
GPU Architecture and CUDA Programming

Chris Kauffman

Last Updated:
Tue Apr 25 03:55:11 PM CDT 2023

1

Logistics

A2 Due Wed 12-Apr-2023, Late through Fri

Next Week Guest Lectures
Date Topic Speaker
Tue 18-Apr Fluid Dynamics Sreevatsa Anantharamu
Thu 20-Apr CUDA Efficiency Jeremy Iverson

Today: GPU Parallelism via CUDA

Reading
GPU Parallel Program Development Using CUDA by Tolga Soyata
(UMN Library Link); Ch 6 starts GPU Coverage

2

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51702449520001701

GPUs will Feel Different

Distributed / Threaded Programming
▶ Most effective strategies looked for ways to assign lots of work

to limited number of procs/threads
▶ Poo-pooed the idea of “Assume length N array and N

processors”, too impractical

GPU Programming
▶ Threads are essentially cost-free, close to theoretical models

so…
Assume length N array and N processors. It’s actually
practical and beneficial.

▶ Will require some mental adjustment

3

GPUs are a Co-Processor / “Accelerator”

▶ CPU is still in charge, has access to main memory
▶ GPU is a partner chip, has a distinct set of memory
▶ Sections of code will feel like Distributed architecture

▶ CPU / GPU memory transfers
▶ Barriers / synchronization as CPU waits for GPU to finish

▶ GPU itself is like a multicore system on steroids

4

CPU vs GPU

Source: NVidia Docs “CUDA C++ Programming Guide”

▶ GPU cores are simpler, slower, but there are TONs of them
▶ GPU has its own memory hierarchy: cache and DRAM
▶ Requires explicit transfers to/from CPU

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Why do GPUs Look like this?

Source: GPU parallel program development using CUDA by Tolga Soyata, 2018. (UMN Library Link)

6

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51702449520001701

CUDA : NVidia’s General Purpose GPU Technology
▶ Games exploit GPU capabilities for parallelism via specialized

graphics libraries like OpenGL
▶ Oriented specifically towards graphics operations
▶ Vendor like NVidia provides their OpenGL library which

accelerates graphics processing
▶ Researchers wanted to exploit the massively parallel FP

operations in GPUs to speed simulations (circa year 2000)
▶ Started reverse engineering physics simulations to present them

as Graphics problems
▶ Achieved tremendous speedup but it was a pain to code

▶ NVidia recognized the new market for their chips, began
exposing GPU capabilities for other applications: GPGPU for
General Purpose GPU
▶ CUDA version 1 released 2007
▶ Provides GPU capabilities through Threads
▶ Provides a C/C++ code interface to run “kernel” functions on

the GPU with many threads

7

CUDA Terminology
Thread A set of operations; can be as small as a single

addition; each thread has identifying information
(index, # of other threads)

Kernel A function which expresses what a thread should do.
Many Threads execute the same Kernel code but can
operate on different data based on their Thread
index.

Block A group of Threads executing the same Kernel which
can share some local memory

Execution Context Parameters for a Kernel run indicating number
of Blocks, Threads per Block, and amount of shared
memory

Host The CPU, sets Execution Context, launches Kernels
on GPU, waits for results.

Device The GPU which runs Kernels on tons of threads
8

Hello CUDA
1 // hello.cu: C code demonstrating basics of cuda
2
3 #include <stdio.h>
4
5 __global__ void hello_gpu() { // __global__ => called from CPU/GPU,
6 printf("Block %02d Thread %02d: Hello World\n", // runs on GPU
7 blockIdx.x, // ever-present structs which gives
8 threadIdx.x); // each GPU thread indexing info
9 }

10
11 int main (int argc, char *argv[]){
12 printf("CPU: Running 1 block w/ 16 threads\n");
13 hello_gpu<<<1,16>>>(); // executes in 1 block, 16 threads per block
14 cudaDeviceSynchronize(); // ensures GPU completes operations
15
16 printf("\n");
17
18 int nblocks = argc < 2 ? 3 : atoi(argv[1]); // default 3 blocks
19 int nthreads = argc < 3 ? 4 : atoi(argv[2]); // default 4 threads/block
20 printf("CPU: Running %d blocks w/ %d threads\n",
21 nblocks, nthreads);
22
23 hello_gpu<<<nblocks, nthreads>>>();
24 cudaDeviceSynchronize();
25 return 0;
26 }

