solving Triangular Systems
Easier than a general system via back substitution process

A b A b
[1 2 3 4 | 30] [1 2 3 0 | 14] 30-4*4
[0 5 6 7 | 56] [0 5 6 0 | 28] 56-7*4
[0 0 8 9 | 60] [0 0 8 0 | 24] 60-9*4
[0 0 0 1 | 4] x(3) == 4 [0 0 0 1 | 4] x(3) == 4

[1 2 3 0 | 14] [1 2 0 0 | 5] 14-3*3
[0 5 6 0 | 28] [0 5 0 0 | 10] 28-6*3
[0 0 1 0 | 3] x(2) == 3 [0 0 1 0 | 3] x(2) == 3
[0 0 0 1 | 4] x(3) == 4 [0 0 0 1 | 4] x(3) == 4

[1 2 0 0 | 5] [1 0 0 0 | 1] 5-2*2
[0 1 0 0 | 2] x(1) == 2 [0 1 0 0 | 2] x(1) == 2
[0 0 1 0 | 3] x(2) == 3 [0 0 1 0 | 3] x(2) == 3
[0 0 0 1 | 4] x(3) == 4 [0 0 0 1 | 4] x(3) == 4

[1 0 0 0 | 1] x(0) == 1
[0 1 0 0 | 2] x(1) == 2
[0 0 1 0 | 3] x(2) == 3
[0 0 0 1 | 4] x(3) == 4

21

Standard Code for Back Substitution

BACK_SUBSTITUTE(A,b,x){
N = nrows(A)
for(j=N-1 downto 0) {

x[j] = b[j] / A[j,j]
for[i=j-1 downto 0] {
b[i] = b[i] - A[i,j]*x[j]
A[i,j] = 0 // OPTIONAL

}
}
x[] now contains solutions
b[] has been modified
A[] has been modified if OPTIONAL is executed

}
Computational complexity for square matrix of size N?

22

Getting a Triangular Matrix via Gaussian Elimination
▶ Standard solution algorithm to find x in Ax = b

▶ Converts A to U which is upper triangular
A b

[1 2 3 -4 | -14]
[2 7 21 10 | 38] -2 row0
[4 13 43 2 | 24] -4 row0
[-2 -2 7 15 | 60] +2 row0

[1 2 3 -4 | -14]
[0 3 15 18 | 66]
[0 5 31 18 | 80] -5/3 row1
[0 2 13 7 | 32] -2/3 row1

[1 2 3 -4 | -14]
[0 3 15 18 | 66]
[0 0 6 -12 | -30]
[0 0 3 -5 | -12] -1/2 row3

[1 2 3 -4 | -14] [1 0 0 0] L is formed from negative
[0 3 15 18 | 66] [2 1 0 0] coefficients found via
[0 0 6 -12 | -30] [4 5/3 1 0] Gaussian elimination with
[0 0 0 1 | 3] [-2 2/3 1/2 1] unit main diagonal.

U b' L

23

LU: The Lower Upper Decomposition

▶ By tracking the coefficients used during the Gaussian
elimination, one gets a matrix L which is lower triangular

▶ Modifications to A become an upper triangular matrix U

▶ One can verify that A = LU
octave> rats(L) octave> U
L = U =

1 0 0 0 1 2 3 -4
2 1 0 0 0 3 15 18
4 5/3 1 0 0 0 6 -12
-2 2/3 1/2 1 0 0 0 1

octave> L * U octave> L * U - A
ans = ans =

1 2 3 -4 0 0 0 0
2 7 21 10 0 0 0 0
4 13 43 2 0 0 0 0
-2 -2 7 15 0 0 0 0

24

Exercise: LU Factorization Pseudocode
1 LU_FACTORS(A[] : square matrix){
2 N = nrows(A)
3 Allocate L as N*N identity mat
4 Allocate U as copy of A
5
6 for(d=0 to N-1){ // leading row d
7 for(i=d+1 to N-1){ // remaining rows i
8 scale = U[i,d] / U[d,d] // scale for this row
9 L[i,d] = scale // record scale in L

10 for(j=d to N-1){ // iterate over this row j
11 U[i,j] = U[i,j] - scale*U[d,j] // subtract off scaled leading row
12 }
13 }
14 }
15 return
16 L: a lower triangle matrix with factors and unit diagonal
17 U: an upper triangle matrix, obeys L*U = A
18 }

▶ Computational Complexity?
▶ Could anything go sideways numerically?

