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Logistics
Today
▶ Finish Parallel Sorting
▶ Shared Memory Architecture

Theory + Practicalities
▶ Cache Performance Effects
▶ Next: PThreads + OpenMP

for shared memory machines

Reading
▶ Grama 2.4.1 (PRAM), 2.4.6

(cache)
▶ Gram 7.1-9 (PThreads)
▶ Grama 7.10 (OpenMP)
▶ OpenMP Tutorial at

Laurence Livermore

Upcoming
▶ Mini-Exam 2 on Thu 23-Mar
▶ A2 up Wed morning, 2

weeks days to work on it
▶ Will merge A3+A4: same

problem, implement via
Threads/SharedMem and
CUDA/GPU
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https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/


PRAM: Parallel Random Access Machine, Grama Ch 2.4.1

RAM: Random Access Machine
▶ An unfortunate name as every other use of “RAM” is random

access memory
▶ Single CPU attached to random access memory
▶ Simplistic model for a real machine: CPU reads memory,

performs operations in registers, writes to memory, repeates

PRAM: Parallel Extension to RAM
▶ Again, theoretical model for a real parallel machine
▶ Multiple CPUs attached to memory, share clock but can

execute different instructions
▶ Must clarify behavior of PRAM machine that is not possible in

single CPU situation: how are conflicts between processors
resolve for simultaneous memory access
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Theoretical Flavors of PRAM
Exclusive-Read, Exclusive-Write (EREW) PRAM
Multiple CPUs cannot touch same memory at all. No parallelism
possible for reads / writes of the same memory location.

Concurrent-Read, Exclusive-Write (CREW) PRAM
Multiple CPUs may read same memory location at same time.
Writes to same location must be resolved.

Exclusive-Read, Concurrent-Write (ERCW) PRAM
Multiple write accesses are allowed to a memory location, but
multiple read accesses are serialized. (This is just weird)

Concurrent-Read, Concurrent-Write (CRCW) PRAM
Simultaenous Read AND Write of the same memory location: the
most “powerful” PRAM model for some definition of “power”.
Q: What else must be specified for the xxCW models?
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Resolution Schemes for Concurrent Reads/Writes
A: How concurrent writes resolve.
▶ Common: concurrent writes are allowed if all the values that

the processors are attempting to write are identical.
▶ Arbitrary: an arbitrary processor is allowed to proceed with

the write operation and the rest fail.
▶ Priority: procs are organized in a predefined prioritized list;

proc with the highest priority writes its value while others fail.
▶ Sum: the sum of all the quantities is written �

Above categories do not resolve concurrent read+write such as:
MEM[#1024] is 10
P0: read MEM[#1024] to REG1
P1: write 20 to MEM[#1024]

Proper treatments of PRAM specify results for this such as
▶ All Reads resolve first, then Writes resolve OR
▶ Concurrent Reads/Writes occur in arbitrary order OR
▶ etc. Your imagination is the limit…

However, we’ll proceed with more practical matters
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Pros and Cons of PRAM
Why the PRAM Model?
▶ It’s simple
▶ Much literature devoted to studying benefits of algorithms

under different variants (e.g. Parallel Array Sum with CRCW
+ summing on concurrent write)

▶ Has significant theoretical importance

Why Not PRAM
▶ No real machines currently implement any PRAM models
▶ Some real machines (GPUs) have qualities similar to PRAM

but many practical divergences from it
▶ Conclusions one might draw about “good” algorithms is

skewed (e.g. multi-core machines do NOT behave as a
CRCW-summing machine; far from it)
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Exercise: Recall the Memory Cache

▶ Parallel programs are driven towards performance
▶ Optimize serial performance first: requires understanding of

the memory hierarchy

Questions
From your computer architecture experience…
▶ Describe a memory cache and why most CPUs have several

layers of them
▶ Give an example of “strange” cache effects where similar

algorithms have very different performance
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Diagrams of Memory Interface and Cache Levels

Source: Bryant/O’Hallaron CS:APP 3rd Ed.

Source: SO “Where exactly L1, L2 and L3 Caches
located in computer?”
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https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer


Numbers Everyone (in Computing) Should Know
Edited Excerpt of Jeff Dean’s talk on data centers.

