Architecture and Parallel Computers

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics
Reading: Grama Ch 2 + 3

» Ch 2.3-5 is most important for Ch 2
» Ch 3 all

Assignment 1

» Posted, due Thu 2/4

» Groups of 2 permitted

» Questions?

» Office hours Tue 3:30-5:30pm

Today

» Finish Parallel architecture (HW1: #1-2)
» Parallel Algorithm Decomposition (HW1: #3,4,6)

Dependency Graphs

Relation of tasks to one another

v

» Vertices: tasks, often labeled with time to complete

v

Edges: indicate what must happen first

Should be a DAG, Directed Acyclic Graph
(If not, you're in trouble)

v

Features of Dependency Graphs

Task 4 Task 3 Task 2 Tuask 1 Task 4 Task 3 Task 2 Tusk 1
1 1 10 1 10 10 10 1
y y &) Tasks
9 | Taskt 6 Task 5 b
N Taske
i s
Task 7 7 Task 7
(i) (b}

» Critical Path Length = Sum of longest path
» Maximum Degree of Concurrency = # of task in "widest"
section
» Average Degree of Concurrency =
Sum of all vertices
Critical Path Length

Computing Features of Dependency Graphs

Maximum Degree Twd Tekd Tk Twtl s s e
of Concurrency T} (o w () (o D ® G
> (a) 4 W T4 “ ! Task5
[9] Taské 6) Tasks N
g (b) 4)) Tk
§) e ;.- Task 7

Total Task Work

» (a) 63
» (b) 64

Critical Path Length Average Degree of Concurrency
» (a) 27 (leftmost path) » (a) 63 / 27 = 2.33

> (b) 34 (rightmost) » (b) 64 /34 =1.88

Exercise: Compute Features of Dependency Graph

Compute

» Total Work

» Maximum degree of
concurrency
» Critical Path Length

» Average Degree of
Concurrency

5
[11
Y Y
2 4
*—‘ 4 %
3 10 10
|
L YYY
9 7

Makefiles

» Most build systems for programs calculate task graphs
» Makefiles describe DAGs to build projects with make

lexer.l @

v
PHONY

count_words.c lexer.c

count_words.o
gce count_words.o ...
!HH!HHE'

Source: Luke Luo

lexer.o

count_words: count_words.o lexer.o
gcc count_words.o lexer.o -1f1 \
-0 count_words

count_words.o: count_words.c
gcc -c count_words.c

lexer.o: lexer.c
gcc -c lexer.c

lexer.c: lexer.l
flex -t lexer.l > lexer.c

.PHONY: clean
clean:
rm -rf *.o0 lexer.c count_words

Look up make -j 4 option: use 4
processors for concurrency

http://lukeluo.blogspot.com/2014/02/linux-from-scratch-for-cubietruck-c10.html

|dentifying Tasks for Parallel Programs

» This is the tricky part
» Several techniques surveyed in the text that we'll overview

» Two general paradigms for creating parallel programs

Parallelize a Serial Code Redesign for Parallelism
» Already have a solution to » Best serial code may not
the problem parallelize well
» Identify tasks within solution » Change the approach
» Construct a task graph and entirely to exploit parallelism
parallelize based on it » Usually harder, more special
» We'll spend most of our time purpose, spend less time on

on this as it is more common it

Recursion Provides Parallelism

Algorithms which use multiple recursive calls provide easy
opportunities for parallelism

Multiple Recursive Call Algs [38]27] 3[3]s]2 0]
» Fibonacci calculations [32|r]s[5] [o]ez]no]

> Mergesort
» Quicksort

» Graph searches

All reasonable for parallelizing:
recursive calls are independent,

3(27|38
represent independent tasks
which can be run in parallel: [3[o]10[27]38]e3]2]

para”e“ze a Serial alg Source: Wikipedia Mergesort

https://en.wikipedia.org/wiki/Merge_sort

Reformulation As Recursive Algorithms
» Can sometimes reformulate an iterative algorithm as a recursive one:
Redesign for parallelism
> Show task graph for RECURSIVE_MIN on array
A=4{4,9,1, 7,8, 11, 2, 12}

n =38
procedure SERIAL_MIN (A, n) procedure RECURSIVE_MIN (A, n)
begin begin
min = A[0]; if (n = 1) then
for i :=1 ton -1 do min := A[0];
if (A[i] < min) then else
min := A[i]; lmin := RECURSIVE_MIN (A, n/2);
endif rmin := RECURSIVE_MIN (&(A[n/21),
endfor; n - n/2);
return min; if (Imin < rmin) then
end SERIAL_MIN min := lmin;
else
min := rmin;
endelse;
endelse;

return min;
end RECURSIVE_MIN

Data Decomposition: this is the big one

Output Partitioning Input Partitioning
» Collection of output data » QOutput tasks not easily
» Tasks to compute output independent
data are (relatively) » Can build up output via
independent independent tasks on input
» Parallelize by assigning tasks » Requires a way to combine
based on output results form different

sections of input

» Parallelize by assigning tasks
to chunks of input then
combining

» Combinations of Input/Output partitioning are common

» Examples to follow

Matrix-Vector Multiplication

Output Partitioning

» Task to compute each
element of output b

» Each processor hold rows of

> : i
Input: matrix A, vector x A and all of x

» Output: vector b
Input Partitioning

A*xx=D
» Constraint: Processors have
abc X ax + by + cz . ,
defl| |yl = |dx + ey + £z little memory, can’t hold
ghil |z gx + hy + iz whole rows of A and all of x