9

Compiling and Running Code
log into the veggie cluster for access to an NVidia GPU
val [~]% ssh csel-cuda-01.cselabs.umn.edu

check for presence of nvidia hardware
csel-cuda-01 [~]% lspci | grep -i nvidia
3b:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

csel-cuda-01 [~]% cd 14-gpu-cuda-code

load CUDA tools on CSE Labs; possibly not needed
csel-cuda-01 [14-gpu-cuda-code]% module load soft/cuda

nvcc is the CUDA compiler - C++ syntax, gcc-like behavior
csel-cuda-01 [14-gpu-cuda-code]% nvcc hello.cu

run with defaults
csel-cuda-01 [14-gpu-cuda-code]% ./a.out
CPU: Running 1 block w/ 16 threads
Block 00 Thread 00: Hello World
Block 00 Thread 01: Hello World
...
Block 00 Thread 15: Hello World

CPU: Running 3 blocks w/ 4 threads
Block 00 Thread 00: Hello World
Block 00 Thread 01: Hello World
Block 00 Thread 02: Hello World
Block 00 Thread 03: Hello World
Block 02 Thread 00: Hello World
...

10

Low-level Contents of CUDA Executables
>> module load soft/cuda # load tools
>> nvcc hello.cu # ncompile code

>> file a.out # show file type of executable
a.out: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
... for GNU/Linux 3.2.0, not stripped

>> readelf -S a.out | grep -i nv # search for special ELF sections
[17] .nv_fatbin PROGBITS 000000000007f4f0 0007f4f0
[18] __nv_module_id PROGBITS 00000000000805c8 000805c8
[29] .nvFatBinSegment PROGBITS 000000000009e058 0009d058

▶ Compiled CUDA programs are ELF format executable
▶ Standard sections present like .text with host instructions

(x86-64) and global data .data, .bss etc.
▶ Additional sections contain a nested ELF file with GPU code

in PTX, the Assembly language used in NVidia GPUs

11

PTX: CUDA Assembly Language
▶ PTX: Parallel Thread Execution, VM instructions for the GPU
▶ Converted on the fly to GPU execution, can use inline PTX

>> cuobjdump a.out -sass -ptx # disassemble CUDA portion of exec
... # show GPU PTX assembly instructions
Fatbin elf code:
================
arch = sm_52
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit

code for sm_52
Function : _Z9hello_gpuv

.headerflags @"EF_CUDA_SM52 EF_CUDA_PTX_SM(EF_CUDA_SM52)"
/* 0x001c4400fe0007f6 */

/*0008*/ MOV R1, c[0x0][0x20] ; /* 0x4c98078000870001 */
/*0010*/ { IADD32I R1, R1, -0x8 ; /* 0x1c0fffffff870101 */
/*0018*/ S2R R3, SR_TID.X }

/* 0xf0c8000002170003 */
/* 0x001fd000e22007f0 */

/*0028*/ { MOV32I R4, 0x0 ; /* 0x010000000007f004 */
/*0030*/ S2R R2, SR_CTAID.X }
...

Link: cuobjdump Documentation
12

https://en.wikipedia.org/wiki/Parallel_Thread_Execution
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html

I’m Not Fat, I’m Just full of Code
CUDA Executable are “Fat” binaries - may contain multiple
embedded ELF files to support several GPU versions
>> nvcc hello.cu # compile with defaults

>> cuobjdump a.out -lelf # list embedded ELF files
ELF file 1: a.1.sm_52.cubin
ELF file 2: a.2.sm_52.cubin

compile with specific CUDA version support embedded
>> nvcc hello.cu -gencode arch=compute_52,code=sm_52 \

-gencode arch=compute_70,code=sm_70

list embedded ELF files pertaining to CUDA
>> cuobjdump a.out -lelf
ELF file 1: a.1.sm_52.cubin
ELF file 2: a.2.sm_70.cubin
ELF file 3: a.3.sm_52.cubin
ELF file 4: a.4.sm_70.cubin

Fat executables are not novel, have been used by Apple in
transition periods every time they change their mind about
processor architecture

13

https://en.wikipedia.org/wiki/Mac_transition_to_Intel_processors
https://en.wikipedia.org/wiki/Mac_transition_to_Apple_silicon

CUDA is Advancing 1 / 2
CUDA is a rapidly advancing in technology with frequent changes.

