Parallel Sorting

Chris Kauffman

Last Updated:
Mon Mar 20 11:30:38 AM CDT 2023

Logistics

Today

- Parallel Sorting: Quicksort

Reading: Grama Ch 9

- Sorting
- Focus on 9.4: Quicksort

Sorting

- Much loved computation problem
- What is the best complexity of general purpose (comparison-based) sorting algorithms?
- What are some algorithms which have this complexity?
- What are some other sorting algorithms which aren't so hot?
- What issues need to be addressed to parallelize any sorting algorithm?

Parallel Sorting Base algorithm

Prospects of parallelizing standard $O(N \log N)$ sorting algorithms...

Heap Sort

- Manipulates a global array
- Very serial in nature: repeatedly percolate array elements up heap, swap to end of heap, repeat
- Random access to entire array is a must, not good for distributed memory

Merge Sort

- Has a nice recursive decomposition, but...
- Merging two sorted arrays on separate processors to produce a larger array would involve prohibitive communication
- Will look later at Odd-Even sort which has a similar flavor

This leaves the king of sorting for a parallel implementation...

Partition and Quicksort

- Quicksort has $O(N \log N)$ average complexity
- In-place, low overhead sorting, recursive

Partition

- Select a pivot value
- Rearrange elements so
- Left array is \leq pivot
- Right array is > pivot
- pivot is in "middle"

```
# A is an array, lo/hi are
```

\# inclusive boundaries
algorithm partition(A, lo, hi):
pivot := A[hi]
boundary := lo
for $j=$ lo to hi do
if $A[j]$ <= pivot then
swap A[boundary], A[j]
boundary++
swap A[boundary], A[hi]
return boundary

Quicksort

- Partition into two parts
- Recurse on both halves
- Bail out when boundaries lo/hi cross
algorithm quicksort(A, lo, hi):
if lo < hi then
$\mathrm{p}=$ partition(A, lo, hi)
quicksort(A, lo, p - 1)
quicksort(A, p + 1, hi)

Practical Parallel Sorting Setup

- Input array A of size N is already spread across P processors (no need to scatter)

$$
\begin{array}{ll}
\text { P0: } A[]=\left\{\begin{array}{lllll}
84 & 31 & 21 & 28
\end{array}\right\} \\
\text { P1: } A[]=\left\{\begin{array}{llllll}
17 & 20 & 24 & 84
\end{array}\right\} \\
\text { P2: } A[]=\left\{\begin{array}{lllll}
24 & 11 & 31 & 99
\end{array}\right\} \\
\text { P3: } A[]=\left\{\begin{array}{lllll}
13 & 32 & 26 & 75
\end{array}\right\}
\end{array}
$$

- Goal: Numbers sorted across processors. Smallest on P0, next smallest on P1, etc.

$$
\begin{aligned}
& \text { P0: } \mathrm{A}[]=\left\{\begin{array}{lllll}
11 & 13 & 17 & 20
\end{array}\right\} \\
& \text { P1: } A[]=\left\{\begin{array}{llllll}
21 & 24 & 24 & 26
\end{array}\right\} \\
& \text { P2: } A[]=\left\{\begin{array}{lllll}
28 & 31 & 32 & 33
\end{array}\right\} \\
& \text { P3: } A[]=\left\{\begin{array}{llllll}
75 & 84 & 84 & 99
\end{array}\right\}
\end{aligned}
$$

- Want to use P processors as effectively as possible
- Favor bulk communication over many small messages

Exercise: Parallel Quicksort

- Find a way to parallelize quicksort
- Hint: The last step is each processor sorting its own data using a serial algorithm. Try to arrange data so this is possible.

START:
P0: $A[]=\left\{\begin{array}{llllll}84 & 32 & 21 & 28\end{array}\right\}$
P1: $A[]=\left\{\begin{array}{llllll}17 & 20 & 25 & 85\end{array}\right\}$
P2: A[] $=\left\{\begin{array}{llllll}24 & 11 & 31 & 99\end{array}\right\}$
P3: $A[]=\left\{\begin{array}{llllll}13 & 32 & 26 & 75\end{array}\right\}$
GOAL
PO: $A[]=\left\{\begin{array}{lllll}11 & 13 & 17 & 20\end{array}\right\}$
P1: $A[]=\left\{\begin{array}{llll}21 & 24 & 25 & 26\end{array}\right\}$
P2: $A[]=\left\{\begin{array}{llll}28 & 31 & 32 & 33\end{array}\right\}$
P3: $A[]=\left\{\begin{array}{lllll}75 & 84 & 85 & 99\end{array}\right\}$

```
SERIAL ALGORITHM
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    boundary := lo
    for j := lo to hi - 1 do
        if A[j] <= pivot then
            swap A[boundary] with A[j]
            boundary++
    swap A[boundary] with A[hi]
    return boundary
```