Operation Time (ns)
L1 cache reference 0.5
Branch mispredict 5
L2 cache reference 7
Mutex lock/unlock 100
Main memory reference 100
Compress 1K bytes with Zippy 10,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Round trip within same datacenter 500,000
Disk seek 10,000,000
Read 1 MB sequentially from network 10,000,000
Read 1 MB sequentially from disk 30,000,000
Send packet CA->Netherlands->CA 150,000,000

Numbers are likely out of date now but scales are worth knowing
and explain why Cache is useful
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http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf


Matrix Summing Examples

Sum R
double X[N][N]; // N by N mat
...
sum = 0;
for(i=0; i<N; i++){

for(j=0; j<N; j++){
sum += X[i][j]

}
}

Sum C
double X[N][N]; // N by N mat
...
sum = 0;
for(j=0; j<N; j++){

for(i=0; i<N; i++){
sum += X[i][j]

}
}

▶ What’s the Big O complexity of each?
▶ What happens with cache?
▶ Will one be faster than the other?
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Cache Affects Performance
As measured by hardware counters using Linux’s perf on
>> lscpu
model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
cache size : 6144 KB
>> perf stat $opts java MatrixSums 8000 4000 row
>> perf stat $opts java MatrixSums 8000 4000 col

Measurement Sum Row Sum Col
Big-O Complexity O(N2) O(N2)
cycles 3,507,364,715 5,605,621,966
instructions 2,353,887,029 2,543,165,478
L1-dcache-loads 527,694,054 561,540,169
L1-dcache-load-misses 25,638,014 122,663,199
Runtime (seconds) 1.001 1.620

L1 data cache load misses
▶ Row: 25K/548K = 4% main memory access
▶ Col: 122/585K = 20% main memory access

11



Cache Issues in Shard Memory Machines

Source: Multi-core, Threads & Message Passing by Ilya Grigorik

Consider the following sequence of operations:
// MEM[#1024] has value 5

P0: read R1 MEM[#1024] // slow, populates cache
P0: read R2 MEM[#1024] // fast, from cache
P0: ADD R1 R1 R2 // R1 is 10
P0: write R1 MEM[#1024] // cache dirty, MEM[#1024] unchanged

a short time later
P1: read R3 MEM[#1024] // read 5 or 10? Depends on cache coherence...

Illustrates Cache Coherence Problem: how do multiple PEs
maintain the illusion of a single block of shared memory?
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https://www.igvita.com/2010/08/18/multi-core-threads-message-passing/


Cache Coherence Protocols

Grama 2.4.6 offers two theoretical protocols to maintain Coherence

▶ Invalidate: shared memory written by one PE is marked as
invalid in cache of others

▶ Update: shared memory written in by one PE is updated in
other PEs

Both require hardware to snoop writes to memory by other PEs,
▶ Introduces complexity into hardware
▶ Potential bottlenecks for programs that most be avoided
▶ BUT without a Cache Coherence scheme, programs with

multiple PEs will have unpredictable behavior when sharing
data
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Invalidate and Update Protocol Diagrams
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Cache Coherence: Simple Three-State Model

Shared (S) valid for reads, write
changes state

Dirty (D) written by me, must
eventually flush to
main memory

Invalid (I) another proc altered
it, trigger flush +
reload on reading

▶ Each Unit of memory in Cache and DRAM have a S / D / I
state, often associated with Cache Lines

▶ Actions by P0 affect cache lines on P1: P0 Writes to x, P1’s
copy now Invalid

▶ NOTE: This is a simplified scheme with actual hardware
implementations often having several more states 15



Grama Demonstration of Cache Coherence
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“Corrected” Demo of Cache Coherence
Below is an alternate version of Fig 2.23 of Grama where code like
x = x + y assumes a read x and read y to ensure the most
current value of both variables are used.
|----+-----------+-----------+-----------+-----------+------------+---------------|
| | P0 Code | P1 Code | P0 Cache | P1 Cache | Global Mem | Notes |
|----+-----------+-----------+-----------+-----------+------------+---------------|
| | | | | | x = 5, S | |
| | | | | | y = 12, S | |
| 1 | read x | | x = 5, S | | | |
| 2 | | read y | | y = 12, S | | |
| | | | | | | |
| 3 | x = x + 1 | | x = 6, D | | x = 5, I | |
| | | | | | | |
| 4 | y = y + 1 | | | y = 13, D | y = 12, I | |
| | | | | | | |
| 5 | read y | | y = 13, S | | y = 13, S | P1: flush y |
| | | | | | | |
| 6 | | read x | | x = 6, S | x = 6, S | P0: flush x |
| | | | | | | |
| 7 | x = x + y | | x = 19, D | x = 6, I | x = 6, I | P1: invalid x |
| | | | | | | |
| 8 | | y = x + y | x = 19, S | x = 19, S | x = 19, S | P0: flush x |
| | | | y = 13, I | y = 32, D | y = 13, I | P0: invalid y |
| | | | | | | |
| 9 | x = x + 1 | | x = 20, D | x = 19, I | x = 19, I | P1: invalid x |
| | | | | | | |
| 10 | | y = y + 1 | | y = 33, D | | |
|----+-----------+-----------+-----------+-----------+------------+---------------| 17



MESI: Cache Coherence System in Actual Hardware
Each cache block is in one of 4 states

1. Modified (M): Cache line is present and “dirty” due to changes by this
PE; required to write the data back to main memory at some time in the
future before any other read of the corresponding data. Write-back
changes the line to the Shared state(S).

