
Parallel Program Performance Analysis

Chris Kauffman

Last Updated:
Tue Feb 28 02:08:55 PM CST 2023

1



Logistics

This Week
▶ Reading: Grama Ch 5
▶ Finish up Dense Matrix

Algorithms - Parallel LU
decomposition

▶ Discuss Performance
Analysis and Isoefficiency

A2 Still Cooking
▶ Will have ~2 weeks to work

on it irrespective of release
▶ Will adjust schedule as

needed : tentatively set new
deadline after spring break

2



Basic Definitions

▶ Have discussed a variety of parallel algorithms, described
communication costs, total parallel runtime

▶ Now time for a bit more rigor on how to measure “success” of
parallelizing algorithms

▶ Start with a few basic terms for serial/parallel system to solve
the same problem

Ts = Tser = W Serial runtime for best serial algorithm, “Work”
P Number of processors in a parallel system

Tp = Tpar Parallel runtime a parallel system to solve a problem
S = Ts/Tp Speedup for a parallel system over a serial system
E = S/P Efficiency: speedup divided by #procs, range 0..1

C = Tp × P Cost of a parallel system to solve problem

3



Amdahl’s Law and Parallel Overhead
Speedup is limited by the portion of the program that can be
parallelized and the degree to which that portion can be
parallelized.
Relates to Efficiency in the following way

E = S

P
= Tser

Tpar

1
P

= Tser

Tpar × P
= Tser

C

▶ If we get Perfect speedup, Tpar = Tser/P so Efficiency E = 1.
▶ But you can’t get perfect speedup since all problems have

serial portions that can’t be parallelized
▶ Most parallel programs also require communication not

required in serial programs
Leads to notion of Parallel Overhead

To = Tover = Tpar × P − Tser

Tover is 0 only when Efficiency is 1 and speedup is perfect, but
they never are…

4



Exercise: Expensive Sum of N Numbers
▶ Standard serial algorithm to sum N numbers takes Tser = N

steps
▶ Describe a parallel algorithm that

▶ Uses P = N processors and achieves
▶ Takes Tpar = 2 × log2 N steps
▶ 1 step can be add two numbers or communicate single number

▶ Calculate terms below for 8, 32, and 1024 processors

P = 8 P = 32 P = 1024
Runtimes Tser, Tpar

Speedup S = Tser/Tpar

Efficiency E = S/P
Cost C = Tpar × P

▶ What happens to efficiency as N increases
▶ Give an analytic expression for the Efficiency of this algorithm

for any N
▶ Is this algorithm worth the cost in terms of processors?

5



Answers: Expensive Sum of N Numbers
Describe a parallel algorithm which uses
▶ P = N processors and achieves
▶ Tpar = 2 × log2 N steps

Each processor holds 1 of the N numbers. Odd processors send
their number to even processors which then add them on to their
own. Then proc#’s not divisible by 4 send to those that are which
add again. Each iteration takes 2 steps (send/add) and halves the
number of processors leading to 2 log N steps.

8 32 1024
Runtimes Tser, Tpar 8,6 32,10 1024,20
Speedup S = Tser/Tpar 1.33 3.20 51.2
Efficiency E = S/P 0.16 0.10 0.05
Cost C = Tpar × P 48 320 20480

Efficiency is E = 1
2 log N

▶ Big speedup, very costly with diminishing efficiency
6



Exercise: Realistic Summing
▶ Adding N numbers on P < N processors can be done in

N/P + 2 × log2 P steps. How?
▶ Standard serial algorithm takes N steps to sum N numbers.
▶ Fill in the following table

Par Runtime Speedup Efficiency Cost
P N Tp S = Ts/Tp E = S/P C = Tp × P

4 64
8 64
8 192

16 192
16 512

▶ What happens to efficiency as N and P vary
▶ Give an analytic expression for the Efficiency for any N, P

▶ How fast does N need to increase to maintain efficiency?
7



Answers: Realistic Summing 1/3
Adding N numbers on P < N processors can be done in
N/P + 2 × log2 P steps. How?
▶ Each Proc starts with N/P numbers, sums in that many

steps, then performs a parallel reductions completing in
2 log2 P steps.