Source: SO ’printf inside CUDA global function’

Note the mention of Compute Capability which refers to the
version of CUDA supported by GPU hardware; version reported via
▶ Utilities like nvidia-smi or
▶ Programmatically within CUDA (see device query example)

14

https://stackoverflow.com/questions/2173771/printf-inside-cuda-global-function

CUDA is Advancing 2 / 2

Source: NVidia CUDA Toolkit Documentation, v11.5

15

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions

Doing Work in CUDA

1. Transfer data from CPU (host) to GPU (device)
2. Launch Kernels to compute results on GPU in parallel

Repeat / Loop Kernel computations as required by application
3. Transfer results from GPU (device) back to CPU (host)

vecadd_cuda.cu Demo
▶ Demonstrates transfer to/from GPU
▶ Simple kernel to do element-wise addition in an array

16

Device Memory Allocation / De-Allocation

// vecadd_cuda.cu
int main(){

...;
// allocate device (GPU) memory
float *dev_x, *dev_y, *dev_z;
cudaMalloc((void**) &dev_x, length * sizeof(float));
cudaMalloc((void**) &dev_y, length * sizeof(float));
cudaMalloc((void**) &dev_z, length * sizeof(float));
...;
// free device memory
cudaFree(dev_x); cudaFree(dev_y); cudaFree(dev_z);
...

}

▶ Similar semantics to malloc() / free()
▶ cudaMalloc() returns int with success as CUDA_SUCCESS

17

Data Transfer Between Host / Device
// vecadd_cuda.cu
int main(){

...;
// copy host memory to device
cudaMemcpy(dev_x, host_x, length*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dev_y, host_y, length*sizeof(float), cudaMemcpyHostToDevice);
...;

// do some work here

// copy device memory to host
cudaMemcpy(host_z, dev_z, length*sizeof(float), cudaMemcpyDeviceToHost);
...;

}

▶ Like distributed memory send / receive
▶ Copying memory GPU → CPU always blocks CPU

▶ GPU / CPU work independently (asynchronously)
▶ Memory transfer induces a sync point: CPU waits for launched

kernels to complete, transfer of data
▶ It is possible to create memory maps between host/device to

automate this, may discuss later
18

Kernel Launch

// vecadd_cuda.cu
int main(){

...;
// calculate params for kernel execution
long nthreads = 256; // fixed number of threads/block
long nblocks = (length+255) / nthreads; // ensure sufficient blocks to

// cover whole array
printf("Running %ld Blocks w/ %ld threads each\n",

nblocks, nthreads);

// execute the GPU kernel
vector_add<<<nblocks, nthreads>>>(length, dev_x, dev_y, dev_z);
...;

}

▶ Algorithm assumes 1 thread per array element
▶ Threads always launched in blocks w/ identical # of threads
▶ Must ensure enough blocks × threads created to cover array
▶ May lead to “extra” threads : handle this in kernel

19

Kernel Code
// vecadd_cuda.cu
// KERNEL: each thread performs one pair-wise addition
__global__ void vector_add(long length,

float* x, float* y, float* z)
{

long idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx < length){

z[idx] = x[idx] + y[idx];
}

}

▶ Each thread handles 1 addition
▶ Index calculated using variables threadIdx, blockDim;

several pre-defined variables like this in CUDA
threadIdx.x // x-index of thread within block
blockDim.x // x-dim (width) of thread's block
blockIdx.x // x-index of thread's block within grid
gridDim.x // x-dim (width) of the thread's grid
// x/y/z fields available for all of these

▶ Note conditional which excludes “excess” threads

20

Threads in Blocks in Grids

Source: Wikip “Threaded Block (CUDA)”

CUDA grouping is
▶ Thread (threadIdx) in

Block (blockDim)
▶ Block (blockIdx) in Grid

(gridDim)
Memory
▶ Threads in the same Block

can Share local/fast
Memory (cache)

▶ All threads can access
Global GPU Memory

Likely we will only deal with
Threads + Blocks as they are
enough trouble

21

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)

Repeated Kernel Invocation has Overhead 1 / 2
GPU threads perfectly capable of iteration, often better to launch
a single Kernel that loops than repeatedly launching a kernel
// vecloop_cuda.cu
// KERNEL: each thread performs one pair-wise addition
__global__ void vector_add(long length, float* x, float* y, float* z) {

long idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx < length){

z[idx] = x[idx] + y[idx];
}

}
// KERNEL: each thread performs a loop of additions
__global__ void vector_loopadd(long iters, long length, float* x, float* y, float* z) {

int idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx < length){

for(long i=0; i<iters; i++){
z[idx] = x[idx] + y[idx];

}
}

}
int main(int argc, char *argv[]){

...;
for(long i=0; i<iterations; i++){

vector_add<<<nblocks, nthreads>>>(length, dev_x, dev_y, dev_z);
}
...;
vector_loopadd<<<nblocks, nthreads>>>(iterations, length, dev_x, dev_y, dev_z);

