
Shared Memory Architectures

Chris Kauffman

Last Updated:
Wed Mar 15 12:40:56 PM CDT 2023

1

Logistics
Today
▶ Finish Parallel Sorting
▶ Shared Memory Architecture

Theory + Practicalities
▶ Cache Performance Effects
▶ Next: PThreads + OpenMP

for shared memory machines

Reading
▶ Grama 2.4.1 (PRAM), 2.4.6

(cache)
▶ Gram 7.1-9 (PThreads)
▶ Grama 7.10 (OpenMP)
▶ OpenMP Tutorial at

Laurence Livermore

Upcoming
▶ Mini-Exam 2 on Thu 23-Mar
▶ A2 up Wed morning, 2

weeks days to work on it
▶ Will merge A3+A4: same

problem, implement via
Threads/SharedMem and
CUDA/GPU

2

https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/

PRAM: Parallel Random Access Machine, Grama Ch 2.4.1

RAM: Random Access Machine
▶ An unfortunate name as every other use of “RAM” is random

access memory
▶ Single CPU attached to random access memory
▶ Simplistic model for a real machine: CPU reads memory,

performs operations in registers, writes to memory, repeates

PRAM: Parallel Extension to RAM
▶ Again, theoretical model for a real parallel machine
▶ Multiple CPUs attached to memory, share clock but can

execute different instructions
▶ Must clarify behavior of PRAM machine that is not possible in

single CPU situation: how are conflicts between processors
resolve for simultaneous memory access

3

Theoretical Flavors of PRAM
Exclusive-Read, Exclusive-Write (EREW) PRAM
Multiple CPUs cannot touch same memory at all. No parallelism
possible for reads / writes of the same memory location.

Concurrent-Read, Exclusive-Write (CREW) PRAM
Multiple CPUs may read same memory location at same time.
Writes to same location must be resolved.

Exclusive-Read, Concurrent-Write (ERCW) PRAM
Multiple write accesses are allowed to a memory location, but
multiple read accesses are serialized. (This is just weird)

Concurrent-Read, Concurrent-Write (CRCW) PRAM
Simultaenous Read AND Write of the same memory location: the
most “powerful” PRAM model for some definition of “power”.
Q: What else must be specified for the xxCW models?

4

Resolution Schemes for Concurrent Reads/Writes
A: How concurrent writes resolve.
▶ Common: concurrent writes are allowed if all the values that

the processors are attempting to write are identical.
▶ Arbitrary: an arbitrary processor is allowed to proceed with

the write operation and the rest fail.
▶ Priority: procs are organized in a predefined prioritized list;

proc with the highest priority writes its value while others fail.
▶ Sum: the sum of all the quantities is written �

Above categories do not resolve concurrent read+write such as:
MEM[#1024] is 10
P0: read MEM[#1024] to REG1
P1: write 20 to MEM[#1024]

Proper treatments of PRAM specify results for this such as
▶ All Reads resolve first, then Writes resolve OR
▶ Concurrent Reads/Writes occur in arbitrary order OR
▶ etc. Your imagination is the limit…

However, we’ll proceed with more practical matters
5

Pros and Cons of PRAM
Why the PRAM Model?
▶ It’s simple
▶ Much literature devoted to studying benefits of algorithms

under different variants (e.g. Parallel Array Sum with CRCW
+ summing on concurrent write)

▶ Has significant theoretical importance

Why Not PRAM
▶ No real machines currently implement any PRAM models
▶ Some real machines (GPUs) have qualities similar to PRAM

but many practical divergences from it
▶ Conclusions one might draw about “good” algorithms is

skewed (e.g. multi-core machines do NOT behave as a
CRCW-summing machine; far from it)

6

Exercise: Recall the Memory Cache

▶ Parallel programs are driven towards performance
▶ Optimize serial performance first: requires understanding of

the memory hierarchy

Questions
From your computer architecture experience…
▶ Describe a memory cache and why most CPUs have several

layers of them
▶ Give an example of “strange” cache effects where similar

algorithms have very different performance

7

Diagrams of Memory Interface and Cache Levels

Source: Bryant/O’Hallaron CS:APP 3rd Ed.

Source: SO “Where exactly L1, L2 and L3 Caches
located in computer?”

8

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

Numbers Everyone (in Computing) Should Know
Edited Excerpt of Jeff Dean’s talk on data centers.