» Discuss an input
partitioning: chunks of A
and x, do some
computation, combine
results to form elements of b

Input Partitioning for Matrix-Vector Multiplication

A(1,1:10) |A(1,11:20)|A(1,21:30)

Task 1: tmp(1,1) = A(1,1:10)*x(1:10)

Task 2: tmp(1,2) = A(1,11:20)*x(11:20)

Task 3: tmp(1,3) = A(1,21:30)*x(21:30)

Task 4: b(1) = tmp(1,1) + tmp(1,2) + tmp(1,3)

— Task 4*i+1: tmp(i,1) = A(1,1:10)*x(1:10)

b(i) | Task 4*i+2: tmp(i,2) = A(1,11:20)*x(11:20)
Task 4*i+3: tmp(i,3) = A(1,21:30)*x(21:30)
Task 4*i+4: b(i) = tmp(i,1) + tmp(i,2) + tmp(i,3)

A(i,1:10) |A(i,11:20) |A(i,21:30)

(ositax | (oz1ux | (oTimx |

» Most Tasks: multiply part of a row of A with part of x

» Some Tasks: combine partial sums to produce single element
of output b

Exercise: Frequent Item Set Calculation

Typical data mining task: count how many times items {D, E}
were bought together in a database of transactions

» Input: database + itemsets of interest

» Output: frequency of itemsets of interest

A.B,C.EG H A B, C
B.D.E.F.K.L D.E
Describe tasks for. .. E ABRHL CEG
L & D.EFH 3 AE
> Input partitioning § RGHK E co
. . E A.E,F K L B D. K
> OUtPUt partitioning _é’ B,C,D,G,H, L B,C,F
; IS E GHL C.D.K
» Combined partitioning & ErRL
F.G.HL

Answers in Grama 3.2

Itemset Frequency

Exploratory Decomposition

Problem Formulations

» Graph Breadth-first and depth-first search
» Path finding in discrete environments
» Combinatorial search (15-puzzle)

» Find a good move in a game (Chess, Go)

Algorithms

» Similar to recursive decomposition

» Each step has several possibilities to
explore

» Serial algorithm must try one, then unwind

» Parallel algorithm may explore multiple
paths simultaneously

Features of Exploratory Decomposition

» Data duplication may be necessary so each PE can change its
own data (puzzle)
» Redundancy may occur: two PEs arrive at the same puzzle
state
» Detect duplication requires programming/communication
» Ignoring duplication wastes PE time
» Termination is trickier: once a solution is found, must signal to
all active PEs that they can quite or move on

» Can lead to strange "super-linear" speedups over serial
algorithms or to much wasted effort

m m
[
= Solution
Total serial work: 2m+1 Total serial work: m
Total parallel work: | Total parallel work: 4m

(a) (b)

Static and Dynamic Task Generation
Static Task Generation

» All tasks known ahead of time
» Easier to plan and distribute data

» Examples abound: matrix operations, sorting (mostly), data
analysis, image processing

Dynamic task Generation

» Tasks are "discovered" during the program run

» Tougher to deal with scheduling, data distribution,
coordination

» Difficulty with message passing paradigm

» Examples: game tree search, some recursive algorithms,
others(?)

Focus on Static Task Generation

Static and Dynamic Scheduling (Mapping)

» Given tasks and dependencies, must schedule them to run on
actual processors

» Problems to solve include Load imbalance (unequal work),
Communication overhead, Data distribution as work changes

Static Mapping/Scheduling

» Specify which tasks happen on which processes ahead of time
» Usually baked into the code/algorithm

» Works well for message passing/distributed paradigm

Dynamic Mapping/Scheduling

» Figure out where tasks get run as you go
» More or less required if tasks are "discovered"

» Centralized scheduling Schemes: manager tracks tasks in a
data structure, doles out to workers

» Distributed scheduling schemes: workers share tasks directly

Reducing the Overhead of Parallelism

Parallel algorithms always introduce overhead: work that doesn't
exist in a serial computation. Reducing overhead usually comes in

three flavors.
1. Make tasks as independent as possible
2. Minimize data transfers
3. Overlap communication with computation

#1 and #2 are often in tension: why?

Broad Categories of Parallel Program Designs

Data-parallel

Every processors gets data,
computes similar things, syncs
data with group, repeats;
Example: matrix multiplication

Task Graph

Every processor gets some tasks
and associated data, computes
then syncs, Example: parallel
quicksort (later)

Work-pool and
Manager/Workers

Initial tasks go into pool, doled
out to workers, discover new
tasks, go into pool, distributed to
workers. ... Example: web server

Stream / Pipeline /
Map-Reduce

Raw data goes in, compl done to
it, fed to comp2, then to comp3,
etc. Example: Frequency counts

of all documents, LU factorization

Exercise: HW1's Heat Problem

Rod

Left)
) el e 0 s 0 el e s EA R

Boundary

Initial time
t=0

Next step
t=1

» What are the tasks? How does the task graph look?

» What kind of scheduling seems like it will work?

» How should the data be distributed?

» What broad category of approach seems to fit?
Data parallel, Task graph distribution,
Work-pool/Manager-worker, Stream/Pipeline

