#### Parallel algorithms for Dense Matrix Problems

Chris Kauffman

Last Updated: Thu Feb 23 02:30:11 PM CST 2023

## Logistics

#### Assignments

- A1 grades almost done
- Mini-Exam 1 grading at 50%
- Likely to have all grading done by next Mon
- A2 is delayed: new deadline posted to schedule
- Mini-Exam 2 date adjusted

#### Reading

Grama Ch 8 on Dense Matrix Algorithms

- Naive Matrix Multiply
- Cannon's Algorithm
- LU Decomposition

Today: Matrix algorithms

## Recall Matrix Transpose

- Common operation on matrices is a transpose notated A<sup>T</sup>
- ► Interchanges rows/columns of *A*:  $a_{ij} \rightarrow a_{ji}$
- Diagonal elements stay the same
- Algorithms that perform operations on A can often be performed on A<sup>T</sup> without re-arranging A - how? Hint: consider summing rows of A vs summing rows of A<sup>T</sup>

#### **Original matrix A**

| 0  | 5  | 10 | 15 |
|----|----|----|----|
| 20 | 25 | 30 | 35 |
| 40 | 45 | 50 | 55 |
| 60 | 65 | 70 | 75 |

transpose(A)

| 0  | 20 | 40 | 60 |
|----|----|----|----|
| 5  | 25 | 45 | 65 |
| 10 | 30 | 50 | 70 |
| 15 | 35 | 55 | 75 |

## Exercise: Matrix Partitioning Across Processors



- Recall several ways to partition matrices across processors
- Diagram shows these
  - Entry ij may be an individual element OR...
  - Entry ij may be a Block: ex. Block (2,3) is the 100x100 submatrix rows 200-299 and cols 300-399
- Assume square matrices : #rows = #cols
- ▶ For Mat-Mult C = A × B, what is...
  - Ideal partitioning for A and B in matrix multiply?
  - Ideal partitioning for  $C = A^T \times B$
  - Ideal partitioning for  $C = A \times B^T$

## Answers: Matrix Partitioning Across Processors



 $\blacktriangleright C = A \times B$ 

Ideally A is row-partitioned, B is column partitioned

Then block-partitioned C could be computed w/o communication

• e.g. Proc 0 owns A[0,:] and B[:,0] so can compute C[0,0] •  $C = A^T \times B$ 

Ideally A and B column-partitioned

$$\blacktriangleright \ C = A \times B^T$$

• Ideally A and B row-partitioned

Block-partitioning often used: not ideal for any version but less communication required when both A and A<sup>T</sup> will b used

### Naive Parallel Dense Multiplication: Overview

#### Block Partitioning Appears Frequently

- Specific applications may be able to select a favorable partitioning (e.g. Row Partition for repeated mat-vec mult)
- Many applications use both A and A<sup>T</sup> so employ block-partitioned matrices: middle-way approach which does not favor rows or columns
- Parallel Libraries often use block partitions by default

#### Matrix Multiply with Blocks

- To compute Matrix-Matrix multiply, procs must (eventually) multiply full rows by full columns to compute an output block
- Naive method: each Proc stores full rows/columns needed for it to independently compute output block which it stores

#### Naive Parallel Dense Multiplication: Demo

- Distributed Parallel Matrix-Matrix Multiply
- ▶ Block Partition of Matrices *A*, *B*, *C* among processors
- ▶ Diagram shows 4 processors in a  $2 \times 2$  grid

1. Initial data layout: each Proc holds a block of A, B, and C respectively. Processors are arragned in a logical grid that reflects their initial data.

In subsequent steps, received / computed data is bolded.

 Each proc participates in an All-to-All sharing of data for the Column it is in.

This leaves each row with complete columns as well.



 P00
 P01

 C00
 A00 [A01]
 800

 810
 810

 910
 911

 910
 911

 910
 911

 910
 911

 910
 911

 910
 911

 910
 911

 910
 911

 910
 911

 Each proc participates in an All-to-All sharing of data for the Row it is in.

This leaves each proc with entire rows of A.



4. Each Proc now has a unique set of complete Rows and Columns and can independently compute a block of output matrix C through block multiplication.



