
1

CSCI 5451
Jeremy Iverson | April 20, 2023

2

Your experience with CUDA

3

• About me

• HW/SW co-design at NVIDIA

• GPU occupancy

• Thread block clusters

Agenda

44

About me

2021 –

2016 – 2021

2010 – 2016

55

About me

2021 –

2016 – 2021

2010 – 2016

66

About me

2021 –

2016 – 2021

2010 – 2016

77

About me

2021 –

2016 – 2021

2010 – 2016

8

HW/SW Co-design

• Different uses of GPUs: HPC, AI, Graphics, ProViz

• Different needs drive different requirements from HW

• HW innovates based on perceived needs of usages

• SW gathers feedback and characterizes customer needs

• SW considers how the innovation might address open problems

• SW considers how the innovate features will be exposed to users

HOW CUDA PROGRAMMING WORKS
STEPHEN JONES, GTC FALL 2022

WHY IS THE WAY IT IS

CUDA’S GPU EXECUTION HIERARCHY

Many threads

in each block

Divide into

many blocks

Grid

of work

START WITH SOME WORK TO PROCESS

DIVIDE INTO A SET OF EQUAL-SIZED BLOCKS: THIS IS THE “GRID” OF WORK

EACH BLOCK WILL NOW BE PROCESSED INDEPENDENTLY
CUDA does not guarantee the order of execution and you cannot exchange data between blocks

EACH BLOCK WILL NOW BE PROCESSED INDEPENDENTLY
CUDA does not guarantee the order of execution and you cannot exchange data between blocks

EVERY BLOCK GET PLACED ONTO AN SM
CUDA does not guarantee the order of execution and you cannot exchange data between blocks

SM 0 SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

EVERY BLOCK GET PLACED ONTO AN SM
CUDA does not guarantee the order of execution and you cannot exchange data between blocks

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

SM 0

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

BLOCKS CONTINUE TO GET PLACED UNTIL EACH SM IS “FULL”

SM 0

When a block completes its work and exits, a new block is placed in its spot until the whole grid is done

SM 1 SM 2 SM 3 SM 4 SM 5

SM 6 SM 7 SM 8 SM 9 SM 10 SM 11

WHAT DOES IT MEAN FOR AN SM TO BE “FULL”?

SM 0

A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock

LOOKING INSIDE A STREAMING MULTIPROCESSOR

A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock

LOOKING INSIDE A STREAMING MULTIPROCESSOR

A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock

LOOKING INSIDE A STREAMING MULTIPROCESSOR

Thread block

A block has a fixed number of threads

__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

Every thread runs exactly the same program
(this is the “SIMT” model)

THE CUDA PROGRAMMING MODEL

Many threads

in each block

Divide into

many blocks

Grid

of work

Thread block

A block has a fixed number of threads

Every thread runs exactly the same program
(this is the “SIMT” model)

ANATOMY OF A THREAD BLOCK

All blocks in a grid run the same program using the same
number of threads, leading to 3 resource requirements

1. Block size – the number of threads which must be concurrent

__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

Thread block

A block has a fixed number of threads

Every thread runs exactly the same program
(this is the “SIMT” model)

ANATOMY OF A THREAD BLOCK

All blocks in a grid run the same program using the same
number of threads, leading to 3 resource requirements

1. Block size – the number of threads which must be concurrent

2. Shared memory – common to all threads in a block

__shared__ float mean = 0.0f;

__device__ float mean_euclidian_distance(float2 *p1, float2 *p2) {

// Compute the Euclidian distance between two points

float2 dp = p2[threadIdx.x] - p1[threadIdx.x];

float dist = sqrtf(dp.x * dp.x + dp.y * dp.y);

// Accumulate the mean distance atomically and return distance

atomicAdd(&mean, dist / blockDim.x);

return dist;

}

Thread block

A block has a fixed number of threads

Every thread runs exactly the same program
(this is the “SIMT” model)

ANATOMY OF A THREAD BLOCK

All blocks in a grid run the same program using the same
number of threads, leading to 3 resource requirements

1. Block size – the number of threads which must be concurrent

2. Shared memory – common to all threads in a block

3. Registers – depends on program complexity

Registers are a per-thread resource, so total budget is:
(threads-per-block x registers-per-thread)

HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

2048 Threads

160kB Shared Memory

65536 Registers

Thread block

A block has a fixed number of threads

always running on a single SM

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

A100 SM Key Resources

Block 0

Block 0

Block 0

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

A100 SM Key Resources

Block 0 Block 1

Block 0 Block 1

Block 0

Block 1

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

Block 4 Block 5

Block 6 Block 7

Block 3

Block 3

Block 3

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

32 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

A100 SM Key Resources

Block 4 Block 5

Block 6 Block 7

Block 3

Block 3

Block 0

Block 1

Block 2

Block 3

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

32 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

Block 3

Block 3

Block 3

Block 0

Block 1

Block 2

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

2048

Threads

65,536

Registers

160 kB

Shared

Memory

Thread block

A block has a fixed number of threads

always running on a single SM

Block 4 Block 5

Block 6 Block 7

Block 4

Block 3

Block 3

Block 3

Block 0

Block 1

Block 2

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

32 kB Shared memory per block

HOW THE GPU PLACES BLOCKS ON AN SM

A100 SM Key Resources

Thread block

A block has a fixed number of threads

always running on a single SM

Block 0 Block 1

Block 2

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

Block 3

Block 3

Block 3

Block 4

Example block resource requirements

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

32 kB Shared memory per block

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

A100 SM Key Resources

Block 3

Block 3

Block 3

Block 0

Block 1

Block 2

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

OCCUPANCY

Threads

Registers

Shared

Memory

Shared memory limited case Register limited case

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

A100 SM Key Resources

Block 3

Block 3

Block 3

Block 0

Block 1

Block 2

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

OCCUPANCY

Occupancy
3 blocks/SM

Occupancy
4 blocks/SM

Threads

Registers

Shared

Memory

Shared memory limited case Register limited case

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

A100 SM Key Resources

Block 3

Block 3

Block 3

Block 0

Block 1

Block 2

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

OCCUPANCY IS THE MOST POWERFUL TOOL FOR TUNING A PROGRAM

Occupancy
3 blocks/SM

Occupancy
4 blocks/SM

33% Faster

Threads

Registers

Shared

Memory

Shared memory limited case Register limited case

FILLING IN THE GAPS

Threads

Registers

Shared

Memory

Shared memory limited case

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

Resource requirements (blue grid)

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

FILLING IN THE GAPS

Threads

Registers

Shared

Memory

Resource requirements (blue grid)

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

Resource requirements (green grid)

512 Threads per block

32 (Registers per thread)

(512 * 32) = 16384 Registers per block

0 kB Shared memory per block

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

FILLING IN THE GAPS

Threads

Registers

Shared

Memory

Resource requirements (green grid)

512 Threads per block

32 (Registers per thread)

(512 * 32) = 16384 Registers per block

0 kB Shared memory per block

A100 SM Key Resources

Block 0 Block 1

Block 2

Block 0 Block 1

Block 2

Block 0

Block 1

Block 2

Block 0

Block 0

Resource requirements (blue grid)

256 Threads per block

64 (Registers per thread)

(256 * 64) = 16384 Registers per block

48 kB Shared memory per block

KEEPING THE GPU FULL

A100 SM Key Resources

Flower Block 0 Flower Block 1

Flower Block 2

Flower Block 0 Flower Block 1

Flower Block 2

Flower Block 0

Flower Block 1

Flower Block 2

Copy Block 0

Copy Block 0

Stream 1

Synchronize

Stream 2

Synchronize

Process Flower

Copy to GPU

Copy from GPU

Process Flower

Copy to GPU

Copy from GPU

46

Thread Block Clusters

4747

dim3 gridDim = { gX, gY, gZ };
dim3 blockDim = { bX, bY, bZ };

// how to specify cluster dimensions??

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

<<< Dg, Db, Ns, S >>>

• Dg: specifies the dimension and size of the grid

• Db: specifies the dimension and size of each block

• Ns: specifies the number of bytes in shared memory that
is dynamically allocated per block; Ns is an optional
argument which defaults to 0

• S: specifies the associated stream; S is an optional
argument which defaults to 0

4848

dim3 gridDim = { gX, gY, gZ };
dim3 blockDim = { bX, bY, bZ };

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the
dimension and size of the grid, the dimension and size of
each block, the number of bytes in shared memory, and
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function

4949

cudaLaunchConfig_t cfg = { };
dim3 gridDim = { gX, gY, gZ };
dim3 blockDim = { bX, bY, bZ };

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the
dimension and size of the grid, the dimension and size of
each block, the number of bytes in shared memory, and
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function

5050

cudaLaunchConfig_t cfg = { };
dim3 cfg.gridDim = { gX, gY, gZ };
dim3 cfg.blockDim = { bX, bY, bZ };

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();

assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the
dimension and size of the grid, the dimension and size of
each block, the number of bytes in shared memory, and
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function

