
OpenMP: Open Multi-Processing

Chris Kauffman

Last Updated:
Thu Mar 30 02:28:45 PM CDT 2023

1

Logistics

Today
▶ Wrap up PThreads
▶ OpenMP for shared memory machines

Reading
▶ Grama 7.10 (OpenMP)
▶ OpenMP Tutorial at Laurence Livermore National Labs

A2 is Up
▶ Due in 2 Weeks
▶ Problem 1: MPI Heat
▶ Problem 2/3: MPI K-Means

Take a quick tour

2

https://hpc-tutorials.llnl.gov/openmp/

OpenMP: High-level Shared Memory Parallelism
▶ OpenMP = Open Multi-Processing 1

▶ A standard, implemented by various folks, compiler-makers
▶ Targeted at shared memory machines: multiple processing

elements sharing memory
▶ Specify parallelism in code with

▶ Some function calls: which thread number am I?
▶ Directives: do this loop using multiple threads/processors

▶ Can orient program to work without need of additional
processors - direct serial execution

▶ OpenMP targets multiple processors, new relative OpenACC
which targets “accelerators” like GPUs with same ideas

▶ The easiest parallelism you’ll likely get in C / C++ / Fortran

1Keep in mind that OpenMPI is one of the most common distributions of
MPI for distributed memory parallelism. Unfortunately its name is very close to
OpenMP which is for shared memory programming.

3

#pragma in C
The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the com-
piler, beyond what is conveyed in the language itself.
– GCC Manual

▶ Similar in to Java’s annotations (@Override)
▶ Indicate meta-info about about code

printf("Normal execution\n");

#pragma do something special below
normal_code(x,y,z);

▶ Several other pragmas supported by gcc + preprocessor
including
▶ once: include a header file once only
▶ poison: if a poisoned identifier is used, cause an error
▶ dependency: warn if another file is newer than this one
▶ Many that are architecture specific

4

https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html
https://gcc.gnu.org/onlinedocs/gcc/Pragmas.html#Pragmas

OpenMP Basics

#pragma omp parallel
single_parallel_line();

#pragma omp parallel
{

parallel_block();
with_multiple(statements);
done_in_parallel();

}

▶ Pragmas indicate a single line or block should be done in
parallel.

▶ Examine omp_basics.c

5

Compiler Support for OpenMP

▶ Most modern compilers have support for OpenMP including…
▶ GCC, CLang/LLVM, Intel C/C++ Compiler, MS Visual

Studio, NVidia HPC Tools; openmp.org maintains a tools list
▶ GCC supports OpenMP with appropriate options

>> gcc omp_basics.c # no parallelism
>> gcc omp_basics.c -fopenmp # enable parallelism

▶ OpenMP was introduced in the mid 90’s and has expanded
and added features which are available depending on platform

GCC Version 4.2 4.4 4.7 4.9 6.0 9.0 12.0
OpenMP Version 2.5 3.0 3.1 4.0 4.5 5.0 5.1

6

https://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/using-the-openmp-libraries.html
https://docs.microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-support?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/reference/openmp-enable-openmp-2-0-support?view=msvc-170
https://www.openmp.org/resources/openmp-compilers-tools/

Hints at OpenMP Implementation

▶ OpenMP ≈ coarse-grained parallelism
▶ PThreads ≈ fine-grained parallelism
▶ From libGOMP Documentation (OMP library in GCC)

OMP CODE
#pragma omp parallel
{

body;
}

BECOMES
void subfunction (void *data){

use data;
body;

}
setup data;
GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);
GOMP_parallel_end ();

Not exactly a source transformation, but OpenMP can leverage
many existing pieces of Posix Threads libraries.