Answers: Parallel Quicksort Ideas 1 / 3

- Select a global shared Pivot value and broadcast to all procs
- Select pivot so that half data elements got to lower processors, half got to higher processors
- Redistribute low data to low procs, high data to high procs
- Split procs into low / high group, and recurse
- When each proc is on its own, sort locally

Answers: Parallel Quicksort Ideas 2 / 3


```
Partition(pivot=26) on each processor
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 33 75 }
Boundary:
Counts: P0: 2 P1: 3 P2: 1 P3: 2
Calculate which data goes where
```

```
A[] ={ { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 33 75 }
```

A[] ={ { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 33 75 }
P0 P0 P2 P2 P0 P0 P1 P2 P1 P2 P3 P3 P1 P1 P3 P3
P0 P0 P2 P2 P0 P0 P1 P2 P1 P2 P3 P3 P1 P1 P3 P3
Re-arrange so values <= 26 on P0 and P1, > 26 on P2 and P3

```

```

Split the world: 2 groups
A[] ={{$$
\begin{array}{lllllllllll}{21}&{11}&{17}&{20}&{|}&{25}&{24}&{13}&{26}\end{array}
$$}|{$$
\begin{array}{lllllllllllll}{84}&{32}&{85}&{28}&{|}&{31}&{99}&{33}&{75}\end{array}
$$}
P0 P1 P2 P3

```

\section*{Answers: Parallel Quicksort Ideas 3 / 3}

Each half partitions on different pivot value P0-P1: Partition(pivot=20) P2-P3: Partition(pivot=33)
\(A[]=\{11172021 \mid 13252426\} \mid\{28328485 \mid 31339975\}\)
Boundary:
Counts: P0: 3 P1: 1 P2: 2 P3: 2

Calculate which data goes where
```

A[] = { 11 17 20 21 | 13 25 24 26}|{28 32 84 85 | 31 33 99 75 }
P0 P0 P0 P1 P0 P1 P1 P1 P2 P2 P3 P3 P2 P2 P3 P3

```

Re-arrange values to proper processors


Split the world: 4 groups


\section*{Quicksort Difficulties}

\section*{Communication}
- Determine which data go to which processors, how many send/receives are required
- Opportunity for all-to-all communications in MPI

\section*{Recursing}
- Recursive step of algorithm requires smaller "worlds"
- Use MPI's communicator splitting capability

Pivot Value Selection
- In example, pivot values were cherry-picked to get even distribution of data among processors
- A bad pivot splits data unevenly, is annoying for serial Quicksort, shaves off processors in parallel quicksort destroying efficiency

\section*{All-to-All Personalized Communication}

All-to-all personalized communication: like every processor scattering to every other processor.

BEFORE


MPI_Alltoall(...);
AFTER
P0: send[] =\{A0, BO, C0, DO\} recv[] = \{AO, A1, A2, A3\}
P1: send []\(=\{A 1, B 1, C 1, D 1\}\) recv [] \(=\{B 0, B 1, B 2, B 3\}\)
P2: send[] =\{A2, B2, C2, D2\} recv[] = \{C0, C1, C2, C3\}
P3: send[] =\{A3, B3, C3, D3\} recv[] = \{D0, D1, D2, D3\}

\section*{MPI_Alltoall}
- Standard version: every processor gets a slice of sendbuf, same sized data
- Vector version allows different sized slices (appropriate for quicksort)
```