7

#### Exercise: Analysis of Naive Dense Mult.

#### Assumptions

- $\blacktriangleright$  Matrices A and B are size  $N\times N$  so  $N^2$  elements
- P processors in a  $\sqrt{P} \times \sqrt{P}$  grid (P is a perfect square)
- Each Proc has block with  $N^2/P$  elements of A, B as a  $(N/\sqrt{P}) \times (N/\sqrt{P})$  submatrix
- Simplified communication cost for All-to-All on a Ring with p #procs in ring, t<sub>s</sub> comm startup time, t<sub>w</sub> per word transfer rate, M message size:

$$t_{comm} = (p-1)(t_s + t_w M)$$

#### Questions

- 1. What is communication cost of this algorithm?
- 2. How much time does the final block matrix multiply take?
- 3. What is the memory requirement for each proc?
- 4. Downsides of this algorithm?

#### Answers: Analysis of Naive Dense Mult.

- 1. What is communication cost of this algorithm?
  - #Procs in rows/cols is  $\sqrt{P} \sim \text{ring size}$
  - $M = N^2/P$  : message size is num elements on each proc
  - 2 All-to-All shares : 1 for rows, 1 for cols

$$t_{comm} = 2(\sqrt{P} - 1) \times (t_s + t_w(N^2/P))$$

- 2. What is the memory requirement for each proc? E.g. how many submatrices of A,B are on each proc?
  - Full rows/cols on each proc
  - Requires  $2\sqrt{P}$  submatrices for each Proc
- 3. How much time does the final block matrix multiply take?
  - Each proc has  $\sqrt{P}$  submats of A,B to multiply
  - MatMult is for size s is  $O(s^3)$ ; submat size  $s = N/\sqrt{P}$  $t_{mult} = O((\sqrt{P}) \times ((N/\sqrt{P})^3)) = O(N^3/P)$
- 4. Downsides of this algorithm?
  - ▶ Major: The need to store  $\sqrt{P}$  sub matrices on all procs may be prohibitive:  $2\sqrt{P} \times N^2/P$  space on each proc
  - Minor: Not much chance to overlap communication / computation in the algorithm

## Cannon's Algorithm

- Proposed in Lynn Elliot Cannon's 1969 thesis
- Target was very small parallel machines implementing a Kalman Filter algorithm in hardware
- "Communication" happening between small Procs with data in registers
- Scales nicely to large distributed machines and overcomes the large memory requirement of the Naive Mat-Mult Algorithm

A CELLUIAR COMPUTER TO IMPLEMENT

#### THE KALMAN FILTER ALCORITHM

#### Ъy

#### LYNN ELLIOT CANNON

By the conventional definition of matrix product, if A is multi-

plied by B, the result, call it C, is given by

$$C = AXB = \begin{bmatrix} a_1b_1^{+}a_2b_2^{+}a_3b_3 & a_1b_4^{+}a_2b_3^{+}a_3b_6 & a_1b_3^{+}a_2b_8^{+}a_3b_9 \\ a_4b_1^{+}a_5b_2^{+}a_6b_3 & a_4b_4^{+}a_3b_3^{+}a_6b_6 & a_4b_3^{+}a_3b_8^{+}a_6b_9 \\ a_7b_1^{+}a_8b_2^{+}a_3b_3 & a_7b_4^{+}a_8b_8^{+}a_3b_6 & a_7b_7^{+}a_8b_8^{+}a_9b_9 \end{bmatrix}.$$

The symmetry of this product can be seen by comparing the  $ij^{th}$ element with the  $ji^{th}$  element and noticing that one is obtained from -2h-

- A. 1. The first row of A is left alone.
  - 2. The second row of A is shifted left one column.
  - The third row of A is shifted left two columns.
     (Note, in general the i<sup>th</sup> row of A is shifted left
     i-l columns for i = 1, ..., n).
- B. 1. The first column of B is left alone.
  - 2. The second column of B is shifted up one row
  - The third column of B is shifted up two rows.
     (Note, in general the j<sup>th</sup> column of B is shifted up j-1 rows for j = 1, ..., n)

