
A2 Overview

Chris Kauffman

Last Updated:
Tue Apr 25 01:59:37 PM CDT 2023

1

Two MPI Problems

1. Heat Simulation
2. K-means clustering

Previously discussed strategies to parallelize heat problem for
distributed memory machine in lecture, will discuss K-Means now

2

K-Means Clustering
▶ A standard ML / Data Mining / Stats problem
▶ Input: data + #of clusters desired
▶ Output: assignment of each data to a cluster + cluster centers
▶ Algorithm: Iterates between

1. Calculate cluster centers
2. Calculate cluster assignments

Source: K-Means by Chris Piech. Based on a handout by Andrew Ng.
3

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

Overall

ASSIGN RANDOM CLUSTER TO EACH DATA
...

maxiter = 100 # bounds the iterations
curiter = 1 # current iteration
nchanges = ndata # count changes in assignment each iter

while nchanges > 0 and curiter <= maxiter: # loop until convergence
CALCULATE CLUSTER CENTERS
...

ASSIGN DATA TO CLUSTERS
...

4

Initial Assignment to Random Clusters

1 for i in range(data.ndata): # random, regular initial cluster assignment
2 c = i % clust.nclust
3 data.assigns.append(c)
4
5 for c in range(clust.nclust):
6 icount = data.ndata / clust.nclust;
7 extra = 0
8 if c < (data.ndata % clust.nclust):
9 extra = 1 # extras in earlier clusters

10 clust.counts[c] = icount + extra;

5

Calculate Cluster Centers

1 # DETERMINE NEW CLUSTER CENTERS
2 for c in range(clust.nclust): # reset cluster centers to 0.0
3 for d in range(clust.dim):
4 clust.features[c][d] = 0.0
5
6 for i in range(data.ndata): # sum up data in each cluster
7 c = data.assigns[i]
8 for d in range(clust.dim):
9 clust.features[c][d] += data.features[i][d]

10
11 for c in range(clust.nclust): # divide by ndatas of data to
12 if clust.counts[c] > 0: # get mean of cluster center
13 for d in range(clust.dim):
14 clust.features[c][d] = clust.features[c][d] / clust.counts[c]

6

Assign Data to Clusters

1 # DETERMINE NEW CLUSTER ASSIGNMENTS FOR EACH DATA
2 for c in range(clust.nclust): # reset cluster counts to 0
3 clust.counts[c] = 0
4
5 nchanges = 0
6 for i in range(data.ndata): # iterate over all data
7 best_clust = None
8 best_distsq = float("inf")
9 for c in range(clust.nclust): # compare data clusters, assign closest

10 distsq = 0.0
11 for d in range(clust.dim): # calculate squared distance to each dim
12 diff = data.features[i][d] - clust.features[c][d]
13 distsq += diff*diff
14 if distsq < best_distsq: # if closer to this cluster than
15 best_clust = c # current best
16 best_distsq = distsq
17 clust.counts[best_clust] += 1
18 if best_clust != data.assigns[i]: # assigning data to a different cluster?
19 nchanges += 1 # indicate cluster assignment has changed
20 data.assigns[i] = best_clust # assign to new cluster

7

Distributed Memory Parallel Versions

▶ Algorithm deals with Data and Clusters, each a matrixy thing
▶ How would you divide up this data in a distributed parallel

version?
▶ Would data redistribution be required in your scheme?
▶ What information needs to be exchanged at each iteration?
▶ Do processors need to communicate for the initial cluster

assignment? Or can data be assigned to initial clusters
without communication?

8

Shared Memory Parallel Versions

▶ Determine which loops Can and Should be parallelized in a
shared memory system

▶ Is any coordination required for loop iterations? Reductions
needed?

▶ Suggest some places to put OpenMP #pragma directives

9

GPU Parallel Versions

▶ What setup will be required to utilize the GPU (device) to
accelerate the computation?

▶ When parallelizing the Cluster Center Calculation Phase, how
would one divide the work among threads / blocks on the
GPU?
▶ Number of threads
▶ What type of coordination is required

▶ When parallelizing the Data Assignment Phase, how would
one divide the work among threads / blocks on the GPU?
▶ Number of threads
▶ What type of coordination is required

10

