
Architecture and Parallel Computers

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Reading: Grama Ch 2 + 3

I Ch 2.3-5 is most important for Ch 2
I Ch 3 all

Assignment 1

I Posted, due Thu 2/4
I Groups of 2 permitted
I Questions?
I Office hours Tue 3:30-5:30pm

Today

I Finish Parallel architecture (HW1: #1-2)
I Parallel Algorithm Decomposition (HW1: #3,4,6)

Dependency Graphs

I Relation of tasks to one another
I Vertices: tasks, often labeled with time to complete
I Edges: indicate what must happen first
I Should be a DAG, Directed Acyclic Graph

(If not, you’re in trouble)

Features of Dependency Graphs

I Critical Path Length = Sum of longest path
I Maximum Degree of Concurrency = # of task in "widest"

section
I Average Degree of Concurrency =

Sum of all vertices
Critical Path Length

Computing Features of Dependency Graphs

Maximum Degree
of Concurrency

I (a) 4
I (b) 4

Total Task Work
I (a) 63
I (b) 64

Critical Path Length

I (a) 27 (leftmost path)
I (b) 34 (rightmost)

Average Degree of Concurrency

I (a) 63 / 27 = 2.33
I (b) 64 / 34 = 1.88

Exercise: Compute Features of Dependency Graph

Compute

I Total Work
I Maximum degree of

concurrency
I Critical Path Length
I Average Degree of

Concurrency

Makefiles
I Most build systems for programs calculate task graphs
I Makefiles describe DAGs to build projects with make

Source: Luke Luo

count_words: count_words.o lexer.o
gcc count_words.o lexer.o -lfl \

-o count_words

count_words.o: count_words.c
gcc -c count_words.c

lexer.o: lexer.c
gcc -c lexer.c

lexer.c: lexer.l
flex -t lexer.l > lexer.c

.PHONY: clean
clean:

rm -rf *.o lexer.c count_words

Look up make -j 4 option: use 4
processors for concurrency

http://lukeluo.blogspot.com/2014/02/linux-from-scratch-for-cubietruck-c10.html

Identifying Tasks for Parallel Programs

I This is the tricky part
I Several techniques surveyed in the text that we’ll overview
I Two general paradigms for creating parallel programs

Parallelize a Serial Code
I Already have a solution to

the problem
I Identify tasks within solution
I Construct a task graph and

parallelize based on it
I We’ll spend most of our time

on this as it is more common

Redesign for Parallelism

I Best serial code may not
parallelize well

I Change the approach
entirely to exploit parallelism

I Usually harder, more special
purpose, spend less time on
it

Recursion Provides Parallelism

Algorithms which use multiple recursive calls provide easy
opportunities for parallelism

Multiple Recursive Call Algs

I Fibonacci calculations
I Mergesort
I Quicksort
I Graph searches

All reasonable for parallelizing:
recursive calls are independent,
represent independent tasks
which can be run in parallel:
parallelize a serial alg Source: Wikipedia Mergesort

https://en.wikipedia.org/wiki/Merge_sort

Reformulation As Recursive Algorithms
I Can sometimes reformulate an iterative algorithm as a recursive one:

Redesign for parallelism
I Show task graph for RECURSIVE_MIN on array

A = {4, 9, 1, 7, 8, 11, 2, 12}
n = 8

procedure SERIAL_MIN (A, n)
begin
min = A[0];
for i := 1 to n - 1 do

if (A[i] < min) then
min := A[i];

endif
endfor;
return min;
end SERIAL_MIN

procedure RECURSIVE_MIN (A, n)
begin
if (n = 1) then

min := A[0];
else

lmin := RECURSIVE_MIN (A, n/2);
rmin := RECURSIVE_MIN (&(A[n/2]),

n - n/2);
if (lmin < rmin) then

min := lmin;
else

min := rmin;
endelse;

endelse;
return min;
end RECURSIVE_MIN

Data Decomposition: this is the big one

Output Partitioning

I Collection of output data
I Tasks to compute output

data are (relatively)
independent

I Parallelize by assigning tasks
based on output

Input Partitioning

I Output tasks not easily
independent

I Can build up output via
independent tasks on input

I Requires a way to combine
results form different
sections of input

I Parallelize by assigning tasks
to chunks of input then
combining

I Combinations of Input/Output partitioning are common
I Examples to follow

Matrix-Vector Multiplication

I Input: matrix A, vector x
I Output: vector b

A * x = b

Output Partitioning

I Task to compute each
element of output b

I Each processor hold rows of
A and all of x

Input Partitioning

I Constraint: Processors have
little memory, can’t hold
whole rows of A and all of x