Once the registers have been shifted the multiplication pr

#### Demo



## Cannon's Algorithm Pseudocode

```
Cannon_MM(i, j. Q){
  PE(i,j) has blocks A1=A(i,j) and B1=B(i,j)
  Q is the Block Dimension : A is Q*Q blocks
  Allocate space A2, B2, Cij sized as A1
  doboth send A1 to PE(i, j-i+Q % Q)
        recv A2 from PE(i, j+i+0 % Q)
  doboth send B1 to PE(i-j+Q % Q, j)
         recv B2 from PE(i+j+Q % Q, j)
  for(k=1 to Q){
    copy A2 into A1. B2 into B1
    Cij += A1 * B1
    doboth send A1 to PE(i, j-1+Q \% Q)
           recv A2 from PE(i, j+1+Q % Q)
    doboth send B1 to PE(i-1+Q % Q, j)
           recv B2 from PE(i+1+Q % Q, j)
    // optionally skip last comm
  }
  Cij now contains output block of C(i,j)
}
```

| $A_{0,0}$        | A <sub>0,1</sub> | A <sub>0,2</sub> | A <sub>0,3</sub> |
|------------------|------------------|------------------|------------------|
| A <sub>1,0</sub> | $A_{1,1}$        | A <sub>1,2</sub> | A <sub>1,3</sub> |
| A <sub>2,0</sub> | A <sub>2.1</sub> | A2,2             | A <sub>2,3</sub> |
| A <sub>3,0</sub> | A <sub>3,1</sub> | A <sub>3,2</sub> | A <sub>3,3</sub> |

| B <sub>0,0</sub>   | B <sub>0,1</sub>   | B <sub>0,2</sub>      | B <sub>0,3</sub> |
|--------------------|--------------------|-----------------------|------------------|
| $\mathbf{B}_{1,0}$ | В <sub>1,1 д</sub> | B <sub>1,2</sub>      | B <sub>1,3</sub> |
| B <sub>2,0</sub>   | B <sub>2,1</sub>   | й<br>В <sub>2,2</sub> | B <sub>2,3</sub> |
| B <sub>3,0</sub>   | B <sub>3,1</sub>   | B <sub>3,2</sub>      | B <sub>3,3</sub> |

#### (a) Initial alignment of A

#### (b) Initial alignment of B





(c) A and B after initial alignment

(d) Submatrix locations after first shift

| .1                   | 1                  | 1                  | 1                  |
|----------------------|--------------------|--------------------|--------------------|
| - A <sub>0,2</sub> - | A <sub>0.3</sub> ◄ | A <sub>0,0</sub> ◄ | A <sub>0,1</sub> ◄ |
| B <sub>2,0</sub>     | B <sub>3,1</sub>   | B0,2               | B <sub>1,3</sub>   |
| ▲ A <sub>1,3</sub> ≪ | A <sub>1,0</sub> ◄ | A <sub>1,1</sub> < | A <sub>1,2</sub> * |
| B <sub>3,0</sub>     | B <sub>0,1</sub>   | B <sub>1,2</sub>   | B2.3               |
| < A <sub>2,0</sub> < | A <sub>2.1</sub> ~ | A <sub>2,2</sub> < | A2,3 *             |
| B <sub>0,0</sub>     | B <sub>1,1</sub>   | B2,2               | B <sub>3,3</sub>   |
| < A <sub>3,1</sub> < | A <sub>3,2</sub> * | A <sub>3,3</sub> < | A <sub>3,0</sub> * |
| B <sub>1,0</sub>     | B <sub>2.1</sub>   | B <sub>3,2</sub>   | B <sub>0,3</sub>   |
|                      | 1                  |                    | 1                  |