25

Answers: LU Factorization Pseudocode
1 LU_FACTORS(A[] : square matrix){
2 N = nrows(A)
3 Allocate L as N*N identity mat
4 Allocate U as copy of A
5
6 for(d=0 to N-1){ // leading row d
7 for(i=d+1 to N-1){ // remaining rows i
8 scale = U[i,d] / U[d,d] // scale for this row
9 L[i,d] = scale // record scale in L

10 for(j=d to N-1){ // iterate over this row j
11 U[i,j] = U[i,j] - scale*U[d,j] // subtract off scaled leading row
12 }
13 }
14 }
15 return
16 L: a lower triangle matrix with factors and unit diagonal
17 U: an upper triangle matrix, obeys L*U = A
18 }

▶ Computational Complexity?: O(N3) - 3 nested loops
▶ Could anything go sideways numerically? - Division by 0 at

line 8
▶ To fix this requires pivoting
▶ Robust versions permute rows so the row with the largest

U[:,d] element used at iteration d
26

Utility of LU Decomposition
General Process

1. Want x in Ax = b

2. Compute LU = A via
Gaussian elimination

3. Use forward-substitution to
find y in Ly = b

4. Use back-substitution to
find x in Ux = y

Solving in this fashion exploits
the following identities

Ux = y so L−1LUx = L−1Ly

LU = A so Ax = Ly

Ly = b so Ax = b

vs Gaussian Elimination
▶ LU factorization costs little

more than Gaussian Elim
▶ Saving the LU Factorization

allows solving for a new b
with only passes of
back/forward substitution

Ax1 = b1, Ax2 = b2, Ax3 = b3

1 LU decomposition then
3 rounds of back/forward
substitution

▶ LU Decomp is O(N3)
▶ Back/Forward Sub is (N2)

27

Variants

▶ To save space, overwrite L,U in A
▶ Upper triangle of A becomes U including main diagonal
▶ Lower triangle of A would have been 0’s, store L there, implied

1 diagonal
▶ Grama’s variant makes main diagonal of U all 1’s: saves some

ops in back/forward substitution
▶ We are ignoring the need to pivot and permute the matrix

rows for numerical stability: doing so yields the LUP
decomposition with permutation matrix P

28

Exercise: Now, about Parallelizing…
1 LU_FACTORS_INPLACE(A[] : square matrix){
2 N = nrows(A)
3 // Will overwrite A with its L*U factors, no allocation of L or U
4
5 for(d=0 to N-1){ // leading row d
6 for(i=d+1 to N-1){ // remaining rows i
7 scale = A[i,d] / A[d,d] // scale for this row
8 A[i,d] = scale // record scale in L
9 for(j=d+1 to N-1){ // iterate over this row j

10 A[i,j] = A[i,j] - scale*A[d,j] // subtract off scaled leading row
11 }
12 }
13 }
14 return; // A now has its L,U factors in its lower/upper triangles
15 }

Assuming an in-place variant how would one go about parallelizing
this?
▶ Decomposition / distribution of A?
▶ Communication at which steps?

Pitch some ideas
29

Answers: Now, about Parallelizing…
▶ Block decomposition means

that some processors idle
▶ Row decomposition also

leads to some idling, is
described in Grama 8.3

▶ A cyclic decomposition
leads to better balance
▶ 100 x 100 matrix, 4

Procs, row cyclic
▶ P0: rows 4*i+0 =

0,4,8,12,...
▶ P1: rows 4*i+1 =

1,5,9,13,...
▶ etc.

▶ Broadcast leading row from
owning proc to all others

30

Analysis of LU Decomposition
▶ Serial algorithm runs in O(N3)
▶ Parallel approaches use

1. N iterations of each row as the leading row
2. Broadcast of leading row d to all P procs : N broadcasts
3. Parallel modification of N − d lower block of A[] to store L, U

factors in it O(N2/P)
▶ For a ring of P procs to broadcast length N row

tbroadcast = log2 (P)ts + twNP

leading to overall complexity of
T = N × (N2/P + log2 (P)ts + twNP)

= N3/P + N log2 (P)ts + twN2P

is O(N3/P)
▶ Main overhead is the need to broadcast a row at each step,
▶ Pipelined Broadcast improves on this: good implementations

of MPI_Bcast() has a node pass on messages, begin
computation again ASAP, not idle while broadcast completes

31

