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Logistics

Today
▶ Parallel Sorting: Quicksort

Reading: Grama Ch 9
▶ Sorting
▶ Focus on 9.4: Quicksort
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Sorting

▶ Much loved computation problem
▶ What is the best complexity of general purpose

(comparison-based) sorting algorithms?
▶ What are some algorithms which have this complexity?
▶ What are some other sorting algorithms which aren’t so hot?
▶ What issues need to be addressed to parallelize any sorting

algorithm?
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Parallel Sorting Base algorithm
Prospects of parallelizing standard O(N log N) sorting algorithms…

Heap Sort
▶ Manipulates a global array
▶ Very serial in nature:

repeatedly percolate array
elements up heap, swap to
end of heap, repeat

▶ Random access to entire
array is a must, not good for
distributed memory

Merge Sort
▶ Has a nice recursive

decomposition, but…
▶ Merging two sorted arrays

on separate processors to
produce a larger array would
involve prohibitive
communication

▶ Will look later at Odd-Even
sort which has a similar
flavor

This leaves the king of sorting for a parallel implementation…
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Partition and Quicksort
▶ Quicksort has O(N log N) average complexity
▶ In-place, low overhead sorting, recursive

Partition
▶ Select a pivot value
▶ Rearrange elements so

▶ Left array is ≤ pivot
▶ Right array is > pivot
▶ pivot is in “middle”

# A is an array, lo/hi are
# inclusive boundaries
algorithm partition(A, lo, hi):
pivot := A[hi]
boundary := lo
for j = lo to hi do

if A[j] <= pivot then
swap A[boundary], A[j]
boundary++

swap A[boundary], A[hi]
return boundary

Quicksort
▶ Partition into two parts
▶ Recurse on both halves
▶ Bail out when boundaries

lo/hi cross
algorithm quicksort(A, lo, hi):
if lo < hi then
p = partition(A, lo, hi)
quicksort(A, lo, p – 1)
quicksort(A, p + 1, hi)
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Practical Parallel Sorting Setup

▶ Input array A of size N is already spread across P processors
(no need to scatter)
P0: A[] = { 84 31 21 28 }
P1: A[] = { 17 20 24 84 }
P2: A[] = { 24 11 31 99 }
P3: A[] = { 13 32 26 75 }

▶ Goal: Numbers sorted across processors. Smallest on P0, next
smallest on P1, etc.
P0: A[] = { 11 13 17 20 }
P1: A[] = { 21 24 24 26 }
P2: A[] = { 28 31 32 33 }
P3: A[] = { 75 84 84 99 }

▶ Want to use P processors as effectively as possible
▶ Favor bulk communication over many small messages
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Exercise: Parallel Quicksort
▶ Find a way to parallelize quicksort
▶ Hint: The last step is each processor sorting its own data

using a serial algorithm. Try to arrange data so this is
possible.

START:
P0: A[] = { 84 32 21 28 }
P1: A[] = { 17 20 25 85 }
P2: A[] = { 24 11 31 99 }
P3: A[] = { 13 32 26 75 }

GOAL
P0: A[] = { 11 13 17 20 }
P1: A[] = { 21 24 25 26 }
P2: A[] = { 28 31 32 33 }
P3: A[] = { 75 84 85 99 }

SERIAL ALGORITHM
algorithm quicksort(A, lo, hi) is
if lo < hi then

p := partition(A, lo, hi)
quicksort(A, lo, p – 1)
quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
pivot := A[hi]
boundary := lo
for j := lo to hi - 1 do

if A[j] <= pivot then
swap A[boundary] with A[j]
boundary++

swap A[boundary] with A[hi]
return boundary
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Answers: Parallel Quicksort Ideas 1 / 3

▶ Select a global shared Pivot value and broadcast to all procs
▶ Select pivot so that half data elements got to lower

processors, half got to higher processors
▶ Redistribute low data to low procs, high data to high procs
▶ Split procs into low / high group, and recurse
▶ When each proc is on its own, sort locally
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Answers: Parallel Quicksort Ideas 2 / 3
A[] = { 84 32 21 11 | 17 20 25 85 | 24 28 31 99 | 13 33 26 75 }

P0 P1 P2 P3

Partition(pivot=26) on each processor
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 33 75 }
Boundary: ^ ^ ^ ^
Counts: P0: 2 P1: 3 P2: 1 P3: 2

