
CS 310: Recursion and Tree Traversals

Chris Kauffman

Week 10-1

Announcement

Mason Women in Computer Science: A Networking Event

I The event will take place in Sub 1 – 3B on Monday, November
14th 10am-12pm.

I We are organizing an event to encourage networking and
community involvement among women undergraduate and
graduate students and faculty.

I The event is indeed open to all students and faculty, though
we do want to encourage underrepresented students in CS
foremost.

– Amarda Shehu & Foteini Baldimtsi

Logistics

HW 2 Due Last Night
Any last words?

HW 3
I Likely up tonight/tomorrow
I Basic Spreadsheet
I Involves walking a binary

tree of expressions
I Later, implement a Directed

Acyclic Graph, ensure it has
no cycles

I Maps and Sets show up a lot

Reading

I Weiss Ch. 7 Recursion
I Weiss Ch 18 General Trees
I Weiss Ch 19 BSTs

Today

I Finish Maps/Sets
I Tree Traversals
I Recursive traversals
I Recursion practice for tree

properties

Ordering

List property
There is a well defined ordering of
first, next, last objects in the data
structure,

I Wide ranging uses
I Supported in List data

structure (LinkedList,
ArrayList)

I Supported structurally in
Lists

I A property of the Data
Structure

Sorting property
There is a well defined ordering
relation over all possible data of a
type

I "bigger than" "less than"
"equal to" are well defined

I A property of the Data
I A data structure can try to

mirror the data ordering
structurally

I Useful for searching, walking
through stored data in order

Sorted Lists

Definition is straight-forward
I "Smallest" things are structurally "first", "Biggest" last
I Ordering on elements (Comparable/Comparator)
I add/insert put elements in proper place

Question: For a sorted List L, what is the complexity of
L.insert(x) which preserves sorting?

L is an ArrayList
How long to

I find insertion location?
I complete insertion?
I traverse elements in order

(e.g. for printing)?

L is a LinkedList
How long to

I find insertion location?
I complete insertion?
I traverse elements in order

(e.g. for printing)?

Alternatives to the Linear Data Structures

Hash Tables
I Abandon list property
I Abandon sorting property
I O(1) insertion/retrieval
I O(N) traversal, not ordered

Trees
I Abandon list property
I Preserve sorting property
I O(logN) insertion/retrieval
I O(N) traversal, ordered
I Commonly Binary Trees
I Other variants

Roots

Source

I Next few sessions we’ll talk
about roots

I For simplicity, we’ll call them
trees

http://www.vectorstock.com/royalty-free-vector/tree-with-root-vector-1033925

Mutated Nodes

Data

Next
(node)

Node

data next

5

data next

22

data next

10

Linked Nodes, aka List

Binary Tree Node

RightLeft

Data
(???)

20

10

8

31

67

Linked Nodes
aka Tree

root

Node structures should be
familiar for linked lists

I Singly linked: next/data
I Doubly linked:

next/previous/data

Trees use Nodes as well
I children, data, possibly

parent
I Arbitrary Trees:

List<Node> of children
I Binary Trees: left and

right children

Tree Properties of Interest

I Root of tree
I Leaves
I Data at nodes

I Size (number of nodes)
I Height of tree
I Depth of a node

An Apropos Quote

You spend years writing code without recursion and then
one day you have to write functions that operate on trees
and realize recursion is amazing.
–Kevin DeRonne

Recursion Warm-Up

Write two versions of Singly
Linked List length() function.

int length(Node n)

1. Iterative
2. Recursive

Compare and contrast runtime
and memory complexity

class Node<T> {
T data; Node<T> next;
public Node(T d, Node<T> n){

this.data=d; this.next=n;
}

}

// Singly linked
// No header/auxiliary/dummy nodes
class SimpleList<T>{

Node<T> head; // null When empty
public int length(){

return length(this.head);
}
public static <T>
int length(Node<T> n){

// Iterative version?
// Recursive version?

}
}

Binary Tree

Binary Tree Nodes
class Node<T>{

T data;
Node<T> left, right;

}
void main(){

Node root = new Node();
root.data = 8;
root.left = new Node();
root.right= new Node();
root.left.data = 3;
root.right.data= 10;
root.left.left = new Node();
...

Structure

Recursive Example: Binary Tree Size Method

Tree Nodes
class Node<T>{

T data;
Node<T> left, right;

}

Usage
Tree<Integer> myTree = new Tree();
// add some stuff to myTree
int s = myTree.size();

Exercise
I Define a recursive t.height()

I t.height() is the longest path
from root to leaf

I Empty tree has height=0

int size(Node<T> t)
Number of nodes in tree t

public Tree<T>{
Node<T> root;

// Entry point
public int size(){

return size(this.root);
}
// Recursive helper
public static <T>

int size(Node<T> t){
if(t == null){

return 0;
}
int sL = size(t.left);
int sR = size(t.right);
return 1 + sL + sR;