Operation Time (ns)
L1 cache reference 0.5
Branch mispredict 5
L2 cache reference 7
Mutex lock/unlock 100
Main memory reference 100
Compress 1K bytes with Zippy 10,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Round trip within same datacenter 500,000
Disk seek 10,000,000
Read 1 MB sequentially from network 10,000,000
Read 1 MB sequentially from disk 30,000,000
Send packet CA->Netherlands->CA 150,000,000

Numbers are likely out of date now but scales are worth knowing
and explain why Cache is useful

9

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Matrix Summing Examples

Sum R
double X[N][N]; // N by N mat
...
sum = 0;
for(i=0; i<N; i++){

for(j=0; j<N; j++){
sum += X[i][j]

}
}

Sum C
double X[N][N]; // N by N mat
...
sum = 0;
for(j=0; j<N; j++){

for(i=0; i<N; i++){
sum += X[i][j]

}
}

▶ What’s the Big O complexity of each?
▶ What happens with cache?
▶ Will one be faster than the other?

10

Cache Affects Performance
As measured by hardware counters using Linux’s perf on
>> lscpu
model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
cache size : 6144 KB
>> perf stat $opts java MatrixSums 8000 4000 row
>> perf stat $opts java MatrixSums 8000 4000 col

Measurement Sum Row Sum Col
Big-O Complexity O(N2) O(N2)
cycles 3,507,364,715 5,605,621,966
instructions 2,353,887,029 2,543,165,478
L1-dcache-loads 527,694,054 561,540,169
L1-dcache-load-misses 25,638,014 122,663,199
Runtime (seconds) 1.001 1.620

L1 data cache load misses
▶ Row: 25K/548K = 4% main memory access
▶ Col: 122/585K = 20% main memory access

11

Cache Issues in Shard Memory Machines

Source: Multi-core, Threads & Message Passing by Ilya Grigorik

Consider the following sequence of operations:
// MEM[#1024] has value 5

P0: read R1 MEM[#1024] // slow, populates cache
P0: read R2 MEM[#1024] // fast, from cache
P0: ADD R1 R1 R2 // R1 is 10
P0: write R1 MEM[#1024] // cache dirty, MEM[#1024] unchanged

a short time later
P1: read R3 MEM[#1024] // read 5 or 10? Depends on cache coherence...

Illustrates Cache Coherence Problem: how do multiple PEs
maintain the illusion of a single block of shared memory?

12

https://www.igvita.com/2010/08/18/multi-core-threads-message-passing/

Cache Coherence Protocols

Grama 2.4.6 offers two theoretical protocols to maintain Coherence

▶ Invalidate: shared memory written by one PE is marked as
invalid in cache of others

▶ Update: shared memory written in by one PE is updated in
other PEs

Both require hardware to snoop writes to memory by other PEs,
▶ Introduces complexity into hardware
▶ Potential bottlenecks for programs that most be avoided
▶ BUT without a Cache Coherence scheme, programs with

multiple PEs will have unpredictable behavior when sharing
data

13

Invalidate and Update Protocol Diagrams

14

Cache Coherence: Simple Three-State Model

Shared (S) valid for reads, write
changes state

Dirty (D) written by me, must
eventually flush to
main memory

Invalid (I) another proc altered
it, trigger flush +
reload on reading

▶ Each Unit of memory in Cache and DRAM have a S / D / I
state, often associated with Cache Lines

▶ Actions by P0 affect cache lines on P1: P0 Writes to x, P1’s
copy now Invalid

▶ NOTE: This is a simplified scheme with actual hardware
implementations often having several more states 15

Grama Demonstration of Cache Coherence

16

“Corrected” Demo of Cache Coherence
Below is an alternate version of Fig 2.23 of Grama where code like
x = x + y assumes a read x and read y to ensure the most
current value of both variables are used.
|----+-----------+-----------+-----------+-----------+------------+---------------|
| | P0 Code | P1 Code | P0 Cache | P1 Cache | Global Mem | Notes |
|----+-----------+-----------+-----------+-----------+------------+---------------|
					x = 5, S	
					y = 12, S	
1	read x		x = 5, S			
2		read y		y = 12, S		
3	x = x + 1		x = 6, D		x = 5, I	
4	y = y + 1			y = 13, D	y = 12, I	
5	read y		y = 13, S		y = 13, S	P1: flush y
6		read x		x = 6, S	x = 6, S	P0: flush x
7	x = x + y		x = 19, D	x = 6, I	x = 6, I	P1: invalid x
8		y = x + y	x = 19, S	x = 19, S	x = 19, S	P0: flush x
			y = 13, I	y = 32, D	y = 13, I	P0: invalid y
9	x = x + 1		x = 20, D	x = 19, I	x = 19, I	P1: invalid x
10		y = y + 1		y = 33, D		
----+-----------+-----------+-----------+-----------+------------+---------------	17					

MESI: Cache Coherence System in Actual Hardware
Each cache block is in one of 4 states

1. Modified (M): Cache line is present and “dirty” due to changes by this
PE; required to write the data back to main memory at some time in the
future before any other read of the corresponding data. Write-back
changes the line to the Shared state(S).