Calculate which data goes where
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 33 75 }

P0 P0 P2 P2 P0 P0 P1 P2 P1 P2 P3 P3 P1 P1 P3 P3

Re-arrange so values <= 26 on P0 and P1, > 26 on P2 and P3
A[] = { 21 11 17 20 | 25 24 13 26 | 84 32 85 28 | 31 99 33 75 }

P0 P1 P2 P3

Split the world: 2 groups
A[] = { 21 11 17 20 | 25 24 13 26}|{84 32 85 28 | 31 99 33 75 }

P0 P1 P2 P3
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Answers: Parallel Quicksort Ideas 3 / 3
Each half partitions on different pivot value

P0-P1: Partition(pivot=20) P2-P3: Partition(pivot=33)
A[] = { 11 17 20 21 | 13 25 24 26}|{28 32 84 85 | 31 33 99 75 }
Boundary: ^ ^ ^ ^
Counts: P0: 3 P1: 1 P2: 2 P3: 2

Calculate which data goes where
A[] = { 11 17 20 21 | 13 25 24 26}|{28 32 84 85 | 31 33 99 75 }

P0 P0 P0 P1 P0 P1 P1 P1 P2 P2 P3 P3 P2 P2 P3 P3

Re-arrange values to proper processors
A[] = { 11 17 20 13 | 21 25 24 25}|{28 32 31 33 | 84 85 99 75 }

P0 P1 P2 P3

Split the world: 4 groups
A[] = { 11 17 20 13}|{21 25 24 25}|{28 32 31 33}|{84 85 99 75 }

P0 P1 P2 P3

4 groups == 4 processors, all processors sort locally
A[] = { 11 13 17 20}|{21 24 25 25}|{28 31 32 33}|{75 84 85 99 }

P0 P1 P2 P3
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Quicksort Difficulties
Communication
▶ Determine which data go to which processors, how many

send/receives are required
▶ Opportunity for all-to-all communications in MPI

Recursing
▶ Recursive step of algorithm requires smaller “worlds”
▶ Use MPI’s communicator splitting capability

Pivot Value Selection
▶ In example, pivot values were cherry-picked to get even

distribution of data among processors
▶ A bad pivot splits data unevenly, is annoying for serial

Quicksort, shaves off processors in parallel quicksort
destroying efficiency
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All-to-All Personalized Communication

All-to-all personalized communication: like every processor
scattering to every other processor.

BEFORE
P0: send[] ={A0, B0, C0, D0} recv[] = { -, -, -, -,}
P1: send[] ={A1, B1, C1, D1} recv[] = { -, -, -, -,}
P2: send[] ={A2, B2, C2, D2} recv[] = { -, -, -, -,}
P3: send[] ={A3, B3, C3, D3} recv[] = { -, -, -, -,}

MPI_Alltoall(...);

AFTER
P0: send[] ={A0, B0, C0, D0} recv[] = {A0, A1, A2, A3}
P1: send[] ={A1, B1, C1, D1} recv[] = {B0, B1, B2, B3}
P2: send[] ={A2, B2, C2, D2} recv[] = {C0, C1, C2, C3}
P3: send[] ={A3, B3, C3, D3} recv[] = {D0, D1, D2, D3}
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MPI_Alltoall

▶ Standard version: every processor gets a slice of sendbuf,
same sized data

▶ Vector version allows different sized slices (appropriate for
quicksort)

int MPI_Alltoall(
void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

int MPI_Alltoallv(
void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtype,
void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtype,
MPI_Comm comm);
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Exercise: Redistribution during Quicksort
▶ After partition, procs will

redistribute data via all-to-all
▶ Perform All-Gather to get counts in

table to the right

Element Count vs Pivot
| Proc | <= | > |
|------+----+---|
| P0 | 2 | 2 |
| P1 | 3 | 1 |
| P2 | 1 | 3 |
| P3 | 2 | 2 |