| A <sub>0,3</sub>            | A <sub>0,0</sub>     | A <sub>0,1</sub>                     | A <sub>0,2</sub>                     |
|-----------------------------|----------------------|--------------------------------------|--------------------------------------|
| B <sub>3,0</sub>            | B <sub>0,1</sub>     | B <sub>1,2</sub>                     | B <sub>2,3</sub>                     |
| ${f A}_{1,0} \ {f B}_{0,0}$ | $A_{1,1} \\ B_{1,1}$ | A <sub>1,2</sub><br>B <sub>2,2</sub> | A <sub>1,3</sub><br>B <sub>3,3</sub> |
| A <sub>2,1</sub>            | A <sub>2,2</sub>     | A <sub>2,3</sub>                     | A <sub>2,0</sub>                     |
| B <sub>1,0</sub>            | B <sub>2,1</sub>     | B <sub>3,2</sub>                     | B <sub>0,3</sub>                     |
| A <sub>3,2</sub>            | A <sub>3,3</sub>     | A <sub>3,0</sub>                     | A <sub>3,1</sub>                     |
| B <sub>2,0</sub>            | B <sub>3,1</sub>     | B <sub>0,2</sub>                     | B <sub>1,3</sub>                     |

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Figure 8.3 The communication steps in Cannon's algorithm on 16 processes.

## Exercise: Analysis of Cannon's Algorithm Assumptions

- ▶ Matrices A and B are size  $N \times N$  so  $N^2$  elements
- P processors with block partitioning: initially N<sup>2</sup>/P elements of A, B on each proc (assume P is a perfect square)
- Simplified communication cost for send/recv on a Ring:

$$t_{comm} = t_s + t_w M$$

with  $p \ \#$  procs in ring,  $t_s$  comm startup time,  $t_w$  per word transfer rate, M message size.

#### Questions

- 1. What is communication cost of this Cannon's algorithm?
- 2. Is this any better/worse/same as the Naive algorithm?
- 3. What is the memory requirement for each proc?
- 4. Is this any better/worse/same as the Naive algorithm?

### Answers: Analysis of Cannon's Algorithm

- 1. What is communication cost of this Cannon's algorithm?
  - In each step, each proc performs 2 send/recv ops
  - Each send/recv is a block of size N<sup>2</sup>/P
  - Block Dim  $Q = \sqrt{P}$  for square 2D Torus
  - Total  $\sqrt{P}$  steps : can skip last comm step

$$t_{comm} = 2(\sqrt{P} - 1) \times (t_s + t_w(N^2/P))$$

2. Is this any better/worse/same as the Naive algorithm?

Same communication cost as Naive algorithm

- 3. What is the memory requirement for each proc?
  - $O(N^2/P)$  : 5 blocks as stated in pseudcode,
  - ▶ 3 blocks for  $A_{ij}, B_{ij}, C_{ij}$
  - 2 "workspaces" to allow send/recv of blocks:
  - Eliminate workspace blocks in a refinement
- 4. Is this any better/worse/same as the Naive algorithm?
  - Cannon's  $O(N^2/P)$  vs Naive  $O(\sqrt{P} \times N^2/P)$
  - Memory overhead is much better: constant number of blocks rather than the need to store entire rows/cols on single procs

## Lessons from Cannon's Algorithm

- Illustrates "pipelining": blocks used to compute partial results then fed forward other processors
- Benefits greatly from a 2D Grid / Torus network which facilitates local communications that arise in the algorithm
- While not as ideal as row/col partitioning for A, B, realistic and relatively efficient
- Variants of central idea exist in some libraries such as Scalapack which has a parallel xGEMM() using many similar ideas
- Could really use some code support for
  - 2D Coordinates for processors rather than linear rank...
  - Sending/receiving in a ring...

# MPI Tricks for Rings

#### Sendrecv in a Ring

MPI\_Sendrecv() allows ring-link partnering

#### Sendrecv with Replacement

MPI\_Sendrecv\_replace() allows send/recv in the same buffer

In Cannon's Alg, no longer need A1 / A2: can send/receive block of A with a single buffer.

#### MPI Tricks for Grids: MPI\_Cart\_create()

MPI has special support for Grid/Torus network configs; allows creation of a MPI\_Comm that maps processors to a N-D grid

```
int mycoords[2] = {-1, -1}; // (i,j) coords
MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);
```

```
printf("Proc %2d (%s): my2drank %3d mycoords (%3d, %3d)\n",
    myrank,processor_name,
    my2drank,mycoords[0],mycoords[1]);
```

## MPI Tricks for Shifting

Shifts are eased by the MPI\_Cart\_shift() function

 Calculates linear rank of source/dest procs for shift operations in a Cartesian grid of procs.