7

https://gcc.gnu.org/onlinedocs/libgomp/Implementing-PARALLEL-construct.html#Implementing-PARALLEL-construct
http://stackoverflow.com/questions/14878928/compile-openmp-into-pthreads-c-code

Grama Sample Translation: OpenMP → PThreads

8

OpenMP Thread Identification
▶ OpenMP divides computation into threads
▶ Nearly identical model to PThreads approach BUT not always

implemented via PThreads (icc may use Intel Thread
Building Blocks)

▶ Threads execute concurrently / in parallel, can have private
data, shared data

▶ OpenMP provides basic id / environment functions for threads
and synchronization constructs

#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int num_threads = omp_get_num_threads();
int work_per_thread = total_work / num_threads;
...;

}

9

https://en.wikipedia.org/wiki/Threading_Building_Blocks
https://en.wikipedia.org/wiki/Threading_Building_Blocks

Specifying Number of Threads
int main(){

#pragma omp parallel // Default # threads based on system config
{

run_with_max_num_threads();
}

if (argc > 1) { // Number of threads based on command line
omp_set_num_threads(atoi(argv[1]));

}
#pragma omp parallel
{

run_with_current_num_threads();
}

#pragma omp parallel num_threads(2) // Number of threads as part of pragma
{

run_with_two_threads();
}

int NT = 4; // Number of threads from program variable
#pragma omp parallel num_threads(NT)
{

run_with_four_threads();
}

}

>> OMP_NUM_THREADS=4 ./a.out // Set default via environment variable

10

Tricky Memory Issues Abound
Program Fragment
// omp_shared_variables.c
int main(){

int id_shared=-1;
int numThreads=0;

#pragma omp parallel
{

id_shared = omp_get_thread_num();
numThreads = omp_get_num_threads();
printf("A: Hey from thread %d / %d\n",

id_shared, numThreads);
}

printf("\n");

#pragma omp parallel
{

int id_private = omp_get_thread_num();
numThreads = omp_get_num_threads();
printf("B: Hey from thread %d / %d\n",

id_private, numThreads);
}

}

Possible Output
A: Hello from thread 2 of 4
A: Hello from thread 3 of 4
A: Hello from thread 0 of 4
A: Hello from thread 0 of 4

B: Hello from thread 1 of 4
B: Hello from thread 3 of 4
B: Hello from thread 0 of 4
B: Hello from thread 2 of 4

11

Lessons

▶ OpenMP Threads share memory just like PThreads including
heap, globals, any stack vars in main thread

▶ Threads share any stack variables NOT in parallel blocks
▶ Thread variables are private if declared inside parallel blocks
▶ Pragmas can be used to create private copies of otherwise

shared variables
▶ Take care with shared variables: easy to accidentally share

variables as programming language scope does not make
sharing as obvious

12

Exercise: Pi Calc via OpenMP

Examine:
https://cs.umn.edu/~kauffman/5451/picalc_omp_reduction.c

Questions
▶ Contrast the structure of the program with PThreads version
▶ How is the number of threads used to run determined?
▶ What is the business with reduction(+: total_hits)?
▶ Can variables like points_per_thread be moved out of the

parallel block?
▶ Do you expect speedup for this computation?

13

https://cs.umn.edu/~kauffman/5451/picalc_omp_reduction.c

Answers: Pi Calc via OpenMP
▶ Contrast the structure of the program with PThreads version

Shorter and sweeter, no need for auxiliary function, cast-
ing, loops to create/join threads.

▶ How is the number of threads used to run determined?
From the command line and set via the function
omp_set_num_threads()

▶ What is the business with reduction(+: total_hits)?
Performs a reduction on shared variable total_hits: cor-
rect results + performance; more in a moment…

▶ Can variables like points_per_thread be moved out of the
parallel block?
points_per_thread and num_threads can be shared;
thread_id and state should NOT be shared.

▶ Do you expect speedup for this computation?
Yes - get nearly linear speedup and correct results with less
effort than PThreads version. 14

Exercise: Placement of Variables vs Runtime
Analyze these two examples and explain the timing difference

// (A) picalc_omp_reduction.c
#pragma omp parallel ...
{

unsigned int state =
123456789 * thread_id;

...
double x =

((double) rand_r(&state))...