}
}

int height(Node<T> t)
Depth of deepest node in t

public Tree<T>{
Node<T> root;
public int height(){

return height(this.root);
}
// Depth of deepest node
public static <T>
int height(Node<T> t){

// Recursive version?
}

}

Recursive Implementation of height()

Slight difference of definitions
from textbook

I Empty tree has size=0 and
height=0

I 1-node tree has size=1 and
height=1

// Depth of deepest node
public Tree<T>{

Node<T> root;
public int height(){

return height(this.root);
}

public static <T>
int height(Node<T> t){
if(t == null){

return 0;
}
int hL = height(t.left);
int hR = height(t.right);
int bigger = Math.max(hL,hR);
return 1+bigger;

}
}

The Many Ways to Walk
No list property: several orders to traverse tree

I (a) Pre-order traversal (parent, left, right)
I (b) Post-order traversal (left, right, parent)
I (c) In-order traversal (left, parent, right)

Picture shows the order nodes will be visited in each type of
traversal

The Many Ways to Walk

No list property: several orders to traverse tree

Pre-order traversal
parent, left, right

Post-order traversal
left, right, parent

In-order traversal
left, parent, right

Walk This Tree

Show
I (a) Pre-order traversal

(parent, left, right)
I (b) Post-order traversal (left,

right, parent)
I (c) In-order traversal (left,

parent, right)
Which one "sorts" the numbers?

Implementing Traversals for Binary Trees

class Tree<T>{
private Node<T> root;

public void printPreOrder(){
preOrder(this.root);

}
private static void
preOrder(Node<T> t){

... print(t.data) ...
}

public void printInOrder(){ }
private static void
inOrder(Node<T> t){ }

public void printPostOrder(){ }
private static void
postOrder(Node<T> t){ }

}

class Node<T> {
T data;
Node<T> left, right;

}

Implement Print Traversals

I preOrder(this.root)
I postOrder(this.root)
I inOrder(this.root)

2 Ways

I Recursively (first)
I Iteratively (good luck. . .)

Recursive Implementation of Traversals

inOrder(Node t){
if(t != null){

inOrder(t.left);
print(t.data);
inOrder(t.right);

}
}

preOrder(Node t){
if(t != null){

print(t.data);
preOrder(t.left);
preOrder(t.right);

}
}

postOrder(Node t){
if(t != null){

postOrder(t.left);
postOrder(t.right);
print(t.data);

}
}

Evaluate
I Correct?
I Time complexity?
I Space complexity?
I What makes this so easy?

Distribution Code
Today’s code distribution contains demos of recursive methods

SimpleList.java
Demos recursive version of list length

Tree.java
Contains a very simple tree example that demos

I size()
I height()
I Traversals: Pre-order, In-order, Post-order

JGrasp helpful

I Visualize list/tree
I Step through recursive methods
I Use debugger to watch call stack and position in tree

Iterative Implementation?

Compare to Iterative Implementation of Traversals
// Pseudo-code for post order print
void postOrder(root){

Stack s = new Stack();
s.push({root, DOLEFT });
while(!s.empty()){

{tree, action} = s.popTop();
if(tree == null){

// do nothing;
}
else if(action == DOLEFT){

s.push({tree, DORIGHT});
s.push({tree.left, DOLEFT});

}
else if(action == DORIGHT){

s.push({tree, DOTHIS});
s.push({tree.right, DOLEFT});

}
else if(action == DOTHIS){

print(tree.data);
}
else{

throw new YouScrewedUpException();
}

}
}

I No call stack
I Use an explicit stack
I Auxilliary data action

DOLEFT work on left
subtree

DORIGHT work on right
subtree

DOTHIS process data
for current

Evaluate
I Correct?
I Time complexity?
I Space complexity?

Weiss’s Traversals

Implemented as iterators
I See TestTreeIterators.java
I Uses BinaryTree.java and BinaryNode.java
I Must preserve state accross advance() calls

BinaryTree<Integer> t = new BinaryTree<Integer>();
... // fill tree

TreeIterator<AnyType> itr = new PreOrder<Integer>(t);
for(itr.first(); itr.isValid(); itr.advance()){

System.out.print(" " + itr.retrieve());
}

I Much more complex to understand but good for you
I Play with some of these in a debugger if you want more

practice

General Notes

Iterative Traversal Implementation Notes

I Can augment tree nodes to have a parent pointer
class Node<T>{

T data; Node left, right, parent;
}

I Enables stackless, iterative traversals with great cleverness

Iterative vs Recursive Tree Methods
I Multiple types of traversals of T
I Other Tree methods: T.find(x), T.add(x), T.remove(x)
I Recursive implementations are simpler to code but will cost

more memory
I Iterative methods are possible and save memory at the expense

of tricky code

Level-order Traversal

Level Order Traversal: 1 2 3 4 5 6 7
I Top level first (depth 1: 1)
I Then next level (depth 2: 2 3)
I etc.

This is a bit trickier
I Need an auxilliary

data structure: Queue
I Does recursion help?

