
CS 310: Order Notation (aka Big-O and friends)

Chris Kauffman

Week 1-2

Logistics

At Home
I Read Weiss Ch 1-4: Java Review
I Read Weiss Ch 5: Big-O
I Get your java environment set up
I Compile/Run code for Max Subarray problem form first lecture

Goals
I Finish up Course Mechanics
I Basic understanding of Big O and friends

Announcement: UMD Diversity in Computing Summit

I http://mcwic.cs.umd.edu/events/diversity
I Keynote, talks, networking for current students
I Monday, November 7, 2016
I College Park Marriott Hotel, Hyattsville, MD
I $35 for students before 10/1, $50 after

Through informative workshops and dynamic speakers,
the Summit will emphasize inclusive computing efforts
that address the positive impact that underrepresented
groups have and will continue to have on the future of
technology.

http://mcwic.cs.umd.edu/events/diversity

Course Mechanics

Finish up course mechanics from last time (first slide deck)

How Fast/Big?

Algorithmic time/space complexity depend on problem size
I Often have some input parameter like n or N or (M,N) which

indicates problem size
I Talk about time and space complexity as functions of those

parameters
I Example: For an input array of size N, the maximum element

can be found in 5 ∗ N + 3 operations while the array can be
sorted in 2N2 + 11N + 7 operations.

I Big-O notation: bounding how fast functions grow based on
input

It’s Show Time!

Not The Big O Just Big O
T (n) is O(F (n)) if there are
positive constants c and n0 such
that

I When n ≥ n0

I T (n) ≤ cF (n)

Bottom line:
I If T (n) is O(F (n))

I Then F (n) grows as fast or
faster than T (n)

Show It

Show

f (n) = 2n2 + 3n + 2 is O(n3)

I Pick c = 0.5 and n0 = 6

n f (n) 0.5n3

0 2 0
1 7 0
2 16 4
3 29 13
4 46 32
5 67 62
6 92 108
7 121 171

● ● ● ●
●

●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

0

100

200

300

400

500

0.0 2.5 5.0 7.5 10.0
n

V
al

ue

Function ● ●0.5*n^3 2*n^2+3*n+2

How about the opposite? Show

g(n) = n3 is O(2n2 + 3n + 2)

Basic Rules

I Constant additions disappear
I N + 5 is O(N)

I Constant multiples disappear
I 0.5N + 2N + 7 is O(N)

I Non-constant multiples multiply:
I Doing a constant operation 2N times is O(N)
I Doing a O(N) operation N/2 times is O(N2)
I Need space for half an array with N elements is O(N) space

overhead
I Function calls are not free (including library calls)

I Call a function which performs 10 operations is O(1)
I Call a function which performs N/3 operations is O(N)
I Call a function which copies object of size N takes O(N) time

and uses O(N) space

Bounding Functions

I Big O: Upper bounded by . . .
I 2n2 + 3n + 2 is O(n3) and O(2n) and O(n2)

I Big Omega: Lower bounded by . . .
I 2n2 + 3n + 2 is Ω(n) and Ω(log(n)) and Ω(n2)

I Big Theta: Upper and Lower bounded by
I 2n2 + 3n + 2 is Θ(n2)

I Little O: Upper bounded by but not lower bounded by. . .
I 2n2 + 3n + 2 is o(n3)

Growth Ordering of Some Functions

Name Leading Term Big-Oh Example
Constant 1, 5, c O(1) 2.5, 85, 2c
Log-Log log(log(n)) O(log log n) 10 + (log log n + 5)
Log log(n) O(log(n)) 5 log n + 2

log(n2)

Linear n O(n) 2.4n + 10
10n + log(n)

N-log-N n log n O(n log n) 3.5n log n + 10n + 8
Super-linear n1.x O(n1.x) 2n1.2 + 3n log n − n + 2
Quadratic n2 O(n2) 0.5n2 + 7n + 4

n2 + n log n
Cubic n3 O(n3) 0.1n3 + 8n1.5 + log(n)

Exponential an O(2n) 8(2n) − n + 2
O(10n) 100n500 + 2 + 10n

Factorial n! O(n!) 0.25n! + 10n100 + 2n2

Constant Time Operations
The following take O(1) Time

I Arithmetic operations (add, subtract, divide, modulo)
I Integer ops usually practically faster than floating point

I Accessing a stack variable
I Accessing a field of an object
I Accessing a single element of an array
I Doing a primitive comparison (equals, less than, greater than)
I Calling a function/method but NOT waiting for it to finish

The following take more than O(1) time (how much)?