Each Proc must calculate its own Count/Displ arrays for all-to-all:
| P# | | P0 | P1 | P2 | P3 | | P0 | P1 | P2 | P3 | P# |
|----+-----------+----+----+----+----+-----------+----+----+----+----+----|
| P0 | RecvCount | 2 | 2 | 0 | 0 | SendCount | 2 | 0 | 2 | 0 | P0 |
| P1 | | 0 | 1 | 1 | 2 | | 2 | 1 | 1 | 0 | P1 |
| P2 | | 2 | 1 | 1 | 0 | | 0 | 1 | 1 | 2 | P2 |
| P3 | | 0 | 0 | 2 | 2 | | 0 | 2 | 0 | 2 | P3 |
| | | | | | | | | | | | |
| P0 | RecvDispl | 0 | 2 | 4 | 4 | SendDispl | 0 | 2 | 2 | 4 | P0 |
| P1 | | 0 | 0 | 1 | 2 | | 0 | 2 | 3 | 4 | P1 |
| P2 | | 0 | 2 | 3 | 4 | | 0 | 0 | 1 | 2 | P2 |
| P3 | | 0 | 0 | 0 | 2 | | 0 | 0 | 2 | 2 | P3 |
▶ Describe the process of calculating RecvCount
▶ Given RecvCount, how can one calculate RecvDispl
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Answers: Redistribution during Quicksort
▶ RecvCount can be calculate through an iterative process
▶ Compute the prefix sum of below/above pivot counts

El Count vs Pivot PS[]: PREFIX SUMS
| Proc | <= | > | | Proc | <= | > |
|------+----+---| |------+----+---|
| P0 | 2 | 2 | ===> | P0 | 2 | 2 |
| P1 | 3 | 1 | | P1 | 5 | 3 |
| P2 | 1 | 3 | | P2 | 6 | 6 |
| P3 | 2 | 2 | | P3 | 8 | 8 |

▶ Know each proc stores N / P = 4 elements
▶ Procs receiving <= pivot, proc # i, scan column 0 for

▶ First partner is proc F where PS[F,0] <= 4*i
▶ Last partner is proc L where PS[L,0] >= 4*(i+1)

▶ Procs receiving > pivot, proc # i, scan column 1 for
▶ First partner is proc F where PS[F,1] <= 4*(i-2)
▶ Last partner is proc L where PS[L,1] >= 4*(i-2+1)

▶ Actual code will need to do additional arithmetic (e.g. P1
receives 1 element from itself)

▶ RecvDispl is the prefix sum of RecvCount
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Prefix Sums / Scan
Prefix Sums or Prefix Scans are supported in parallel via MPI

int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

▶ Similar to reduction but only add on values from procs <=
proc_id

▶ op can be sum/max/min/etc.
▶ In simple Quicksort implementations, don’t use parallel

prefix scan as this does not yield enough info to calculate
send/receive partners
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Overall Flow

1. Pivot selection (open question how to do this right)
2. Broadcast of pivot value
3. Each processor partition’s its data
4. All-gather to get element/pivot counts
5. Calculate send/receives
6. Redistribute data via MPI_Alltoallv()
7. And then…
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Splitting the World

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm);

▶ comm is the old communicator (start with MPI_COMM_WORLD)
▶ color is which sub-comm to go into

▶ Colors 0,1 splits into 2 communicators
▶ Colors 0,1,2,3 splits into 4 communicators
▶ Etc.

▶ key establishes rank in new sub-comm, usually proc_id
▶ newcomm is filled in with a new communicator
▶ Examine 04-mpi-code/comm_split.c
▶ In Quicksort, new comm is different for lower/upper procs
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Exercise: Pivot Selection

▶ So far have assumed a “good” pivot can be found
▶ Pivot evenly splits N/2 data, half to lower # processors, half

to upper
Discuss the following questions with a neighbor

1. What if the pivot is poorly selected? E.g. 1/4 below pivot,
3/4 above? Could the algorithm adapt?

2. How could one avoid a bad pivot? Discuss some strategies
3. Is there a way to avoid recusing entirely?
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Answers: Pivot Selection 1/2
Discuss the following questions with a neighbor

1. What if the pivot is poorly selected? E.g. 1/4 below pivot,
3/4 above? Could the algorithm adapt?

With some additional computation, can split the world
unevenly: 1/4 procs assigned to “low” numbers, 3/4 to
“high” numbers. Still broken if a tiny fraction of the ar-
ray is lower/higher than the pivot: should just try another
pivot at that point or use a scheme that prevents poor
pivot selection.