TIMING
>> time a.out 75000000 4
npoints: 75000000
hits: 58910475
pi_est: 3.141892

real 0m0.291s
user 0m1.125s
sys 0m0.004s

// (B) picalc_omp_rand_contention.c:
unsigned int state =

123456789;
#pragma omp parallel...
{

...
double x =
((double) rand_r(&state))...

TIMING
>> time -p a.out 75000000 4
npoints: 75000000
hits: 58910901
pi_est: 3.141915

real 0m1.200s
user 0m4.285s
sys 0m0.001s

15

Answers: Placement of Variables vs Runtime

▶ (A) picalc_omp_reduction.c places the state variable
within the parallel region - becomes thread private

▶ (B) picalc_omp_rand_contention.c places it state
outside so it is a shared variable among threads

▶ Each call to rand_r() must alter state so there is memory
contention around it

16

Note on rand()
▶ rand_r() is reentrant and thread-safe

▶ When programming in multi-threaded contexts look for these
qualities

▶ Note: When calling rand_r() in multiple threads with the
same state variable, likely to lose “randomness”

▶ rand() is another matter…
▶ Generates random numbers a la int r = rand();
▶ Uses a “hidden” global variable to track generator state
▶ For many moons, was NOT thread safe
▶ Most Linux / GLIBC implementations are thread safe, but…
▶ Likely use a mutex to protect the state variable slowing things

down considerably…
>> time ./picalc_omp_rand 75000000 1
...
real 0m1.439s
...

>> time ./picalc_omp_rand 75000000 4
...
real 1m3.403s
...

17

Reductions in OpenMP
omp_picalc.c used a reduction() clause
// operation --+ +-- variable
// V V
#pragma omp parallel reduction(+: total_hits)
{

...;
total_hits++;

}

▶ Shared var total_hits is updated “properly” and reasonably
efficiently
▶ May exploit the fact that addition is transitive - can be done in

any order
▶ Likely to introduce a private version of reduction variable for

each thread then reduce over threads at the end
▶ Alternatively may utilize a mutex or hardware atomic ops

▶ Most other arithmetic ops available
▶ Statement of policy rather than mechanism

18

OpenMP Atomic Pragmas

#pragma omp parallel
{

...;
#pragma omp atomic
total_hits++;

}

▶ Use atomic hardware instruction available
▶ Restricted to single operations, usually arithmetic
▶ No hardware support → compilation problem

#pragma omp atomic
printf("woot"); // compile error

19

Alternative: Critical Block

#pragma omp parallel
{

...;
#pragma omp critical
{

total_hits++;
}

}

▶ Not restricted to hardware supported ops
▶ Uses locks to restrict access to a single thread

20

Reduction vs. Atomic vs. Critical
▶ omp_picalc_alt.c has commented out versions of for each

of reduction, atomic, and critical
▶ Examine timing differences between the three choices

lila [openmp-code]% gcc omp_picalc_alt.c -fopenmp
lila [openmp-code]% time -p a.out 100000000 4
npoints: 100000000
hits: 78541717
pi_est: 3.141669

real ??? - Elapsed (wall) time
user ??? - Total user cpu time
sys ??? - Total system time

Time Threads real user sys
Serial 1 1.80 1.80 0.00
Reduction 4 0.52 2.00 0.00
Atomic 4 2.62 9.98 0.00
Critical 4 9.02 34.46 0.00

21

Exercise: No Reduction for You

int total_hits=0;
#pragma omp parallel reduction(+: total_hits)
{

int num_threads = omp_get_num_threads();
int thread_id = omp_get_thread_num();
int points_per_thread = npoints / num_threads;
unsigned int state = 123456789 * thread_id;
for (int i = 0; i < points_per_thread; i++) {

double x = ((double) rand_r(&state)) / ((double) RAND_MAX);
double y = ((double) rand_r(&state)) / ((double) RAND_MAX);
if (x*x + y*y <~ 1.0){
total_hits++;

}
}

}

▶ Alter picalc to NOT use reduction clause
▶ Use alternative like atomic or critical
▶ Goal: achieve same/better speed as reduction version

