CS 100: Compression

Chris Kauffman

Week 9-1

Logistics

Feedback

- Midterm overall scores on Blackboard
- Advisory Grades to be posted tomorrow
- Feedback survey results

Today

- HW 5 Overview
- Compression
- Perhaps The Internet

HW 5 Up Now

- Due next week Friday
- Simple Encryption Problems
- Creating your own personal web page
- Individual Work but can help each other

Reading

- "Pattern": Chapter 6
- "Zyante": Ch 5

Midterm Feedback Surveys

- Results posted online
- Review quickly
- Overall good

HW5: Overview

Two Parts

Problems 1-3 Practice a little encryption Problems 4-5 Get your personal web page made and on the web

Problem 4-5

- Upload stuff to your Mason web space
- Must use some new and interesting tools
 - ▶ PuTTY on windows, Terminal on Mac, SFTP on both
- Thursday walk through some of the steps together (bring computers)
- Visit HW 5 section on uploading to mason and read

From Last Time

- Caesar and Vigenere Ciphers?
- How are password files stored?
- How are passwords cracked?
- How do you prevent passwords being cracked?

Compression

- Make something smaller
- In computing, make a file smaller
- Lossless Compression: don't lose any information
- Lossy Compression: discard some information to make smaller

Text to Compress

The Time Machine by H.G. (Herbert George) Wells The Time Traveller (for so it will be convenient to speak of him) was expounding a recondite matter to us. His grey eyes shone and twinkled, and his usually pale face was flushed and animated. ...

Full text available from Project Gutenberg

- The-Time-Machine.txt
- 32354 words
- 179377 characters (bytes)
- 176 Kilobytes

Could you make it smaller? By how much? How?

Discuss

Compress Some Simple Text

Source: Hjoranna on Deviant Art

abandon all hope ye who enter here

- Which are the most frequent characters?
- How would you make the message shorter

Huffman Encoding

Char	Freq	Code	Char	Freq	Code
e	6	00	р	1	01100
_	6	110	у	1	01101
Ī	2	1001	w	1	01110
r	2	0100	t	1	01111
а	3	1011	d	1	10000
0	3	1110	b	1	10001
n	3	1111			

Practical Compression

- Lots of programs do it for you
- Most common is Zip programs
- The .zip extension denotes a compressed
- Usually want to *extract* the contents to work with it
- Zip is a lossless compression technique
- Usually use lossless compression with text

Image Compression:Spot the differencePNG/BMPJPEG

Compressing Images: Lossy

10x Compression: 39kb

50x Compression: 9kb

Sound and Video Compression

- Sound is a continuous phenomenom and is always discretized for digital storage
 - Not so for records and magnetic tapes
- WAV or .wav files are typically raw audio
 - Files a typically very large,
 - ► 70-minute CD would take about 600 MB of space
- FLAC is a lossless audio compression format
 - Can cut down size of files by 20-30%
 - Quality of sound does not suffer
- MP3 and AAC are lossy compression formats
 - Can fit a whole CD into 30-40 MB
 - Quality of sound does change
 - Can choose the level of quality when compressing
 - Higher quality requires more space
- MP4 is a lossy video format
 - Combines techniques from MP3 and JPEG
 - From one picture to the next, records changes in pixels
 - Often compresses raw video/audio by 100x with little perceptible loss in quality

Information Density

- 176K The-Time-Machine.txt 70K The-Time-Machine.zip
 - Which one has more information?
 - What is information?

Small Programs that Generate Pictures

Which is smaller?

Python Code

```
from turtle import *
def house(size):
  color("blue")
  begin_fill()
  for i in range(4):
    forward(size)
    right(90)
  end fill()
  color("red")
  begin_fill()
  right(300)
  for i in range(3):
    forward(size)
    right(120)
  end_fill()
# Draw a big house
house(200)
hideturtle()
```

Picture

An Interesting Measure of Information Density

How small is the smallest computer program to re-create the data?

- For The Time Machine, would look something like Huffman Encoding
- Pattern on the Stone: For pebbles on the beach, things get interesting
- How exact must the recreation be?

Source

How does the Internet work?

- A lot of wires
- An older analogous system
- An interesting set of problems