2. Exclusive (E): Cache line is present only in the current cache and is clean,
matches main memory. It may be changed to the Shared state at any
time, in response to a read request. Alternatively, it may be changed to
the Modified state when writing to it.

3. Shared (S): Indicates that this cache line may be stored in other caches of
the machine and is clean - it matches the main memory. The line may be
discarded (changed to the Invalid state) at any time.

4. Invalid (I): Indicates that this cache line is invalid or unused.
From: MESI protocol, Wikipedia
See also: The Architecture of the Nehalem Processor and Nehalem-EP SMP
Platforms by Michael E. Thomadakis, Section 5.2 on “Cache-Coherence
Protocol for Multi-Processors”
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https://en.wikipedia.org/wiki/MESI_protocol
http://stellar.mit.edu/S/course/6/fa13/6.172/courseMaterial/topics/topic9/readings/nehalem/nehalem.pdf
http://stellar.mit.edu/S/course/6/fa13/6.172/courseMaterial/topics/topic9/readings/nehalem/nehalem.pdf


The Memory Bus
▶ Cache coherence protocols involve communication between

procs, obtaining information about changes to memory
▶ The Memory Bus is the communication channel that enables

Procs/Memory chips to “talk” to each other
▶ Hardware construct to move data around, usually across wires

connected to each Proc and DRAM chip
▶ Memory Buses use a communication protocol which includes

device identifiers so messages about changes are directed to
individual PEs or DRAM

▶ Bus can get “crowded” if lots of Procs make memory requests
▶ All hardware can “see” messages on the bus: allows snooping

of messages intended for others
▶ Example: PE1 sees that PE0 read address #1024 so PE0

knows it may share #1024 now
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Diagram of Typical Memory Buses
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Snoopy Cache

Basics
▶ Additional hardware watches

messages on the bus
▶ Writing to cache invalidates

global memory
▶ Message pertaining to a

dirty memory address cause
flush, state back to shared

Example
▶ x in P0 cache Dirty
▶ x in Global mem Invalid
▶ P1 reads x

▶ P0 “snoops” request
▶ Flushes x to global mem
▶ P1 can read x from global

▶ x is now Shared
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Different Variable but Same Cache Line → Collisions

▶ Performance problem: two
processors grinding on
different but close variables

▶ Consider the following
program: x,y are adjacent
in main memory, likely to
share same cache line

▶ Proc0 and Proc1 each have
own cache, will interfere
with one another despite
working on different
variables

▶ Often referred to as False
Sharing between procs /
threads

int x=42;
int y=31;
void collide(){

if(proc_id == 0){
for(int i=0; i<1000; i++){
x = (x+1)*(x+3)/x;

}
}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}
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Exercise: General Fixes for False Sharing

▶ Suggest a means to
limit/avoid false sharing in
the provided code

▶ Try to minimize the amount
of code that changes

▶ There are at least 2
mechanisms to do this

int x=42;
int y=31;
void collide(){

if(proc_id == 0){
for(int i=0; i<1000; i++){
x = (x+1)*(x+3)/x;

}
}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}
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Answers: General Fixes for False Sharing
Local Var Copy
int x=42;
int y=31;
void collide(){

if(proc_id == 0){
int myx = x; // thread local copy
for(int i=0; i<1000; i++){

myxx = (myx+1)*(myx+3)/x;
}
x = myx; // write back

}
else{

int myy = y; // local copy
for(int i=0; i<1000; i++){

myy = myy/2;
myy = myy+2*myy;

}
y = myy; // write back

}
}

Pad Data
int x=42;
char padding[CACHE_LINE_SIZE]; // junk
int y=31; // forced to a
void collide(){ // new cache line

if(proc_id == 0){
for(int i=0; i<1000; i++){

x = (x+1)*(x+3)/x;
}

}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}

NOTE: Heap-allocated data via malloc() (or Java allocator) may pack
bytes closely together. May need to pad data structures to avoid false
sharing as well.
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Cache Coherence Overall

▶ Caches speed up individual processor execution in most cases
▶ Coordinating caches across several PEs is complex
▶ Requires additional hardware such for Snooping, alternatively

Directory-based approach (textbook)
▶ Hardware manages most of this but uses techniques that are

strikingly similar distributed memory systems: avoid sharing
data when possible to limit cache invalidation / collisions

▶ To eek out more performance, programmers should be aware
of these things when using Thread-based programs

▶ Will look at avoid performance pitfalls like false sharing as we
move ahead
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