I Raising an arbitrary number to arbitrary power
I Allocating an array
I Checking if two Strings are equal
I Determining if an array or ArrayList contains() an object

Common Patterns

I Adjacent Loops Additive: 2× n is O(n)

for(int i=0; i<N; i++){
blah blah blah;

}
for(int j=0; j<N; j++){

yakkety yack;
}

I Nested Loops Multiplicative usually polynomial
I 1 loop, O(n)
I 2 loops, O(n2)
I 3 loops, O(n3)

I Repeated halving usually involves a logarithm
I Binary search is O(log n)
I Fastest sorting algorithms are O(n log n)
I Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

Practice
Two functions to revers an array. Discuss

I Big-O estimates of runtime of both
I Big-O estimates of memory overhead of both

I Memory overhead is the amount of memory in addition to the
input required to complete the method

I Which is practically better?
I What are the exact operation counts for each method?

reverseE
public static
void reverseE(Integer a[]){

int n = a.length;
Integer b[] = new Integer[n];
for(int i=0; i<n; i++){

b[i] = a[n-1-i];
}
for(int i=0; i<n; i++){

a[i] = b[i];
}

}

reverseI
public static void
reverseI(Integer a[]){

int n = a.length;
for(int i=0; i<n/2; i++){

int tmp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = tmp;

}
return;

}

Much Trickier Exercise

public static String toString(Object [] arr)
{

String result = " [";
for(String s : arr)

result += s + " ";
result += "]";
return result;

}

I Give a Big-O estimate for the runtime
I Give a Big-O estimate for the memory overhead

Multiple Input Size
What if "size" has two parameters?

I m × n matrix
I Graph with m vertices and n edges
I Network with m computers and n cables between them

Exercise: Sum of a Two-D Array
Give the runtime complexity of the following method.

public int sum2D(int [][] A){
int M = A.length;
int N = A[0].length;
int sum = 0;
for(int i=0; i<M; i++){

for(int j=0; j<N; j++){
sum += A[i][j];

}
}
return sum;

}

What if I have no idea?

Analyzing a complex algorithm is hard. More in CS 483.
I Most analyses in here will be straight-forward
I Mostly use the common patterns

If you haven’t got a clue looking at the code, run it and check
I This will give you a much better sense

Observed Runtimes of Maximum Subarray

Weiss pg 203

Idealized Functions

Smallish Inputs Larger Inputs

Actual Data for Max-Subarray

●●●

●

●●
●

●

●●
● ●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

250 500 750 1000
N

T
im

e

Algorithm

●

●

●

●

Cubic

Linear

Quadratic

Recursive

I Where did this data come from?
I Does this plot confirm our analysis?
I How would we check?

Playing with MaxSumTestBetter.java

Let’s generate part of the data, demo in
w01-1-code/MaxSumTestBetter.java

I Edit: Running a main, n=100 to 100,000, multipy by 10
I Try in DrJava
I Demo interactive loop

Analysis

Linear

> summary(linmod)

Coefficients:
Estim Pr(>|t|)

(Intercept) 7.26 <2e-16 ***
poly(N, 1) 16.25 <2e-16 ***
poly(N, 2) -0.34 0.287
poly(N, 3) -0.01 0.962

Quadratic

> summary(quadmod)

Coefficients:
Estim Pr(>|t|)

(Intercept) 83.89 <2e-16 ***
poly(N, 1) 278.16 <2e-16 ***
poly(N, 2) 54.75 <2e-16 ***
poly(N, 3) -0.24 0.562

Why these coefficients?

Take-Home

Today
Order Analysis captures big
picture of algorithm complexity

I Different functions grow at
different rates

I Big O upper bounds
I Big Theta tightly bounds

Next Time
I What are the limitations of

Big-O?
I Reading: finish Ch 5, Ch 15

on ArrayList
I Suggested practice:

Exercises 5.39 and 5.44
which explore string
concatenation, why obvious
approach is slow for lots of
strings, alternatives