22

Repeated Kernel Invocation has Overhead 2 / 2

csel-cuda-01>> nvcc vecloop_cuda.cu

repeatedly launch kernel from host
csel-cuda-01>> time ./a.out 1000000 9000 host > /dev/null
real 0m1.079s
user 0m0.750s
sys 0m0.305s

loop on device within kernel
csel-cuda-01>> time ./a.out 1000000 9000 device > /dev/null
real 0m0.686s
user 0m0.451s
sys 0m0.214s

Lesson: if computation allows for iteration, do so on GPU

23

Exercise: Array Summing

▶ Consider summing an array stored on the CPU
▶ Describe basic steps to execute this on the GPU
▶ How is this problem different from the vector_add() version
▶ What makes it trickier?

24

Answers: Array Summing

▶ Same basic steps
▶ Transfer data to GPU
▶ Execute summing kernel
▶ Transfer answer back to CPU

▶ Each thread has little work
▶ Primary work is a Reduction which requires synchronization

between thread and blocks

25

Array Sum: Naive vs Synchronization
// arraysum_cuda.cu

// all threads hit the same global sum; no syncronization on global
// memory so results are not computed correctly
__global__ void array_sum_1(int length, float* data, float *sum)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i < length){

float myelem = data[i];
*sum += mylelem; // unsynced add to sum

}
}

// all threads hit the same global sum with atomic operations
__global__ void array_sum_2(int length, float* data, float *sum)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i < length){

float myelem = data[i];
atomicAdd(sum, myelem); // safe add to sum

}
}

▶ array_sum_1() is incorrect due to race conditions
▶ array_sum_2() is correct but slow

26

CUDA Atomic Operations

▶ All threads can access GPU global memory but it is NOT
synchronized

▶ CUDA Atomic Operations1 like atomicAdd() are guaranteed
to avoid race conditions between threads

▶ Variety of atomic ops provided including arithmetic, bitwise
ops, and compare + exchange operations

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
27

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Speeding up Reductions

▶ NVIDIA has its own presentation2 on fast reductions
▶ It’s a tricky business as GPU is oriented towards

embarrassingly parallel execution and CUDA reflects this
▶ We will touch on a few aspects but to demonstrate different

aspects CUDA techniques but won’t strive for perfection
▶ Threads in a block can share cache for speed
▶ Threads can be synchronized

2https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
28

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Block Shared Memory

Source: Programming Massively Parallel Processors by
Kirk and Hwu

CUDA allows explicit control
over cache memory shared
among threads in block via
__shared__ keyword
__global__ void some_kernel(...){
{

__shared__ float blockvals[256];
// stored in cache, all threads in
// block can access the array
...;

By default must use compile-time
constant sizes for shared arrays

29

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51572741770001701
https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51572741770001701

Synchronizing Threads
▶ Blocks of Threads will not all run in parallel
▶ Usually a Warp of 32 threads is run together
▶ Means some threads in a block may execute before others
▶ Presents a problem for shared memory
▶ __syncthreads(); used as a Barrier for threads, guarantees

all complete one set of operations
// nonsense example of shared memory + synchronization
__global__ void some_kernel(...){
{

__shared__ int blockvals[256]; // shared data in cache
int tid = threadIdx.x;

blockvals[tid] = tid; // all threads assign to blockvals

__syncthreads(); // barrier to ensure all threads assign
// to blockvals before proceeding to...

if(tid < 256-2){
int mysum =
blockvals[tid+0]+ // depends on blockvals[] being filled
blockvals[tid+1]+ // by all threads
blockvals[tid+2];

...;
30

Dynamically Allocating Shared Memory
When using shared memory, often want size dependent on number
of threads

Statically Allocated
// static allocation of shared block
#define NTHREADS 64

__global__ void some_kern(...){
{

__shared__ int blockvals[NTHREADS];
...

}
int main(...){

some_kern<<<nblocks, NTHREADS>>>(..);

...;
}

Can use static size for shared
memory + pre-defined number of
threads

Dynamically Allocated
// dynamic allocation of shared block

__global__ void some_kern(...){
{

extern __shared__ int blockvals[];
...