Par Runtime Speedup Efficiency Cost
P N Tp S = Ts/Tp E = S/P C = Tp × P

4 64 20 3.20 0.80 80
8 64 14 4.57 0.57 112
8 192 30 6.40 0.80 240

16 192 20 9.60 0.60 320
16 512 40 12.80 0.80 640
32 512 26 19.69 0.62 832

See also Table 5.1

8



Answers: Realistic Summing 2 / 3
▶ What happens to efficiency as N and P vary

▶ Fixed P , increasing N raises Efficiency
▶ Fixed N , increasing P lowers Efficiency

9



Answers: Realistic Summing 3 / 3

▶ Give an analytic expression for the Efficiency for any N, P
▶ E = S/P = N

N/P +2 log2 P × 1
P = 1

1+ 2P log2 P
N

▶ How fast does N need to increase to maintain efficiency?
▶ This is what Isoefficiency seeks to answer

10



Isoefficiency and Parallel Overhead

▶ Isoefficiency describes how to increase number of procs P
and problem size to maintain constant efficiency E

▶ Summarized in the following relationship

W = KTo(W, P )

▶ W = Tser : “work” required to solve a problem serially
▶ K = E/(1 − E) : constant reflecting a target efficiency
▶ To(W, P ) : overhead of parallel system (algorithm + hardware)

▶ Smaller isoefficiency is better, indicates adding processors will
only diminish efficiency a little

▶ Note use of To as a function of Work/Problem Size W and
number of Processors P

11



Isoefficiency for Summing N numbers on P Processors

Tser = N Tpar = N

P
+ 2 log2 P

To(N, P ) = P × Tpar − Tser

= P ×
(

N

P
+ 2 log2(P )

)
− N = N + 2P log2(P ) − N

= 2P log2(P )

W = KTo(W, P ) (Isoefficiency Equation)
N = K × 2P log2(P ) (Isoefficiency for Problem)

Work / Problem size must increase at the same rate as Parallel
Overhead to maintain constant efficiency

12



Example Isoefficiency Calculation

Summing N numbers with P Processors has isoefficiency function

W = KTo(W, P ) = K × 2P log2(P )

If Increasing procs from P1 = 4 to P2 = 8, then Increase N by
factor of

2P2 log2(P2)
2P1 log2(P1)

= 8 log2 8
4 log2 4

= 24/8 = 3

to keep Efficiency E constant.

Par Runtime Speedup Efficiency Cost
P N Tp S = Ts/Tp E = S/P C = Tp × P

4 64 20 3.20 0.80 80
8 192 30 6.40 0.80 240

16 512 40 12.80 0.80 640

13



Exercise: Scalability of Cannon’s Algorithm

▶ Recently studied Cannon’s Algorithm for Dense Matrix
Multiplication

▶ Distributed block matrix decomposition
▶ Parallel Runtime was a combination of communication +

computation

Tpar = N3/P + 2(
√

P − 1) × (ts + tw(N2/P ))

Questions
▶ What is Tser, the serial runtime for matrix-matrix multiply?
▶ What is the parallel overhead Tover for Cannon’s alg?
▶ Is it easy to analyze the Isoefficiency equation W = KTover

for Cannon’s Algorithm

14



Answers: Scalability of Cannon’s Algorithm
▶ Cannon’s Runtime

Tpar = N3/P + 2(
√

P − 1) × (ts + tw(N2/P ))

▶ Tser = N3 for matrix multiply which is close enough for our
purposes

▶ Parallel Overhead

Tover = PTpar − Tser

= P × (N3/P + 2(
√

P − 1) × (ts + tw(N2/P ))) − N3

= 2P (
√

P − 1) × (ts + tw(N2/P ))

= 2(
√

P − 1) × (Pts + twN2)
= 2(P 1.5ts + P 0.5twN2 − Pts − twN2)
= O(P 1.5ts + P 0.5N2tw)

15



Isoefficiency and Complex Parallel Overhead

Cannon’s alg left us with a weird parallel overhead involving both
P the number of processors and N the problem size.

Tover = O(P 1.5ts + P 0.5N2tw)

Grama section 5.4.2 suggests a means to simplify this in
isoefficiency analysis
▶ Analyze each term in the sum against the problem work W

▶ Solve for W in terms of P to get balance
▶ Focus attention on the rate of growth in terms of P

16



Cannon’s Isoefficiency
▶ Work W = N3 for matrix mult
▶ First term is easy:

W = N3 = KP 1.5ts

▶ Second term is more intricate

N3 = KP 0.5N2tw

N = KP 0.5tw

N3 = K3P 1.5t3
w

▶ Textbook suggests ignoring the K3 and dropping the tw/ts

terms to focus on contributions of P

▶ Both terms suggest to maintain constant efficiency work W
must grow at the rate of O(P 1.5) to maintain efficiency

17



Final Notes

▶ Speedup is the metric that is most reported but does not tell
the full story of parallel system scalability

▶ Isoefficiency is more descriptive of scalability but also not
widely accepted / reported

▶ Alternative scalability metrics exist including Scaled Speedup,
discussed in Grama 5.7

18