int MPI_Alltoall(
void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);
int MPI_Alltoallv(
void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtype,
void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtype,
MPI_Comm comm);

```

\section*{Exercise: Redistribution during Quicksort}
- After partition, procs will redistribute data via all-to-all
- Perform All-Gather to get counts in table to the right


Each Proc must calculate its own Count/Displ arrays for all-to-all:

- Describe the process of calculating RecvCount
- Given RecvCount, how can one calculate RecvDispl

\section*{Answers: Redistribution during Quicksort}
- RecvCount can be calculate through an iterative process
- Compute the prefix sum of below/above pivot counts

- Know each proc stores \(N / P=4\) elements
- Procs receiving <= pivot, proc \# i, scan column 0 for
- First partner is proc F where \(\mathrm{PS}[\mathrm{F}, 0\) ] <= \(4 * i\)
- Last partner is proc L where PS[L, 0] >= \(4 *(i+1)\)
- Procs receiving > pivot, proc \# i, scan column 1 for
- First partner is proc F where PS [F,1] <= 4*(i-2)
- Last partner is proc L where PS[L, 1] >= \(4 *(\mathrm{i}-2+1)\)
- Actual code will need to do additional arithmetic (e.g. P1 receives 1 element from itself)
- RecvDispl is the prefix sum of RecvCount

\section*{Prefix Sums / Scan}

Prefix Sums or Prefix Scans are supported in parallel via MPI
\begin{tabular}{|c|c|}
\hline sbuf & rbuf \\
\hline  & P0 3 [ 4 2 2812 1 \\
\hline P1 5 \(2 \times 5107711\) & P1 816 \\
\hline P2 2 4 4 41045 & P2 \(10101119 \times 17\) \\
\hline  & P3 11-16 12 22 18 \\
\hline
\end{tabular}
int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) ;
- Similar to reduction but only add on values from procs \(<=\) proc_id
- op can be sum/max/min/etc.
- In simple Quicksort implementations, don't use parallel prefix scan as this does not yield enough info to calculate send/receive partners

\section*{Overall Flow}
1. Pivot selection (open question how to do this right)
2. Broadcast of pivot value
3. Each processor partition's its data
4. All-gather to get element/pivot counts
5. Calculate send/receives
6. Redistribute data via MPI_Alltoallv()
7. And then...

\section*{Splitting the World}
int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm) ;
- comm is the old communicator (start with MPI_COMM_WORLD)
- color is which sub-comm to go into
- Colors 0,1 splits into 2 communicators
- Colors \(0,1,2,3\) splits into 4 communicators
- Etc.
- key establishes rank in new sub-comm, usually proc_id
- newcomm is filled in with a new communicator
- Examine 04-mpi-code/comm_split.c
- In Quicksort, new comm is different for lower/upper procs

\section*{Exercise: Pivot Selection}
- So far have assumed a "good" pivot can be found
- Pivot evenly splits N/2 data, half to lower \# processors, half to upper
Discuss the following questions with a neighbor
1. What if the pivot is poorly selected? E.g. \(1 / 4\) below pivot, 3/4 above? Could the algorithm adapt?
2. How could one avoid a bad pivot? Discuss some strategies
3. Is there a way to avoid recusing entirely?

\section*{Answers: Pivot Selection 1/2}

Discuss the following questions with a neighbor
1. What if the pivot is poorly selected? E.g. \(1 / 4\) below pivot, \(3 / 4\) above? Could the algorithm adapt?

With some additional computation, can split the world unevenly: \(1 / 4\) procs assigned to "low" numbers, \(3 / 4\) to "high" numbers. Still broken if a tiny fraction of the array is lower/higher than the pivot: should just try another pivot at that point or use a scheme that prevents poor pivot selection.
2. How could one avoid a bad pivot? Discuss some strategies Lots of these exist, some mentioned in the textbook such as having a randomly selected processor compute its median and broadcast it as the pivot (main text of Grama) or have processors sample random elements, perform AllGather, then compute a median as the common pivot (Grama Exercise 9.21).

\section*{Answers: Pivot Selection 2/2}
3. Is there a way to avoid recusing entirely, e.g. single multiway pivot?

Grama Exercise 9.20 explores this:
- Each proc samples elements, often around \(\log (N)\) elements, and procs perform an All-Gather
- All procs use common sample to select \(P\) - 1 common pivots.
- Elements between pivots are sent directly to final destination procs in an All-to-All communication.
- Local sorting commences.

In short: With 4 procs, estimate quartile boundaries based on sampling, give bottom \(25 \%\) of elements to Proc 0, etc. and sort locally.

\section*{Bubble Sort}
- Classic CS1 Sorting Algorithm
- Several variants that improve on given pseudocode
- Limit inner loop bound i<N-1-r
- Terminate when sorted order detected
- Stated version is obviously \(O\left(N^{2}\right)\) complexity
- Not a lot of room for parallelism...
- But a variant of this DOES have room for parallelism
```