2. How could one avoid a bad pivot? Discuss some strategies
Lots of these exist, some mentioned in the textbook such
as having a randomly selected processor compute its me-
dian and broadcast it as the pivot (main text of Grama)
or have processors sample random elements, perform All-
Gather, then compute a median as the common pivot
(Grama Exercise 9.21).
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Answers: Pivot Selection 2/2

3. Is there a way to avoid recusing entirely, e.g. single multiway
pivot?

Grama Exercise 9.20 explores this:
▶ Each proc samples elements, often around log(N)

elements, and procs perform an All-Gather
▶ All procs use common sample to select P − 1 common

pivots.
▶ Elements between pivots are sent directly to final

destination procs in an All-to-All communication.
▶ Local sorting commences.

In short: With 4 procs, estimate quartile boundaries based
on sampling, give bottom 25% of elements to Proc 0, etc.
and sort locally.

21



Bubble Sort

▶ Classic CS1 Sorting
Algorithm

▶ Several variants that
improve on given
pseudocode
▶ Limit inner loop bound

i<N-1-r
▶ Terminate when sorted

order detected
▶ Stated version is obviously

O(N2) complexity
▶ Not a lot of room for

parallelism…
▶ But a variant of this DOES

have room for parallelism

void bubble_sort(A[]) {
N = length(A[])
for(r=0; r < N-1; r++){

for(i=0; i < N-1; i++){
compare_exchange(A, i, i+1);

}
}

}

void compare_exchange(A[], i, j){
if(A[i] > A[j]){
temp = A[i]
A[i] = A[j]
A[j] = temp

}
}
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Exercise: Odd-Even Sort

▶ Variant of bubble sort which
splits bubbling into
odd/even phases

▶ O(N2) complexity of serial
algorithm

▶ There is potential for
parallelism here: what is it?
▶ Consider simple case

where each P = N : each
proc hold a single number

▶ What can be parallelized
and how?

void odd_even_sort(A[]) {
N = length(A[])
for(r=0 to N-1){

if(r is even){
for(i=0; i<N-1; i+=2){
compare_exchange(A, i, i+1);

}
}
if(r is odd){

for(i=1; i<N-1; i+=2){
compare_exchange(A, i, i+1);

}
}

}
}

void compare_exchange(A[], i, j){
if(A[i] > A[j]){
temp = A[i]
A[i] = A[j]
A[j] = temp

}
}
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Answers: Odd-Even Sort

What can be parallelized and how?
▶ Suppose each of N elements is stored on P

processors in a line/ring with N = P
▶ The inner loops of compare_exchange() can be

executed in parallel as it involves communication
between 2 procs to potentially exchange elements
but only with a single partner.

▶ Even iterations, lower evens exchange with higher
odds

▶ Odd iterations lower odds exchange with higher
evens

▶ Exchange can be done via a Send/Receive of
elements and then “keeping” the appropriate
element, min on lower proc, max on higher proc
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Answers: Odd-Even Sort
P1 P2 P3 P4 P5 P6 P7 P8
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Odd-Even Sort with N > P
▶ As before, unrealistic to have P = N , rather each proc holds

N/P elements of the array A[]
▶ COMPARE_EXCHANGE() becomes COMPARE_SPLIT()
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Analysis of Odd-Even Sort
▶ Initially all procs sort their local array: O(N

P log N
P )

▶ Conduct P Outer iterations of ODD_EVEN_SORT()
▶ Each odd/even inner loop is done in parallel by all procs

communicating with a neighbor
▶ Neighbor procs exchange ararys: O(ts + tw

N
P )

▶ Each proc then performs a compare/split: O(N
P )

▶ Overall complexity of parallel algorithm:

Tpar = O

(
N

P
log N

P

)
+ P ×

(
O

(
ts + tw

N

P

)
+ O

(
N

P

))
= O

(
N

P
log N

P

)
+ O(N) + O(N)

Isoefficiency? : Reported in textbook as O(P2P ), linear increase in
P requires exponential increase in problem size to maintain
efficiency. Verifying this is a good exercise.
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Sorting Extras
Odd-Even Sort to Shell Sort
▶ Allowing bigger “moves” in odd-even sort can improve practical

efficiency of algorithm
▶ Shell Sort provides a mechanism for this: neighbors selected

according to a “gap” scheme, less known sort with yet mysterious
complexity analysis

Sorting Hardware
▶ Grama Ch 9.1 discusses Sorting networks, specialized hardware

which can implement sorting
▶ With N processors, can implement Bitonic Sort in a sorting network

and achieve Tpar = O(log2 N)
▶ Hardware that implements sorting networks is not common but…
▶ GPUs provide interesting hardware, large numbers of procs, will

revisit sorting on studying CUDA
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