22

Answers: No Reduction for You

// picalc_omp_atomic.c:
#pragma omp parallel
{

int num_threads = omp_get_num_threads();
int thread_id = omp_get_thread_num();
int points_per_thread = npoints / num_threads;
int my_hits = 0; // private count
unsigned int state = 123456789 * thread_id;
int i;
for (i = 0; i < points_per_thread; i++) {

double x = ((double) rand_r(&state)) / ((double) RAND_MAX);
double y = ((double) rand_r(&state)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

my_hits++;
}

}
#pragma omp atomic
total_hits += my_hits; // lock total_hits before updating

}

23

Thread Variable Declarations
Pragmas can specify that variables are either shared or private. See
omp_private_variables.c
tid = -1;
// #pragma omp parallel
#pragma omp parallel shared(tid)
{

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

}

tid = -1;
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

}

Also available
▶ shared which is mostly redundant
▶ firstprivate guarantees initialization with shared value
▶ All of these are subsumed by lexical scoping in modern C

24

Parallel Loops : OpenMP’s Killer Feature

#pragma omp parallel for
for (int i = 0; i < 16; i++) {

int id = omp_get_thread_num();
printf("Thread %d doing iter %d\n",

id, i);
}

OUTPUT
Thread 0 doing iter 0
Thread 0 doing iter 1
Thread 0 doing iter 2
Thread 0 doing iter 3
Thread 2 doing iter 8
Thread 2 doing iter 9
Thread 2 doing iter 10
Thread 2 doing iter 11
Thread 1 doing iter 4
Thread 1 doing iter 5
...

▶ OpenMP supports
parallelism for independent
loop iterations

▶ Note variable i is declared
in loop scope

▶ Iterations automatically
divided between threads in
a blocked fashion

▶ Assumption: Loop
Iterations are independent

25

Exercise: OpenMP Matrix Vector Multiply

// matvec_serial.c: Matrix/vector multiply demo
for(i=0; i<rows; i++){

for(j=0; j<cols; j++){
result[i] += matrix[i][j] * vector[j];

}
}

▶ Describe 3 ways one might parallelize this operation
▶ Write OpenMP #pragmas for each
▶ Note: reduction on an array variables varies based on

OpenMP version

26

Answers: OpenMP Matrix Vector Multiply
// Outer for loop multiplication
#pragma omp parallel for
for(int i=0; i<rows; i++){

for(int j=0; j<cols; j++){
result[i] += matrix[i][j] * vector[j];

}
}

// Inner for loop multiplication: reduction
// on result[i] added in recent OpenMP
for(int i=0; i<rows; i++){

#pragma omp parallel for reduction(+:result[i])
for(int j=0; j<cols; j++){

result[i] += matrix[i][j] * vector[j];
}

}

// Outer and Inner for loop multiplication
#pragma omp parallel for
for(int i=0; i<rows; i++){

#pragma omp parallel for reduction(+:result[i])
for(int j=0; j<cols; j++){

result[i] += matrix[i][j] * vector[j];
}

}

27

Timing Differences

Circa 2017
Desktop
>> gcc omp_matvec_timing.c -fopenmp

SKINNY
>> a.out 20000 10000
Outer : 0.2851
Inner : 0.2022
Both : 0.2191

FAT
> a.out 10000 20000
Outer : 0.2486
Inner : 0.1911
Both : 0.2118

> export OMP_NESTED=true
> a.out 20000 10000
Outer : 0.2967
Inner : 0.2027
Both : 1.1783

Today
Laptop
>> gcc matvec_omp.c -O3 -fopenmp

SKINNY
>> ./a.out 20000 10000
Outer : 0.1568
Inner : 0.1888
Both : 0.1515

FAT
>> ./a.out 10000 20000
Outer : 0.1490
Inner : 0.1869
Both : 0.1484

>> export OMP_MAX_ACTIVE_LEVELS=2
>> ./a.out 20000 10000
Outer : 0.1559
Inner : 0.1935
Both : 3.5133