Data exchange via MPI\_Sendrecv() is then direct

```
// cartesian_comm.c
int mydata = (100*mycoords[0])+mycoords[1];
int rowsend=-1, rowrecv=-1;
```

MPI\_Cart\_shift(comm\_2d, 0, rowshift, &rowrecv, &rowsend);

## Cannon's Algorithm in MPI

- Grama Program 6.2 is Cannon's Matrix Multiply algorithm implemented via MPI
- Uses the tricks mentioned on the past 2 slides to ease implementation burden

See cannon\_grama.c for a source code version of it Note: I haven't tested this code but everything from textbooks always works out the box, right?

#### Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
  

$$\vdots$$
  

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Summarized in matrix form as

$$A\mathbf{x} = \mathbf{b}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Usually given A, b, must find x. An inordinate amount of CPU cycles are spent on this problem.

## Solving Triangular Systems

Easier than a general system via back substitution process

|     |   | A |   | b    |      |      |     | A |   |   | b    |           |
|-----|---|---|---|------|------|------|-----|---|---|---|------|-----------|
| [ 1 | 2 | 3 | 4 | 30 ] |      |      | [ 1 | 2 | 3 | 0 | 14 ] | 30-4*4    |
| [ 0 | 5 | 6 | 7 | 56 ] |      |      | [ 0 | 5 | 6 | 0 | 28 ] | 56-7*4    |
| [ 0 | 0 | 8 | 9 | 60 ] |      |      | [ 0 | 0 | 8 | 0 | 24 ] | 60-9*4    |
| [ 0 | 0 | 0 | 1 | 4]   | x(3) | == 4 | [ 0 | 0 | 0 | 1 | 4]   | x(3) == 4 |
| [ 1 | 2 | 3 | 0 | 14 ] |      |      | [ 1 | 2 | 0 | 0 | 5]   | 14-3*3    |
| [ 0 | 5 | 6 | 0 | 28 ] |      |      | [ 0 | 5 | 0 |   | 10 ] | 28-6*3    |
| [ 0 | 0 | 1 | 0 | 3]   | x(2) | == 3 | [ 0 | 0 | 1 | 0 | 3]   | x(2) == 3 |
| [ 0 | 0 | 0 | 1 | 4]   | x(3) | == 4 | [ 0 | 0 | 0 | 1 | 4]   | x(3) == 4 |
| [1  | 2 | 0 | 0 | 5]   |      |      | [ 1 | 0 | 0 | 0 | 1]   | 5-2*2     |
| [ 0 | 1 | 0 | 0 | 2]   | x(1) | == 2 | [ 0 | 1 | 0 | 0 | 2]   | x(1) == 2 |
| [ 0 | 0 | 1 | 0 | 3]   | x(2) | == 3 | [ 0 | 0 | 1 | 0 | 3]   | x(2) == 3 |
| [ 0 | 0 | 0 | 1 | 4]   | x(3) | == 4 | [ 0 | 0 | 0 | 1 | 4]   | x(3) == 4 |
| [ 1 | 0 | 0 | 0 | 1]   | x(0) | == 1 |     |   |   |   |      |           |
| [ 0 | 1 | 0 | 0 | 2]   | x(1) | == 2 |     |   |   |   |      |           |
| [ 0 | 0 | 1 | 0 | 3]   | x(2) | == 3 |     |   |   |   |      |           |
| [ 0 | 0 | 0 | 1 | 4]   | x(3) | == 4 |     |   |   |   |      |           |

Standard Code for Back Substitution

```
BACK SUBSTITUTE(A,b,x){
  N = nrows(A)
  for( j=N-1 downto 0 ) {
    x[j] = b[j] / A[i,i]
    for[ i=j-1 downto 0 ] {
      b[i] = b[i] - A[i,j] * x[j]
      A[i,j] = 0 // OPTIONAL
    }
  }
  x[] now contains solutions
  b[] has been modified
  A has been modified if OPTIONAL is executed
}
```

Computational complexity for square matrix of size N?

