
Java Threads in a Nutshell

Chris Kauffman

Last Updated:
Tue Apr 4 03:45:37 PM CDT 2023

1



Logistics
Today
▶ Finish out OpenMP
▶ Java Threads

Reading
▶ Grama 7.10 (OpenMP)
▶ OpenMP Tutorial at

Laurence Livermore National
Labs

▶ Java Concurrency Tutorial
▶ GPU parallel program

development using CUDA by
Tolga Soyata
▶ Ch 6 start GPU Coverage
▶ UMN Library Link

Schedule
4/04 Tue OpenMP Wrap

Java Threads

4/06 Tue CUDA / GPUs
4/11 Tue CUDA / GPUs

4/13 Thu CUDA / GPUs
Mini-Exam 3

2

https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51702449520001701


Threads in Java

▶ Java was built with concurrency in mind
▶ java.lang.Thread is a core part of the language
▶ Represents a runnable unit
▶ java.lang.Runnable does so similarly as an interface

Typical Parallel Setup
▶ Create a class which extends Thread
▶ Override the run() method to do real work
▶ In a main() method, instantiate the thread class and invoke

the thread.start(), thread begins execution asynchronously
▶ Eventually call thread.join() to wait for thread to finish

3

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html


Picalc example (again)

Three variants
1. Reduction version: no thread synchronization required
2. Synchronized methods: only one thread executes a method at

a time
3. Synchronized statements: any java object can be a lock

4



Highlights of PicalcReduction.java
▶ Create a nested subclass

static class CalcThread extends Thread

▶ Fields and constructor allows initialization information to be
communicated

public CalcThread(int threadNum, int nPoints){
this.threadNum = threadNum;
this.nPoints = nPoints;

}
▶ Override the public void run() to initialize a Random number

generator, perform hit computations, update this.hits
▶ Accessor public int getHits() allows retrieval of hits computed
▶ main() method creates an array of CalcThreads, starts them

running
▶ join() each thread to wait for it to finish, sum up hits with

threads[i].join();
totalHits += threads[i].getHits();

▶ Must be aware of an irritating InterruptedException 5



Highlights of PicalcSynchMethod.java

▶ Class field to track total hits
static int totalHits;

▶ Class method to control updates: synchronized
static synchronized void incrTotal(){

totalHits++;
}

▶ Only one thread in the method at a time
▶ Nested class CalcThread calls incrTotal() to update

totalHits
▶ main() spins up threads and waits to join
▶ No need to perform any reductions

6



Highlights of PicalcSynchStatement.java

▶ Class field to track total hits
static int totalHits;

▶ Class field to serve as a lock to control access
static Object lock = new Object();

▶ Nested class CalcThread directly updates by
acquiring/releasing lock

synchronized(lock){
totalHits++;

}
▶ Only one thread in the critical section at time
▶ main() spins up threads and waits to join
▶ No need to perform any reductions

7



Timings of Java Variants

>> cd 13-java-threads-code
>> time java PicalcReduction
npoints: 75000000
threads: 4
hits: 58909237
pi_est: 3.141826

real 0m0.982s
user 0m3.401s
sys 0m0.071s

samples 75M 75M 75M
threads 1 2 4
JAVA
PicalcReduction 3.378 1.803 0.988
PicalcSynchMethod 4.272 7.755 10.623
PicalcSynchStatement 3.366 7.753 10.866
PTHEADS
mutex_fast 1.032 0.521 0.268

Java
Keep in mind the slower times might be improved with tweaks to
compilation + runtime invocation, perhaps with ahead of time
compilation via jaotc. The JVM does a LOT of stuff favoring
flexibility over performance

8

http://openjdk.java.net/jeps/295
http://openjdk.java.net/jeps/295


Exercise: Java Collisions

▶ Collisions.java gives a serial collision detector
▶ Discuss with a neighbor how to parallelize this in Java
▶ Will require a Thread subclass
▶ Discuss using reductions or synchronized

methods/statements
▶ Be fairly specific with your design: sketch subclasses, fields,

methods

9



Note on Synchronized Sections
▶ Synchronized methods are synced on the associated object
▶ Only one thread is in ANY method at a time
▶ Maintain consistency of object state
▶ static methods sync on class, can only be in one at a time

class C { class D {
int total; static int total;
public C(){ this.total = 0; }

synchronized void incrTotal(){ synchronized static void incrTotal(){
total++; total++;

} }
synchronized void decrTotal(){ synchronized static void decrTotal(){

total--; total--;
} }

} }

Contrast
▶ Unlike the new collection implementations, Vector is synchronized.
▶ ArrayList: Note that this implementation is not synchronized.