28

Nested Parallelism Control
▶ By default nested parallelism is disabled for most GCC versions
▶ Like other aspects of OpenMP, can control nested parallelism

via function calls like
// Old but Deprecated
omp_set_nested(1); // ON
omp_set_nested(0); // OFF
// NEW
omp_set_max_active_levels(2);

▶ Can also be specified via environment variables
export OMP_NESTED=true # deprecated
export OMP_NESTED=false # deprecated
export OMP_MAX_ACTIVE_LEVELS=2 # NEW method
export OMP_NUM_THREADS=4

▶ Env. Vars are handy for experimentation
▶ Other Features such as loop scheduling are controllable via

directives, function calls, or environment variables
29

Syntax Note

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < REPS; i++) {

int id = omp_get_thread_num();
printf("Thread %d did iter %d\n",

id, i);
}

}
printf("\n");

// ABOVE AND BELOW IDENTICAL

#pragma omp parallel for
for (int i = 0; i < REPS; i++) {

int id = omp_get_thread_num();
printf("Thread %d did iter %d\n",

id, i);
}
printf("\n");

▶ Directives for OpenMP can
be separate or coalesced

▶ Code on top and bottom are
parallelized the same way

▶ In top code, removing first
#pragma removes parallelism

30

Loop Scheduling - 4 Types
Static
▶ So far only done static

scheduling with fixed size
chunks

▶ Threads get fixed size
chunks in rotating fashion

▶ Great if each iteration has
same work load

Dynamic
▶ Threads get fixed chunks

but when done, request
another chunk

▶ Incurs more overhead but
balances uneven load better

Guided
▶ Hybrid between

static/dynamic, start with
each thread taking a “big”
chunk

▶ When a thread finishes,
requests a “smaller” chunk,
next request is smaller

Runtime
▶ Environment variables

(OMP_SCHEDULE) used to
select one of the others

▶ Flexible but requires user
awareness

31

Basic Loop Scheduling
// omp_loop_scheduling.c, assumes OMP_NUM_THREADS=4
const int REPS = 16;

#pragma omp parallel for schedule(static)
for (int i = 0; i < REPS; i++) { // thr 0: 0-3, thr 1: 4-7

... // thr 2: 8-11,thr 4: 12-15
}

#pragma omp parallel for schedule(static,2)
for (int i = 0; i < REPS; i++) { // thr 0: 0,1,8,9 thr 1: 2,3,10,11

... // thr 2: 4,5,12,13 thr 3: 6,7,14,15
}

#pragma omp parallel for schedule(dynamic,2)
for (int i = 0; i < REPS; i++) { // varies, all start with 2 iters

... // request more as completed
}

#pragma omp parallel for schedule(guided)
for (int i = 0; i < REPS; i++) {

... // varies, start with large chunks
} // request smaller chunks

#pragma omp parallel for schedule(runtime)
for (int i = 0; i < REPS; i++) {

... // controlled via environment var
} // ex: OMP_SCHEDULE=static 32

Code for Loop Scheduling

▶ omp_loop_scheduling.c demonstrates loops of each kind
with printing

▶ omp_guided_schedule.c longer loop to demonstrate
iteration scheduling during Guided execution

33

Exercise: Spell Checking
▶ Consider a spell checking problem
▶ Look up each word in a document in a dictionary to determine

correct spelling
▶ If document word is not in the dictionary, report a misspelling

// fragment from spellcheck_omp.c
for (int i=0; i < document->word_count; i++) {

int result =
linear_search(dictionary, document->words[i]);

if(result == -1){
misspelled++;

}
}

Questions
1. Parallelize the “outer” loop over words or the “inner” loop

that is linear_search()
2. Which type of loop schedule seems to make the most sense?

Static? Dynamic? Guided?
34

Answers: Spell Checking

1. Parallelize the “outer” loop over words or the “inner” loop
that is linear_search()

For a large number of words, outer “word” loop makes
more sense than inner loop : induces less thread statup
overhead. For a small number of words, may be more
worthwhile to parallelize inner loop.

2. Which type of loop schedule seems to make the most sense?
Static? Dynamic? Guided?

Dynamic or Guided makes more sense. Especially with
linear_search(), expect that some checks will take
longer than others which means a Static schedule may
lead to some threads with much more work than others.