void bubble_sort(A[]) {
N = length(A[])
for(r=0; r < N-1; r++){
for(i=0; i < N-1; i++){
compare_exchange(A, i, i+1);
}
}
}
void compare_exchange(A[], i, j){
if(A[i] > A[j]){
temp = A[i]
A[i] = A[j]
A[j] = temp
}
}

```

\section*{Exercise: Odd-Even Sort}
- Variant of bubble sort which splits bubbling into odd/even phases
- \(O\left(N^{2}\right)\) complexity of serial algorithm
- There is potential for parallelism here: what is it?
- Consider simple case where each \(P=N\) : each proc hold a single number
- What can be parallelized and how?
```

void odd_even_sort(A[]) {
N = length(A[])
for(r=0 to N-1){
if(r is even){
for(i=0; i<N-1; i+=2){
compare_exchange(A, i, i+1);
}
}
if(r is odd){
for(i=1; i<N-1; i+=2){
compare_exchange(A, i, i+1);
}
}
}
}
void compare_exchange(A[], i, j){
if(A[i] > A[j]){
temp = A[i]
A[i] = A[j]
A[j] = temp
}
}

Answers: Odd-Even Sort

What can be parallelized and how?

- Suppose each of N elements is stored on P processors in a line/ring with $N=P$
- The inner loops of compare_exchange() can be executed in parallel as it involves communication between 2 procs to potentially exchange elements but only with a single partner.
- Even iterations, lower evens exchange with higher odds
- Odd iterations lower odds exchange with higher evens
- Exchange can be done via a Send/Receive of elements and then "keeping" the appropriate element, min on lower proc, max on higher proc

Answers: Odd-Even Sort

Figure 9.13 Sorting $n=8$ elements, using the odd-even transposition sort algorithm. During each phase, $n=8$ elements are compared.

Odd-Even Sort with $N>P$

- As before, unrealistic to have $P=N$, rather each proc holds N / P elements of the array A []
- COMPARE_EXCHANGE() becomes COMPARE_SPLIT()

| 1 | 2 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 13

Step 3

Step 2

$$
\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 6 & 7 & 8 \\
\hline
\end{array}
$$

Step 4

Figure 9.2 A compare-split operation. Each process sends its block of size n / p to the other process. Each process merges the received block with its own block and retains only the appropriate half of the merged block. In this example, process P_{i} retains the smaller elements and process P_{j} retains the larger elements.

Analysis of Odd-Even Sort

- Initially all procs sort their local array: $O\left(\frac{N}{P} \log \frac{N}{P}\right)$
- Conduct P Outer iterations of ODD_EVEN_SORT()
- Each odd/even inner loop is done in parallel by all procs communicating with a neighbor
- Neighbor procs exchange ararys: $O\left(t_{s}+t_{w} \frac{N}{P}\right)$
- Each proc then performs a compare/split: $O\left(\frac{N}{P}\right)$
- Overall complexity of parallel algorithm:

$$
\begin{aligned}
T_{p a r} & =O\left(\frac{N}{P} \log \frac{N}{P}\right)+P \times\left(O\left(t_{s}+t_{w} \frac{N}{P}\right)+O\left(\frac{N}{P}\right)\right) \\
& =O\left(\frac{N}{P} \log \frac{N}{P}\right)+O(N)+O(N)
\end{aligned}
$$

Isoefficiency? : Reported in textbook as $O\left(P 2^{P}\right)$, linear increase in P requires exponential increase in problem size to maintain efficiency. Verifying this is a good exercise.

Sorting Extras

Odd-Even Sort to Shell Sort

- Allowing bigger "moves" in odd-even sort can improve practical efficiency of algorithm
- Shell Sort provides a mechanism for this: neighbors selected according to a "gap" scheme, less known sort with yet mysterious complexity analysis

Sorting Hardware

- Grama Ch 9.1 discusses Sorting networks, specialized hardware which can implement sorting
- With N processors, can implement Bitonic Sort in a sorting network and achieve $T_{p a r}=O\left(\log ^{2} N\right)$
- Hardware that implements sorting networks is not common but...
- GPUs provide interesting hardware, large numbers of procs, will revisit sorting on studying CUDA