2. Exclusive (E): Cache line is present only in the current cache and is clean,
matches main memory. It may be changed to the Shared state at any
time, in response to a read request. Alternatively, it may be changed to
the Modified state when writing to it.

3. Shared (S): Indicates that this cache line may be stored in other caches of
the machine and is clean - it matches the main memory. The line may be
discarded (changed to the Invalid state) at any time.

4. Invalid (I): Indicates that this cache line is invalid or unused.
From: MESI protocol, Wikipedia
See also: The Architecture of the Nehalem Processor and Nehalem-EP SMP
Platforms by Michael E. Thomadakis, Section 5.2 on “Cache-Coherence
Protocol for Multi-Processors”

18

https://en.wikipedia.org/wiki/MESI_protocol
http://stellar.mit.edu/S/course/6/fa13/6.172/courseMaterial/topics/topic9/readings/nehalem/nehalem.pdf
http://stellar.mit.edu/S/course/6/fa13/6.172/courseMaterial/topics/topic9/readings/nehalem/nehalem.pdf

The Memory Bus
▶ Cache coherence protocols involve communication between

procs, obtaining information about changes to memory
▶ The Memory Bus is the communication channel that enables

Procs/Memory chips to “talk” to each other
▶ Hardware construct to move data around, usually across wires

connected to each Proc and DRAM chip
▶ Memory Buses use a communication protocol which includes

device identifiers so messages about changes are directed to
individual PEs or DRAM

▶ Bus can get “crowded” if lots of Procs make memory requests
▶ All hardware can “see” messages on the bus: allows snooping

of messages intended for others
▶ Example: PE1 sees that PE0 read address #1024 so PE0

knows it may share #1024 now

19

Diagram of Typical Memory Buses

20

Snoopy Cache

Basics
▶ Additional hardware watches

messages on the bus
▶ Writing to cache invalidates

global memory
▶ Message pertaining to a

dirty memory address cause
flush, state back to shared

Example
▶ x in P0 cache Dirty
▶ x in Global mem Invalid
▶ P1 reads x

▶ P0 “snoops” request
▶ Flushes x to global mem
▶ P1 can read x from global

▶ x is now Shared
21

Different Variable but Same Cache Line → Collisions

▶ Performance problem: two
processors grinding on
different but close variables

▶ Consider the following
program: x,y are adjacent
in main memory, likely to
share same cache line

▶ Proc0 and Proc1 each have
own cache, will interfere
with one another despite
working on different
variables

▶ Often referred to as False
Sharing between procs /
threads

int x=42;
int y=31;
void collide(){

if(proc_id == 0){
for(int i=0; i<1000; i++){
x = (x+1)*(x+3)/x;

}
}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}

22

Exercise: General Fixes for False Sharing

▶ Suggest a means to
limit/avoid false sharing in
the provided code

▶ Try to minimize the amount
of code that changes

▶ There are at least 2
mechanisms to do this

int x=42;
int y=31;
void collide(){

if(proc_id == 0){
for(int i=0; i<1000; i++){
x = (x+1)*(x+3)/x;

}
}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}

23

Answers: General Fixes for False Sharing
Local Var Copy
int x=42;
int y=31;
void collide(){

if(proc_id == 0){
int myx = x; // thread local copy
for(int i=0; i<1000; i++){

myxx = (myx+1)*(myx+3)/x;
}
x = myx; // write back

}
else{

int myy = y; // local copy
for(int i=0; i<1000; i++){

myy = myy/2;
myy = myy+2*myy;

}
y = myy; // write back

}
}

Pad Data
int x=42;
char padding[CACHE_LINE_SIZE]; // junk
int y=31; // forced to a
void collide(){ // new cache line

if(proc_id == 0){
for(int i=0; i<1000; i++){

x = (x+1)*(x+3)/x;
}

}
else{

for(int i=0; i<1000; i++){
y = y/2;
y = y+2*y;

}
}

}

NOTE: Heap-allocated data via malloc() (or Java allocator) may pack
bytes closely together. May need to pad data structures to avoid false
sharing as well.

24

Cache Coherence Overall

▶ Caches speed up individual processor execution in most cases
▶ Coordinating caches across several PEs is complex
▶ Requires additional hardware such for Snooping, alternatively

Directory-based approach (textbook)
▶ Hardware manages most of this but uses techniques that are

strikingly similar distributed memory systems: avoid sharing
data when possible to limit cache invalidation / collisions

▶ To eek out more performance, programmers should be aware
of these things when using Thread-based programs

▶ Will look at avoid performance pitfalls like false sharing as we
move ahead

25