35

Example Runs on Spellcheck w/ Word Loop Parallelized
>> time OMP_SCHEDULE=static spellcheck_omp ...
threads = 8
misspelled: 0
Thread 0 work: 110803941
Thread 1 work: 332426710
Thread 2 work: 554049479
Thread 3 work: 775672248
Thread 4 work: 997295017
Thread 5 work: 1218917786
Thread 6 work: 1440540555
Thread 7 work: 1662044229
Total work: 7091749965

real 0m12.110s
user 0m53.495s
sys 0m0.008s

>> time OMP_SCHEDULE=guided spellcheck_omp ...
threads = 8
misspelled: 0
Thread 0 work: 901203843
Thread 1 work: 892041145
Thread 2 work: 897067217
Thread 3 work: 895931158
Thread 4 work: 850295834
Thread 5 work: 892967175
Thread 6 work: 896993276
Thread 7 work: 865250317
Total work: 7091749965

real 0m8.853s
user 1m9.492s
sys 0m0.031s

>> time OMP_SCHEDULE=dynamic spellcheck_omp ...
threads = 8
misspelled: 0
Thread 0 work: 851351653
Thread 1 work: 887921206
Thread 2 work: 908569538
Thread 3 work: 893075776
Thread 4 work: 882219930
Thread 5 work: 873179476
Thread 6 work: 904986970
Thread 7 work: 890445416
Total work: 7091749965

real 0m7.877s
user 1m0.578s
sys 0m0.011s

>> time OMP_SCHEDULE=static,1 spellcheck_omp ...
threads = 8
misspelled: 0
Thread 0 work: 886431528
Thread 1 work: 886446415
Thread 2 work: 886461302
Thread 3 work: 886476189
Thread 4 work: 886491076
Thread 5 work: 886505963
Thread 6 work: 886520850
Thread 7 work: 886416642
Total work: 7091749965

real 0m7.665s
user 1m0.295s
sys 0m0.011s

36

Notes on Spellcheck

▶ Pure static scheduling does not balance the work well
▶ Dynamic / Guided gives reasonable performance improvement

over pure Static scheduling
▶ Specific instance of

>> spellcheck_omp english-words.txt english-words.txt
allows for block-cyclic distribution for 0-overhead fair
distribution of work

▶ Most problems where work distribution is unknown benefit
from dynamic or guided scheduling

37

Sections: Non-loopy Parallelism
▶ Independent code can be “sectioned” with threads taking

different sections.
▶ Good to parallelize distinct independent execution paths
▶ See omp_sections.c

#pragma omp sections
{

#pragma omp section
{

printf("Thread %d computing d[]\n",
omp_get_thread_num());

for (i=0; i < N; i++)
d[i] = a[i] * b[i];

}

#pragma omp section
printf("Thread %d chillin' out\n",

omp_get_thread_num());
}

38

Locks in OpenMP

▶ Implicit parallelism/synchronization is awesome but…
▶ Occasionally need more fine-grained control
▶ Lock facilities provided to enable mutual exclusion
▶ Each of these have analogues in PThreads we will discuss later

void omp_init_lock(omp_lock_t *lock); // create
void omp_destroy_lock(omp_lock_t *lock); // destroy
void omp_set_lock(omp_lock_t *lock); // wait to obtain
void omp_unset_lock(omp_lock_t *lock); // release
int omp_test_lock(omp_lock_t *lock); // check, don't wait

39

OpenMP Thread Pools

▶ By default, OpenMP + GCC makes use of thread pools
▶ Once a thread is started, it remains active, associated with

the running process
▶ Tradeoff is

1. Thread startup overhead is reduced after the first parallel block
2. System load is constant for an OpenMP program: finishing a

parallel block does NOT release OS resources for threads
▶ Generally this is favorable for most HPC applications

Experiment with omp_thread_pool.c to see this.

40

Exercise: K-Means OpenMP

▶ Review code on K-Means
▶ Answer some questions about OpenMP

41