}
int main(...){

int nthreads = ...;
size_t shared_size = nthreads*sizeof(float);
some_kern<<<nblocks, nthreads, shared_size>>>(..);
// ^^^^^^^^^^^
...;

}

Kernel Invocation can include size of
shared memory, kernel declares with
extern keyword

31

Exercise: Compare Kernels
1 __global__ void array_sum_3(int length, float* data, float *sum) {
2 if(threadIdx.x == 0){
3 float blocksum = 0.0;
4 int idx = threadIdx.x + blockDim.x * blockIdx.x;
5 for(int i=0; i < blockDim.x; i++){
6 if(idx+i >= length){
7 break;
8 }
9 blocksum += data[i+idx];
10 }
11 atomicAdd(sum, blocksum);
12 }
13 }
14
15 __global__ void array_sum_4(int length, float* data, float *sum) {
16 extern __shared__ float blockvals[];
17 blockvals[threadIdx.x] = 0.0;
18 int idx = threadIdx.x + blockDim.x * blockIdx.x;
19 if(idx < length){
20 blockvals[threadIdx.x] = data[idx];
21 }
22 __syncthreads();
23 if(threadIdx.x == 0){
24 float blocksum = 0.0;
25 for(int i=0; i < blockDim.x; i++){
26 blocksum += blockvals[i];
27 }
28 atomicAdd(sum, blocksum);
29 }
30 }

Describe the differences
between these two kernels.
Predict which is speedier.

32

Answers: Compare Kernels
▶ array_sum_3() simply has Thread 0 sum some array

elements in a local variable (register) and then atomicAdd()
to the global sum

▶ array_sum_4() has all threads load elements into a shared
array, then executes a similar loop on Thread 0

▶ Leads to cached data
▶ MUST synchronize threads prior to moving ahead to ensure

all elements loaded into the array
▶ Thread 0 then iterates through this array summing and doing

a final atomicAdd()

SPEED
csel-cuda-01>> ./a.out 10000000 128 3
Kernel 3 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.9872
csel-cuda-01>> ./a.out 10000000 128 4
Kernel 4 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.6389 ***

33

Exercise: A True Reduction
Examine code and answer questions in comments

1 // Perform a true multi-thread reduction using shared memory
2 __global__ void array_sum_5(int length, float* data, float *sum)
3 {
4 extern __shared__ float blockvals[];
5 blockvals[threadIdx.x] = 0.0;
6
7 int idx = threadIdx.x + blockDim.x * blockIdx.x;
8 if(idx < length){
9 blockvals[threadIdx.x] = data[idx];
10 }
11
12 __syncthreads(); // WHY IS THIS NEEDED??
13 // WHAT DOES THIS LOOP DO??
14 for(int i=blockDim.x/2; i > 0; i /= 2){
15 int partner = threadIdx.x + i;
16 if(threadIdx.x < i){
17 blockvals[threadIdx.x] += blockvals[partner];
18 }
19 __syncthreads(); // WHY IS THIS NEEDED??
20 }
21
22 if(threadIdx.x == 0){
23 atomicAdd(sum, blockvals[0]);
24 }
25 }

34

Answers: A True Reduction
// perform a tree-like reduction

for(int i=blockDim.x/2; i > 0; i /= 2){
int partner = threadIdx.x + i; // low # threads partner with high
if(threadIdx.x < i){ // low # threads add to their sum

blockvals[threadIdx.x] += blockvals[partner];
}
__syncthreads(); // ensure all threads complete this step

}

Source: Originall SO Docs, currently RIP Tutorial

35

https://riptutorial.com/cuda/topic/6566/parallel-reduction--e-g--how-to-sum-an-array-

Answers: A True Reduction

▶ First syncthreads() ensures all threads have populated their
part of the block-shared array

▶ Loop performs reduction: each iteration has half remaining
threads add on a partner value

▶ Number of active threads is reduced each time
▶ MUST __syncthreads() after each iteration to ensure adds

complete
▶ Thread 0 ends with final sum and atomically adds

SPEED
See arraysum-timing.txt for all times
Kernel 3 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.9872
Kernel 4 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.6389 ***
Kernel 5 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.8909

Well that was sort of a wasted effort…

36

Timing in arraysum_cuda.cu

▶ CUDA provides its own timing for GPU-specific events
▶ Standard clock() functions measure CPU while

timeofday() funcs are in CPU which is running
asynchronously from GPU

▶ Typical timing pattern is
cudaEvent_t beg, end; // timers provided by CUDA
cudaEventCreate(&beg);
cudaEventCreate(&end);

cudaEventRecord(beg); // start time

// code to measure execution time

cudaEventRecord(end); // finish time
cudaEventSynchronize(end); // ensure device / cpu in sync
float gpu_millis = 0; // calculate elapsed time
cudaEventElapsedTime(&gpu_millis, beg, end);