I Discuss an input
partitioning: chunks of A
and x, do some
computation, combine
results to form elements of b

Input Partitioning for Matrix-Vector Multiplication

x
(1

1
:2

0
)

x
(1

:1
0

)
x
(2

1
:3

0
)

A(1,1:10) A(1,11:20) A(1,21:30)

A(i,1:10) A(i,11:20) A(i,21:30)

Task 1: tmp(1,1) = A(1,1:10)*x(1:10)
Task 2: tmp(1,2) = A(1,11:20)*x(11:20)
Task 3: tmp(1,3) = A(1,21:30)*x(21:30)
Task 4: b(1) = tmp(1,1) + tmp(1,2) + tmp(1,3)
...
Task 4*i+1: tmp(i,1) = A(1,1:10)*x(1:10)
Task 4*i+2: tmp(i,2) = A(1,11:20)*x(11:20)
Task 4*i+3: tmp(i,3) = A(1,21:30)*x(21:30)
Task 4*i+4: b(i) = tmp(i,1) + tmp(i,2) + tmp(i,3)

b(1)

b(i)=

I Most Tasks: multiply part of a row of A with part of x
I Some Tasks: combine partial sums to produce single element

of output b

Exercise: Frequent Item Set Calculation
Typical data mining task: count how many times items {D, E}
were bought together in a database of transactions

I Input: database + itemsets of interest
I Output: frequency of itemsets of interest

Describe tasks for. . .
I Input partitioning
I Output partitioning
I Combined partitioning

Answers in Grama 3.2

Exploratory Decomposition

Problem Formulations
I Graph Breadth-first and depth-first search
I Path finding in discrete environments
I Combinatorial search (15-puzzle)
I Find a good move in a game (Chess, Go)

Algorithms

I Similar to recursive decomposition
I Each step has several possibilities to

explore
I Serial algorithm must try one, then unwind
I Parallel algorithm may explore multiple

paths simultaneously

Features of Exploratory Decomposition
I Data duplication may be necessary so each PE can change its

own data (puzzle)
I Redundancy may occur: two PEs arrive at the same puzzle

state
I Detect duplication requires programming/communication
I Ignoring duplication wastes PE time

I Termination is trickier: once a solution is found, must signal to
all active PEs that they can quite or move on

I Can lead to strange "super-linear" speedups over serial
algorithms or to much wasted effort

Static and Dynamic Task Generation
Static Task Generation

I All tasks known ahead of time
I Easier to plan and distribute data
I Examples abound: matrix operations, sorting (mostly), data

analysis, image processing

Dynamic task Generation

I Tasks are "discovered" during the program run
I Tougher to deal with scheduling, data distribution,

coordination
I Difficulty with message passing paradigm
I Examples: game tree search, some recursive algorithms,

others(?)

Focus on Static Task Generation

Static and Dynamic Scheduling (Mapping)
I Given tasks and dependencies, must schedule them to run on

actual processors
I Problems to solve include Load imbalance (unequal work),

Communication overhead, Data distribution as work changes

Static Mapping/Scheduling

I Specify which tasks happen on which processes ahead of time
I Usually baked into the code/algorithm
I Works well for message passing/distributed paradigm

Dynamic Mapping/Scheduling

I Figure out where tasks get run as you go
I More or less required if tasks are "discovered"
I Centralized scheduling Schemes: manager tracks tasks in a

data structure, doles out to workers
I Distributed scheduling schemes: workers share tasks directly

Reducing the Overhead of Parallelism

Parallel algorithms always introduce overhead: work that doesn’t
exist in a serial computation. Reducing overhead usually comes in
three flavors.

1. Make tasks as independent as possible
2. Minimize data transfers
3. Overlap communication with computation

#1 and #2 are often in tension: why?

Broad Categories of Parallel Program Designs

Data-parallel
Every processors gets data,
computes similar things, syncs
data with group, repeats;
Example: matrix multiplication

Task Graph
Every processor gets some tasks
and associated data, computes
then syncs, Example: parallel
quicksort (later)

Work-pool and
Manager/Workers
Initial tasks go into pool, doled
out to workers, discover new
tasks, go into pool, distributed to
workers. . . . Example: web server

Stream / Pipeline /
Map-Reduce
Raw data goes in, comp1 done to
it, fed to comp2, then to comp3,
etc. Example: Frequency counts
of all documents, LU factorization

Exercise: HW1’s Heat Problem

I What are the tasks? How does the task graph look?
I What kind of scheduling seems like it will work?
I How should the data be distributed?
I What broad category of approach seems to fit?

Data parallel, Task graph distribution,
Work-pool/Manager-worker, Stream/Pipeline