5151

cudaLaunchConfig_t cfg = { };
dim3 cfg.gridDim = { gX, gY, gZ };
dim3 cfg.blockDim = { bX, bY, bZ };

// what about cluster dimensions??

kernel<<< gridDim, blockDim >>>(...);
auto err = cudaPeekAtLastError();
auto err = cudaLaunchKernelEx(

&cfg, kernel, ...
);
assert(cudaSuccess == err);

cudaLaunchKernelEx(cfg, kern, args)
<<< Dg, Db, Ns, S >>>

• cfg: specifies the launch configuration, including the
dimension and size of the grid, the dimension and size of
each block, the number of bytes in shared memory, and
the associated stream

• kern: specifies the kernel function to launch

• args: specifies the arguments to the kernel function

5252

cudaLaunchAttribute attr;
attr.id =

cudaLaunchAttributeClusterDimension;
attr.val.clusterDim = { cX, cY, cZ };

cudaLaunchConfig_t cfg = { };
cfg.gridDim = { gX, gY, gZ };
cfg.blockDim = { bX, bY, bZ };
cfg.attrs = &attr;
cfg.numAttrs = 1;

auto err = cudaLaunchKernelEx(
&cfg, kernel, ...

);
assert(cudaSuccess == err);

cudaLaunchAttribute

• id: specifies the type of launch attribute

• val: specifies the value of the launch attribute;
interpreted differently based on the launch attribute type

5353

cudaLaunchAttribute attr;
attr.id =

cudaLaunchAttributeClusterDimension;
attr.val.clusterDim = { cX, cY, cZ };

cudaLaunchConfig_t cfg = { };
cfg.gridDim = { gX, gY, gZ };
cfg.blockDim = { bX, bY, bZ };
cfg.attrs = &attr;
cfg.numAttrs = 1;

auto err = cudaLaunchKernelEx(
&cfg, kernel, ...

);
assert(cudaSuccess == err);

cudaLaunchAttribute

• accessPolicyWindow

• cooperative

• clusterDim

• clusterSchedulingPolicyPreference

• priority

• syncPolicy

54

	Default Section
	Slide 1: CSCI 5451
	Slide 2: Your experience with CUDA
	Slide 3

	About me
	Slide 4: About me
	Slide 5: About me
	Slide 6: About me
	Slide 7: About me

	HW/SW co-design
	Slide 8: HW/SW Co-design

	Optimizing for occupancy
	Slide 9: How CUDA Programming Works
	Slide 10: CUDA’s GPU execution Hierarchy
	Slide 11: Start with some work to process
	Slide 12: Divide into a set of equal-sized blocks: this is the “grid” of work
	Slide 13: Each block will now be processed independently
	Slide 14: Each block will now be processed independently
	Slide 15: Every Block get placed onto an SM
	Slide 16: Every Block get placed onto an SM
	Slide 17: Blocks continue to get placed until each SM is “full”
	Slide 18: Blocks continue to get placed until each SM is “full”
	Slide 19: Blocks continue to get placed until each SM is “full”
	Slide 20: Blocks continue to get placed until each SM is “full”
	Slide 21: Blocks continue to get placed until each SM is “full”
	Slide 22: What does it mean for an SM to be “full”?
	Slide 23: Looking inside a Streaming Multiprocessor
	Slide 24: Looking inside a Streaming Multiprocessor
	Slide 25: Looking inside a Streaming Multiprocessor
	Slide 26: The CUDA Programming Model
	Slide 27: Anatomy of A thread block
	Slide 28: Anatomy of A thread block
	Slide 29: Anatomy of A thread block
	Slide 30: How the GPU Places Blocks on AN SM
	Slide 31: How the GPU Places Blocks on AN SM
	Slide 32: How the GPU Places Blocks on AN SM
	Slide 33: How the GPU Places Blocks on AN SM
	Slide 34: How the GPU Places Blocks on AN SM
	Slide 35: How the GPU Places Blocks on AN SM
	Slide 36: How the GPU Places Blocks on AN SM
	Slide 37: How the GPU Places Blocks on AN SM
	Slide 38: How the GPU Places Blocks on AN SM
	Slide 39: OCCUPANCY
	Slide 40: OCCUPANCY
	Slide 41: OCCUPANCY is the most powerful tool for tuning a program
	Slide 42: Filling in the gaps
	Slide 43: Filling in the gaps
	Slide 44: Filling in the gaps
	Slide 45: Keeping the GPU Full

	Clusters
	Slide 46: Thread Block Clusters

	Extensible launch
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