37

Limitations of __syncthreads()

__syncthreads() is designed to sync all Threads within a Block
▶ Runtime scheduler will dispatch 32 Threads at a time in a

Warp to hardware resources
▶ Each thread in the warp executes instructions in lock step
▶ On hitting a __syncthreads(), Warp stalls, releases

hardware until all other Warps in the block reach the same
position

▶ All Warps in block are then eligible to run again
Cannot coordinate across blocks with __syncthreads()
▶ Thread 0 in Block 5 CANNOT wait for Thread 7 in block 12
▶ Can work around this via repeated kernel launches
▶ Newer GPU / CUDA versions have a mechanism to get

(limited) multi-block coordination

38

cuBLAS for the Win
▶ Reduction is tricky to get right and at the point you want to

do it, look around for a library
▶ CUDA provides cuBLAS with predefined routines for many

linear algebra operations (matrix multiply, matrix vector
multiply, norms, etc.)

▶ Example in arraysum_cublas.cu
cudaEventRecord(beg);
status = cublasSdot(handle, // dot product routine for floats

length, // length of array to sum
dev_x, 1, // array to sum, step size 1
dev_one, 0, // single 1.0, step size 0
dev_sum); // where to put ansewr

cudaEventRecord(end);

SPEED
Kernel 3 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.9872
Kernel 4 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.6389 ***
Kernel 5 nblocks 78125 nthreads 128 sum: 10000000.0 gpu_millis: 0.8909
cudablasSdot sum: 10000000.0 gpu_millis: 0.2590 !!!

Somebody at NVidia knows their chip well. Stand on their
shoulders.

39

https://developer.nvidia.com/cublas

Multi-Dimension Indexing
▶ Have used single-dimension indexing for most of our

discussion so far
int idx = threadIdx.x + blockDim.x * blockIdx.x;

▶ CUDA targets 2D and 3D data types allowing threadIdx.x,
threadIdx.y, threadIdx.z to be used

▶ Kernel must launch with appropriate dimensions via dim3
data type

// hello2D.cu
int thread_x = 4, thread_y = 2;
int block_x = 3, block_y = 5;

dim3 threadsPerBlock(thread_x, thread_y);
dim3 blocksPerGrid(block_x, block_y);

hello_gpu2D<<<blocksPerGrid, threadsPerBlock>>>();

40

Example: Matrix-Matrix Addition

Source: Programming Massively Parallel Processors by Kirk and Hwu

41

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51572741770001701

CUDA Multi-Dimensional Memory Transfer

To squeeze more performance out, CUDA will pad rows allowing
each row to be more efficiently accessed (banked memory)
cudaMallocPitch (void** devPtr, size_t* pitch, size_t width, size_t height)
// allocate 2D array on GPU where each row is padded to be in a
// different memory bank allowing more efficient parallel
// access. `pitch` is set to be the actual width in bytes of a row.

cudaMemcpy2D(void* dst, size_t dpitch, const void* src, size_t spitch,
size_t width, size_t height, cudaMemcpyKind kind)

// like cudaMemCpy but tailored to 2D arrays w/ width in bytes, height
// in count, and a possible "pitch" for each to indicate padding in
// rows created via cudaMallocPitch().

Creates some headaches for index calculations later.

42

Highlights from matadd_cuda.cu
//
// memory transfer to device

float *host_a = (float *) malloc(sizeof(float)*rows*cols);
float *dev_a;
cudaMallocPitch((void**) &dev_a, &pitch_a, width, rows);

cudaMemcpy2D(dev_a, pitch_a, host_a, sizeof(float)*cols,
sizeof(float)*cols, rows, cudaMemcpyHostToDevice);

//
// kernel launch

int blockx = (rows + threadx - 1) / threadx;
int blocky = (cols + thready - 1) / thready;
dim3 blocks(blockx, blocky);
dim3 threads(threadx, thready);
matrix_add<<<blocks, threads>>>(pitch_a, rows, cols, dev_a, dev_b, dev_c);

//
// kernel code
__global__ void matrix_add(long pitch, long rows, long cols,

float* a, float* b, float* c)
{

long row = threadIdx.x + blockDim.x * blockIdx.x; // x : vertical position (row)
long col = threadIdx.y + blockDim.y * blockIdx.y; // y : horizontal position (col)
long fpitch = pitch / sizeof(float); // padded floats per row
long idx = row * fpitch + col; // linear index into matrix
if(row < rows && col < cols){

c[idx] = a[idx] + b[idx];
}

}
43

Exercise: Simple Matrix-Matrix Multiplication

▶ Formulate matrix multiplication via CUDA
▶ Perform multiple operations per thread