#### Getting a Triangular Matrix via Gaussian Elimination

Standard solution algorithm to find x in Ax = b

Converts A to U which is upper triangular

|      | Α     | b           |              |
|------|-------|-------------|--------------|
| [ 1  | 2 3   | -4   -14 ]  |              |
| [ 2  | 7 21  | 10   38 ] · | -2 row0      |
| [ 4  | 13 43 | 2   24 ] ·  | -4 row0      |
| [ -2 | -2 7  | 15   60]•   | +2 row0      |
| _    |       |             |              |
| [ 1  | 2 3   | -4   -14 ]  |              |
| [ 0  | 3 15  | 18   66 ]   |              |
| [ 0  | 5 31  | 18   80 ]   | -5/3 row1    |
| [ 0  | 2 13  | 7   32 ]    | -2/3 row1    |
|      |       |             |              |
| [ 1  | 2 3   | -4   -14 ]  |              |
| [ 0  | 3 15  | 18   66 ]   |              |
| [ 0  | 0 6   | -12   -30 ] |              |
| [ 0  | 0 3   | -5   -12 ]  | -1/2 row3    |
|      |       |             |              |
| [ 1  | 2 3   | -4   -14 ]  | [ 1 0 0      |
| [ 0  | 3 15  | 18   66 ]   | [2 1 0       |
| [ 0  | 0 6   | -12   -30 ] | [ 4 5/3 1    |
| [ 0  | 0 0   | 1   3]      | [ -2 2/3 1/2 |
|      | U     | b'          | L            |
|      |       |             |              |

L is formed from negative coefficients found via Gaussian elimination with unit main diagonal.

0]

0] 0]

1]

## LU: The Lower Upper Decomposition

- By tracking the coefficients used during the Gaussian elimination, one gets a matrix L which is lower triangular
- $\blacktriangleright$  Modifications to A become an upper triangular matrix U

| ► C     | ne c  | an v | = LU |   |                   |
|---------|-------|------|------|---|-------------------|
| octave> | rats  | s(L) |      |   | octave> U         |
| L =     |       |      |      |   | U =               |
| 1       |       | 0    | 0    | 0 | 1 2 3 -4          |
| 2       |       | 1    | 0    | 0 | 0 3 15 18         |
| 4       | 5,    | /3   | 1    | 0 | 0 0 6 -12         |
| -2      | 2/    | /3   | 1/2  | 1 | 0 0 0 1           |
|         |       |      |      |   |                   |
| octave> | • L * | U    |      |   | octave> L * U - A |
| ans =   |       |      |      |   | ans =             |
| 1       | 2     | 3    | -4   |   | 0 0 0 0           |
| 2       | 7     | 21   | 10   |   | 0 0 0 0           |
| 4       | 13    | 43   | 2    |   | 0 0 0 0           |
| -2      | -2    | 7    | 15   |   | 0 0 0 0           |

### Exercise: LU Factorization Pseudocode

```
LU FACTORS(A[] : square matrix){
2 N = nrows(A)
    Allocate L as N*N identity mat
3
    Allocate U as copy of A
4
5
    for(d=0 to N-1){
                                           // leading row d
6
7
      for(i=d+1 to N-1){
                                          // remaining rows i
        scale = U[i,d] / U[d,d]
                                       // scale for this row
8
        L[i,d] = scale
                                         // record scale in L
9
10
        for(j=d to N-1){
                                      // iterate over this row j
          U[i,j] = U[i,j] - scale*U[d,j] // subtract off scaled leading row
11
        }
12
       }
13
     3
14
15
    return
16
      L: a lower triangle matrix with factors and unit diagonal
      U: an upper triangle matrix, obeys L*U = A
17
18 }
```

#### Computational Complexity?

Could anything go sideways numerically?