10



Example of Easy Creation of a Synchronized Instance

From ArrayList Java Docs
Note that this implementation is not synchronized. If multiple threads
access an ArrayList instance concurrently, and at least one of the threads
modifies the list structurally, it must be synchronized externally. (A
structural modification is any operation that adds or deletes one or more
elements, or explicitly resizes the backing array; merely setting the value
of an element is not a structural modification.) This is typically
accomplished by synchronizing on some object that naturally encapsulates
the list. If no such object exists, the list should be “wrapped” using the
Collections.synchronizedList method. This is best done at creation time,
to prevent accidental unsynchronized access to the list:

List list = Collections.synchronizedList(new ArrayList(...));

Question
What does the code for synchronizedList(..) look like?

11

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html


Iterators are Inherently Serial

Manual synchronization on iterators is still required.
synchronized (list) {

Iterator i = list.iterator();
while (i.hasNext())

foo(i.next());
}

▶ Required if another thread is performing list.add(x)
▶ Prevents ConcurrentModificationException

12



Wait, Notify, Volatility
class C {

public volatile boolean joy = false;
public void guardedJoy() {

while(!joy) {} // Busy polling
System.out.println("Joy has been achieved!");

}

public synchronized void guardedJoy() {
while(!joy) {

try {
this.wait(); // Blocking wait

} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");

}
public synchronized notifyJoy() {

this.joy = true;
this.notifyAll();

}
}

See: WaitNotify.java for timings
13



Java’s Memory Model

At the bottom of this issue lies the need for aggressive
optimization in the face of concurrency: any mechanism
which ensures memory coherency between threads is ex-
pensive, and much (most) of the data is not shared be-
tween threads. Therefore the data not explicitly marked
volatile, or protected by locks, is treated as thread-local by
default (without strict guarantees, of course).
– Marko Topolnik, Stack Overflow

14

http://stackoverflow.com/questions/21268064/is-this-starvation/21268200\#21268200


Exercise: False Sharing in Java

▶ A subtle performance issue
may occur in Java

▶ How might false sharing
happen in the nearby Picalc
computation?
Hint: where are the
CalcThread objects
allocated?

▶ How can such false sharing
be avoided?

public class PicalcReduction {
static class CalcThread extends Thread{

int hits; // hits in this thread

public void run(){
...;
if (x*x + y*y <= 1.0){

this.hits++;
}

}
}

public static void main(String args[]) {
...;
for(int i=0; i<nThreads; i++){
threads[i] = new CalcThread(i, ...);
threads[i].start();

}
...;

}
}

15



Answers: False Sharing in Java 1 / 2 (Problem)
▶ Heap-allocated data may be on the same cache line
▶ CalcThread objects are heap allocated and their fields

this.hits are incremented
▶ If the objects cross cache lines, may result in false sharing

Thread 
Object 1

Thread 
Object 2

Thread 
Object 1

Thread 
Object 2

Source: Building Parallel Programs, Kaminsky

16

https://www.cs.rit.edu/~ark/bpp/


Answers: False Sharing in Java 2 / 2 (Fixes)
public class PicalcReduction {

static class CalcThreadPad extends Thread{
int hits; // hits in this thread
long pad0, pad1, pad2, pad3, // padding

pad4, pad5, pad6, pad7;
public void run(){
...;
if (x*x + y*y <= 1.0){

this.hits++;
}

}
}
static class CalcThreadLoc extends Thread{

int hits; // hits in this thread
public void run(){

int myhits = 0; // stack local
...;
if (x*x + y*y <= 1.0){

myhits++;
}

}
this.hits = myhits;

}
}

17



Other Capabilities in Java

Generally concurrency is a prime part of Java and one of its
strengths. Capabilities continue to evolve so one might explore any
or all of the following for better concurrency and parallelism.
▶ Concurrent collections (ConcurrentMap rather than HashMap

and TreeMap)
▶ Runnable interface - class provides a run() method

Runnable r = new Something();
Thread t = new Thread(r);

▶ Executor interface and associates for more complex
scheduling

▶ Use of ThreadPools to farm out work
▶ New-ish ForkJoinPool

18