▶ Don’t do a single multiple/add per thread
▶ Too many threads, too inefficient

▶ Describe the mapping of work to thread and the total threads
required

Hint: Consider using an Output Partitioning of work. Hopefully
our recall what that is…

44

Answers: Simple Matrix-Matrix Multiplication

▶ For square N × N matrix mult, use N2 threads
▶ Each thread computes a single output element thus has a

row/col index that is unique
▶ Can compute via a loop

// thread i,j runs following loop
float sumij = 0.0;
for(long k=0; k < N; k++){
sumij += A[i][k] * B[k][j];

}
C[i][j] = sumij;

▶ No locking required

45

MatMult 1: One Thread Per Output, Diagram

Source: Programming Massively Parallel Processors by Kirk and Hwu

46

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51572741770001701

Exercise: Strategies to Improve Performance

▶ The previous method is limited somewhat in performance
▶ Identify bottlenecks and pose solutions

// thread i,j runs following loop
float sumij = 0.0;
for(long k=0; k < N; k++){
sumij += A[i][k] * B[k][j];

}
C[i][j] = sumij;
Hint: how did we improve performance in previous kernels?

47

Answers: Strategies to Improve Performance

▶ Repeated main memory accesses slow down basic kernel
▶ Must exploit cache to get better performance
▶ Thread Block loads a chunk of the matrix and shares it
▶ Referred to as a “tiled” matrix approach in many references
▶ Requires mild reformulating of matrix multiply as block/tiled

operations

48

MatMult Tiled Diagram

Source: Programming Massively Parallel Processors by Kirk and Hwu

NOTE: It’s a good exercise
to code up a naive matrix
multiply then try applying
the techniques shown here.
The linked Source for this
figure contains an
implementation that is worth
studying.

49

https://primo.lib.umn.edu/permalink/f/1q7ssba/UMN_ALMA51572741770001701

———- END S2023 CONTENT ———-

50

Sorting on GPUs

▶ Have previously discussed sorting for distributed memory
systems, P ≪ N (many fewer procs than data elements)

▶ GPU landscape is a bit different
▶ Many Threads/Cores available on GPUs
▶ (More) Viable to consider N = P

▶ Worth reconsidering some algorithms which were discarded as
impractical previously like Odd-Even Sort

51

Exercise: Odd-Even Sort Revisited

▶ Variant of bubble sort which
splits bubbling into
odd/even phases

▶ O(N2) complexity of serial
algorithm

▶ There is potential for
parallelism here: what is it?
▶ Consider simple case

where each P = N : each
proc hold a single number

▶ What can be parallelized
and how?

ODD_EVEN_SORT(A[]) {
N = length(A[])
for(r=0 to N-1){

if(r is even){
for(i=0; i<N-1; i+=2){

compare_exchange(A, i, i+1);
}

}
if(r is odd){

for(i=1; i<N-1; i+=2){
compare_exchange(A, i, i+1);

}
}

}
}

COMPARE_EXCHANGE(A[], i, j){
if(A[i] > A[j]){

temp = A[i]
A[i] = A[j]
A[j] = temp

}
}

52

Answers: Odd-Even Sort

▶ There is potential for parallelism here: what is it?
▶ Consider simple case where each P = N : each proc hold a

single number
▶ What can be parallelized and how?

▶ The inner loops of compare_exchange() can be
executed in parallel as it involves communication
between 2 procs to potentially exchange elements
but only with a single partner.

▶ Even iterations, lower evens exchange with higher
odds

▶ Odd iterations lower odds exchange with higher
evens

▶ Single CUDA Threads can perform
compare/exchange on global array elements

53

Odd-Even Sort CUDA Code
// oddeven_cuda.cu
__global__ void odd_even_round(float *data, int length)
{

int idx = 2 * (threadIdx.x + blockDim.x * blockIdx.x);
if(idx < length-1){

float x = data[idx+0];
float y = data[idx+1];
float newx = min(x,y);
float newy = max(x,y);
data[idx+0] = newx;
data[idx+1] = newy;

}
}

int main(){
...;
for(int i=0; i<length; i++){ // kernel launches coordinate block completion

if(i % 2 == 0){
odd_even_round<<<nblocks, nthreads>>>(dev_x, length);

}
else{
odd_even_round<<<nblocks, nthreads>>>(dev_x+1, length-1);

}
}
...;