### Answers: LU Factorization Pseudocode

```
1 LU_FACTORS(A[] : square matrix){
2 N = nrows(A)
3
   Allocate L as N*N identity mat
    Allocate U as copy of A
4
5
    for(d=0 to N-1){
6
                                         // leading row d
      for(i=d+1 to N-1){
                                        // remaining rows i
7
        scale = U[i,d] / U[d,d]
                                     // scale for this row
8
                                      // record scale in L
        L[i,d] = scale
9
10
        for(j=d to N-1){
                                    // iterate over this row j
          U[i,j] = U[i,j] - scale*U[d,j] // subtract off scaled leading row
11
        }
12
      }
13
     ን
14
15
    return
      L: a lower triangle matrix with factors and unit diagonal
16
      U: an upper triangle matrix, obeys L*U = A
17
18 }
    Computational Complexity?: O(N^3) - 3 nested loops
    Could anything go sideways numerically? - Division by 0 at
       line 8
          To fix this requires pivoting
          Robust versions permute rows so the row with the largest
```

U[:,d] element used at iteration d

# Utility of LU Decomposition

#### General Process

- 1. Want x in Ax = b
- 2. Compute LU = A via Gaussian elimination
- 3. Use forward-substitution to find y in Ly = b
- 4. Use back-substitution to find x in Ux = y

Solving in this fashion exploits the following identities

$$Ux = y$$
 so  $L^{-1}LUx = L^{-1}Ly$   
 $LU = A$  so  $Ax = Ly$   
 $Ly = b$  so  $Ax = b$ 

#### vs Gaussian Elimination

- LU factorization costs little more than Gaussian Elim
- Saving the LU Factorization allows solving for a new b with only passes of back/forward substitution

$$Ax_1 = b_1, Ax_2 = b_2, Ax_3 = b_3$$

1 LU decomposition then 3 rounds of back/forward substitution

• LU Decomp is 
$$O(N^3)$$

• Back/Forward Sub is  $(N^2)$ 

#### Variants

- To save space, overwrite L,U in A
  - Upper triangle of A becomes U including main diagonal
  - Lower triangle of A would have been 0's, store L there, implied 1 diagonal
- Grama's variant makes main diagonal of U all 1's: saves some ops in back/forward substitution
- We are ignoring the need to **pivot** and permute the matrix rows for numerical stability: doing so yields the LUP decomposition with permutation matrix P

## Exercise: Now, about Parallelizing...

```
LU_FACTORS_INPLACE(A[] : square matrix){
    N = nrows(A)
2
 з
     // Will overwrite A with its L*U factors, no allocation of L or U
4
     for(d=0 to N-1){
 5
                                           // leading row d
       for(i=d+1 to N-1){
                                          // remaining rows i
 6
7
         scale = A[i,d] / A[d,d]
                                          // scale for this row
         A[i,d] = scale
                                        // record scale in L
8
         for(j=d+1 to N-1){
                                         // iterate over this row j
9
           A[i,j] = A[i,j] - scale*A[d,j] // subtract off scaled leading row
10
         }
11
       }
12
     3
13
     return; // A now has its L,U factors in its lower/upper triangles
14
15 }
```

Assuming an in-place variant how would one go about parallelizing this?

- Decomposition / distribution of A?
- Communication at which steps?

Pitch some ideas

# Answers: Now, about Parallelizing...

- Block decomposition means that some processors idle
- Row decomposition also leads to some idling, is described in Grama 8.3
- A cyclic decomposition leads to better balance
  - 100 x 100 matrix, 4 Procs, row cyclic
  - P0: rows 4\*i+0 = 0,4,8,12,...
  - P1: rows 4\*i+1 = 1,5,9,13,...
  - etc.
- Broadcast leading row from owning proc to all others

