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Your experience with CUDA
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• About me

• HW/SW co-design at NVIDIA

• GPU occupancy

• Thread block clusters
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HW/SW Co-design

• Different uses of GPUs: HPC, AI, Graphics, ProViz

• Different needs drive different requirements from HW

• HW innovates based on perceived needs of usages

• SW gathers feedback and characterizes customer needs

• SW considers how the innovation might address open problems

• SW considers how the innovate features will be exposed to users



HOW CUDA PROGRAMMING WORKS
STEPHEN JONES, GTC FALL 2022

WHY IS THE WAY IT IS



CUDA’S GPU EXECUTION HIERARCHY

Many threads

in each block

Divide into

many blocks

Grid

of work



START WITH SOME WORK TO PROCESS



DIVIDE INTO A SET OF EQUAL-SIZED BLOCKS: THIS IS THE “GRID” OF WORK



EACH BLOCK WILL NOW BE PROCESSED INDEPENDENTLY
CUDA does not guarantee the order of execution and you cannot exchange data between blocks
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BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done



SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

WHAT DOES IT MEAN FOR AN SM TO BE “FULL”?

SM 0



A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock

LOOKING INSIDE A STREAMING MULTIPROCESSOR
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Thread block

A block has a fixed number of threads

__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

Every thread runs exactly the same program
(this is the “SIMT” model)
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ANATOMY OF A THREAD BLOCK

All blocks in a grid run the same program using the same 
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__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

Thread block

A block has a fixed number of threads

Every thread runs exactly the same program
(this is the “SIMT” model)

ANATOMY OF A THREAD BLOCK

All blocks in a grid run the same program using the same 
number of threads, leading to 3 resource requirements

1. Block size – the number of threads which must be concurrent

2. Shared memory – common to all threads in a block

3. Registers – depends on program complexity

Registers are a per-thread resource, so total budget is:
(threads-per-block x registers-per-thread)



HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

2048 Threads

160kB Shared Memory

65536 Registers

Thread block

A block has a fixed number of threads

always running on a single SM

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block
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HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

Thread block
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KEEPING THE GPU FULL

A100 SM Key Resources

Flower Block 0 Flower Block 1

Flower Block 2

Flower Block 0 Flower Block 1
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Flower Block 1

Flower Block 2

Copy Block 0
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Stream 1
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Process Flower

Copy to GPU

Copy from GPU
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Copy to GPU

Copy from GPU
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Thread Block Clusters
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dim3 gridDim = { gX, gY, gZ };
dim3 blockDim = { bX, bY, bZ };

// how to specify cluster dimensions??

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

<<< Dg, Db, Ns, S >>>

• Dg: specifies the dimension and size of the grid

• Db: specifies the dimension and size of each block

• Ns: specifies the number of bytes in shared memory that 
is dynamically allocated per block; Ns is an optional 
argument which defaults to 0

• S: specifies the associated stream; S is an optional 
argument which defaults to 0
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dim3 gridDim = { gX, gY, gZ };
dim3 blockDim = { bX, bY, bZ };
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cudaLaunchKernelEx(cfg, kern, args)
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• cfg: specifies the launch configuration, including the 
dimension and size of the grid, the dimension and size of 
each block, the number of bytes in shared memory, and 
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function
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cudaLaunchConfig_t cfg = { };
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cudaLaunchConfig_t cfg = { };
dim3 cfg.gridDim = { gX, gY, gZ };
dim3 cfg.blockDim = { bX, bY, bZ };

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the 
dimension and size of the grid, the dimension and size of 
each block, the number of bytes in shared memory, and 
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function
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cudaLaunchConfig_t cfg = { };
dim3 cfg.gridDim = { gX, gY, gZ };
dim3 cfg.blockDim = { bX, bY, bZ };

// what about cluster dimensions??

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();
auto err = cudaLaunchKernelEx(

&cfg, kernel, ...
);
assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the 
dimension and size of the grid, the dimension and size of 
each block, the number of bytes in shared memory, and 
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function
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cudaLaunchAttribute attr;
attr.id =

cudaLaunchAttributeClusterDimension;
attr.val.clusterDim = { cX, cY, cZ };

cudaLaunchConfig_t cfg = { };
cfg.gridDim = { gX, gY, gZ };
cfg.blockDim = { bX, bY, bZ };
cfg.attrs = &attr;
cfg.numAttrs = 1;

auto err = cudaLaunchKernelEx(
&cfg, kernel, ...

);
assert(cudaSuccess == err);

cudaLaunchAttribute

• id: specifies the type of launch attribute

• val: specifies the value of the launch attribute; 
interpreted differently based on the launch attribute type
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cudaLaunchAttribute attr;
attr.id =

cudaLaunchAttributeClusterDimension;
attr.val.clusterDim = { cX, cY, cZ };

cudaLaunchConfig_t cfg = { };
cfg.gridDim = { gX, gY, gZ };
cfg.blockDim = { bX, bY, bZ };
cfg.attrs = &attr;
cfg.numAttrs = 1;

auto err = cudaLaunchKernelEx(
&cfg, kernel, ...

);
assert(cudaSuccess == err);

cudaLaunchAttribute

• accessPolicyWindow

• cooperative

• clusterDim

• clusterSchedulingPolicyPreference

• priority

• syncPolicy
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