54

Complexity Analysis + Performance

▶ Assuming
▶ O(N) procs (N/2 threads)
▶ N Steps

▶ O(N) time complexity in theory but…
▶ Overhead kills practical efficiency

>> nvcc oddeven_cuda.cu
>> ./a.out 500000 128
length 500000 nblocks 1954 nthreads 128
gpu_millis: 3195.8342
cpu_millis: 94.7070 # libc's qsort()

▶ Kernel launches required for sync across blocks
▶ No use of cached memory

55

Improvements on Odd-Even Sort
Compare-Split on Array Chunks
▶ Rather than single elements, work array-chunks
▶ Thread blocks

▶ Load two array chunks to shared cache
▶ Threads sort combined chunks (in parallel?)
▶ Write low/high chunks back to memory

Bitonic Sort and Batcher’s Odd-Even Sort
▶ Odd-even does compare_swap(a[i], a[i+1]) in all N

iterations
▶ Sorting networks vary this each iteration

compare_swap(a[i], a[i+8])
▶ Correct sequences of comparisons yields O(log2 N) iterations

with N procs while preserving correctness
▶ Targeted at hardware with fixed input sizes (e.g 16 inputs)

but applicable particularly to sorting within a Thread Block
56

https://en.wikipedia.org/wiki/Bitonic_sorter
https://en.wikipedia.org/wiki/Batcher_odd%E2%80%93even_mergesort

GPU Sorting is an Active Research Topic

Source: Survey of GPU Based Sorting Algorithms by Singh et al in
International journal of parallel programming, 2017.

(UMN Library) (DOI Link)
57

https://primo.lib.umn.edu/permalink/f/dkvf4l/TN_cdi_springer_primary_2017_10766_46_6_502
https://doi.org/10.1007/s10766-017-0502-5

Coordinating Across Blocks

▶ A major limitation for odd-even sort was block coordination
▶ __syncthreads() works on all threads a block
▶ Recent versions of CUDA introduced Cooperative Groups

which expand coordination mechanisms
▶ Coordinate subset of threads within a block
▶ Coordinate threads between blocks
▶ Coordinate “clusters” of blocks

▶ Relatively New Feature → Fewer Examples / Docs
▶ Major Limitation : Coordination betwee blocks actually “on”

the GPU
▶ GPU has a physical max number of blocks/threads
▶ Runtime functions allow querying this
▶ If grid exceeds these limits, cannot coordination may fail

58

https://developer.nvidia.com/blog/cooperative-groups/

Cooperative Groups Principles
#include <cooperative_groups.h> // coopeartive groups types / funcs
namespace cg = cooperative_groups; // C++ syntax to shorten namespace ref

__global__ void some_kernel(...){
cg::grid_group grid = cg::this_grid(); // retrieve grid for this thread
...;
grid.sync(); // sync entire grid at this point
...;

}

int main(...){

int max_threads, max_blocks; // check max coordinateable threads
cudaOccupancyMaxPotentialBlockSize(&max_blocks, &max_threads,

some_kernel, 0, 0);
if(nthreads * nblocks > max_threads * max_blocks){

// WARNING for exceeding max
}

// launch kernel - must use special function rather than <<< >>>
void *arguments[] = {(void *)&dev_x, (void *)&length};
cudaLaunchCooperativeKernel((void*) some_kernel,

nblocks, nthreads, arguments);

}

59

Cooperative Groups Extras
Example: oddeven_group_cuda.cu
▶ Minimal example to do Odd-Even sort with a single kernel

launch
▶ Only works to sort arrays within max thread limits
▶ Still not any faster than qsort() but haven’t attempted to

optimize much
▶ Exercise: Upgrade this code to have threads iterate across

array so arbitrary length arrays can be handled

Gotchyas
▶ Launching kernels via <<< ... >>> will “work” BUT on

calling grid.sync(), kernel silently fails; use
cudaLaunchCooperativeKernel()

▶ Depending on platform, may require additional options to
nvcc to enable cooperative groups

▶ Older GPUs do not support cooperative groups 60

CUDA Alternatives
OpenCL
▶ “Open source” “version” of CUDA
▶ Similar in nature: program __kernel__ functions, explicitly

manage memory
▶ Supports multiple devices including AMD/ATI graphics cards,

NVidia Cards, Intel Graphics, Apple Graphics
▶ Performance can usually match CUDA with enough

hand-tuning

OpenACC
▶ Like OpenMP: directive based parallelism for GPU
▶ Specify accelerator execution via #pragma acc
▶ Supports “accelerator” devices like GPUs without need to

define kernels
▶ Support in some compilers like GCC

61