| $P_0$          | 1 | (0,1) | (0,2) | $(0,3) \ (0,4) \ (0,5) \ (0,6) \ (0,7)$                                         |
|----------------|---|-------|-------|---------------------------------------------------------------------------------|
| P <sub>1</sub> | 0 | 1     | (1,2) | $(1,3) \ (1,4) \ (1,5) \ (1,6) \ (1,7)$                                         |
| $P_2$          | 0 | 0     | 1     | $(2,3)\ (2,4)\ (2,5)\ (2,6)\ (2,7)$                                             |
| P <sub>3</sub> | 0 | 0     | 0     | (3,3) (3,4) (3,5) (3,6) (3,7)                                                   |
| $P_4$          | 0 | 0     | 0     | $(4,3) \ (4,4) \ (4,5) \ (4,6) \ (4,7)$                                         |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) $(5,4)$ $(5,5)$ $(5,6)$ $(5,7)$                                           |
| $P_6$          | 0 | 0     | 0     | (6,3) $(6,4)$ $(6,5)$ $(6,6)$ $(6,7)$                                           |
| P <sub>7</sub> | 0 | 0     | 0     | $(7,3) \ (7,4) \ (7,5) \ (7,6) \ (7,7)$                                         |
|                |   |       |       |                                                                                 |
| $P_0$          | 1 | (0,1) | (0,2) | $(0,3) \ (0,4) \ (0,5) \ (0,6) \ (0,7)$                                         |
| $P_1$          | 0 | 1     | (1,2) | $(1,3)\ (1,4)\ (1,5)\ (1,6)\ (1,7)$                                             |
| P2             | 0 | 0     | 1     | (2,3) (2,4) (2,5) (2,6) (2,7)                                                   |
| P <sub>3</sub> | 0 | 0     | 0     | 1 (3,4) (3,5) (3,6) (3,7)                                                       |
| P <sub>4</sub> | 0 | 0     | 0     | $(4,3) \bigvee (4,4) \bigvee (4,5) \bigvee (4,6) \bigvee (4,7)$                 |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) $(5,4)$ $(5,5)$ $(5,6)$ $(5,7)$                                           |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) $(6,4)$ $(6,5)$ $(6,6)$ $(6,7)$                                           |
| P <sub>7</sub> | 0 | 0     | 0     | $(7,3)$ $\dot{\Psi}(7,4)$ $\dot{\Psi}(7,5)$ $\dot{\Psi}(7,6)$ $\dot{\Psi}(7,7)$ |
|                |   |       |       |                                                                                 |
| $P_0$          | 1 | (0,1) | (0,2) | $(0,3) \ (0,4) \ (0,5) \ (0,6) \ (0,7)$                                         |
| P <sub>1</sub> | 0 | 1     | (1,2) | $(1,3)\ (1,4)\ (1,5)\ (1,6)\ (1,7)$                                             |
| P2             | 0 | 0     | 1     | $(2,3)\ (2,4)\ (2,5)\ (2,6)\ (2,7)$                                             |
| P3             | 0 | 0     | 0     | 1 (3,4) (3,5) (3,6) (3,7)                                                       |
| -              | - |       |       |                                                                                 |

(4,3) (4,4) (4,5) (4,6)

(6.3) (6.4) (6.5) (6.6)

0 0 (7,3) (7,4) (7,5) (7,6) (7,7)

Р.

P<sub>s</sub>

 $P_6$ 

P-

- (a) Computation:
  - (i) A[k,j] := A[k,j]/A[k,k] for  $k \leq j \leq$
  - (ii) A[k,k] := 1

- (b) Communication:
  - One-to-all broadcast of row A[k,\*]

- (c) Computation:
  - (i) A[i,j] := A[i,j] − A[i,k]× A[k,j] for k ≤ i ≤ n and k ≤ j ≤ n
  - (ii) A[i,k] := 0 for  $k \le i \le n$

Figure 8.6 Gaussian elimination steps during the iteration corresponding to k = 3 for an 8  $\times$  8 matrix partitioned rowwise among eight processes.

## Analysis of LU Decomposition

- Serial algorithm runs in  $O(N^3)$
- Parallel approaches use
  - $1. \ N$  iterations of each row as the leading row
  - 2. Broadcast of leading row d to all  $P \ {\rm procs}$  :  $N \ {\rm broadcasts}$
  - 3. Parallel modification of N-d lower block of A[] to store L,U factors in it  ${\cal O}(N^2/P)$
- For a ring of P procs to broadcast length N row

$$t_{broadcast} = \log_2\left(P\right)t_s + t_w N P$$

leading to overall complexity of

$$\begin{split} T &= N \times (N^2/P + \log_2{(P)t_s} + t_w NP) \\ &= N^3/P + N \log_2{(P)t_s} + t_w N^2 P \\ & \text{is} \quad O(N^3/P) \end{split}$$

Main overhead is the need to broadcast a row at each step,
 Pipelined Broadcast improves on this: good implementations of MPI\_Bcast() has a node pass on messages, begin computation again ASAP, not idle while broadcast completes