
MPI and Communication Patterns

Chris Kauffman

CS 499: Spring 2016 GMU

Mini-exam 1 back

Stat Val
Count 34
Average 35.44 88.6%
Median 36.50 91.3%
Standard Deviation 3.32 8.3%

Results overall good

Logistics

Today

I Mini-exams back
I HW 2 Overview
I Finish up discussion of heat
I Collective Communication

Reading: Grama Ch 6 + 4

I Ch 6: MPI basics
I Ch 4: Communication

patterns

Career Fair!
I 11:00 a.m.- 4:00 p.m.
I Dewberry Hall, Johnson

Center
I Wed 2/17: Science/Tech
I Thu 2/18:

Business/Non-tech

From Last Time

I What are the two basic operations required for distributed
memory parallel programming?

I Describe some variants for these operations.
I What is a very common library for doing distributed parallel

programming?
I How do the two main operations look in that library?
I How does one compile/run programs with this library?

Answers
I send(data,count,dest) and

receive(data,count,source) are the two essential ops for
distributed parallel programming

I send/receive can be
I blocking: wait for the partner to link up and complete the

transaction
I non-blocking: don’t wait now but check later to before

using/changing the message data
I buffered: a special area of memory is used to facilitate the

sends more efficiently
I MPI: The Message Passing Interface, common distributed

memory programming library
I Send and Receive in MPI

MPI_Send(buf, len, MPI_INT, dest, MPI_COMM_WORLD);
MPI_Recv(buf, len, MPI_INT, source, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
I Compile/Run

mpicc -o prog parallel-program.c
mpirun -np 8 prog

Exercise: MPI version of HW1’s heat.c

I How should data in H divided among procs?
I Is communication required?
I How would one arrange MPI_Send / MPI_Recv calls?
I How much data needs to be transferred and between who?
I When the computation is finished, how can all data be

displayed?

Where might the following be used?

int MPI_Init(int *argc, char ***argv) ;
int MPI_Finalize() ;
int MPI_Comm_size(MPI_Comm comm, int *size);
int MPI_Comm_rank(MPI_Comm comm, int *rank);
int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,
MPI_Status *status);

Patterns of Communication

I Common patterns exist in many algorithms
I Reasoning about algorithms easier if these are "primitives"

I "I’ll broadcast to all procs here and gather all results here"
vs
"I’ll use a loop here to send this data to every processor and a
loop here for every processor to send its data to proc 0 which
needs all of it."

I MPI provides a variety of collective communication operations
which make these single function calls

I Vendors of super-computers usually implement those functions
to run as quickly as possible on the network provided -
repeated halving/double if the network matches

I By making the function call, you get all the benefit the
network can provide in terms of speed

Broadcasting One-to-All

Source: Shun Yan Cheung Notes on MPI

I Root processor wants to transmit data buffer to all processors
I Broadcast distributes to all procs
I Each proc gets same stuff in data buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Broadcast Example Code

In broadcast_demo.c

// Everyone allocates
data = (int*)malloc(sizeof(int) * num_elements);

// Root fills data by reading from file/computation
if(procid == root_proc){

for(i=0; i<num_elements; i++){
data[i] = i*i;

}
}

// Everyone calls broadcast, root proc sends, others receive
MPI_Bcast(data, num_elements, MPI_INT, root_proc,

MPI_COMM_WORLD);
// data[] now filled with same portion of root_data[] on each proc

Scatter from One To All

Source: Shun Yan Cheung Notes on MPI

I Root processor has slice of data for each proc
I Scatter distributes to each proc
I Each proc gets an individualized message

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Scatter Example

In scatter_demo.c

// Root allocates/fills root_data by reading from file/computation
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
for(i=0; i<total_elements; i++){

root_data[i] = i*i;
}

}

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Everyone calls scatter, root proc sends, others receive
MPI_Scatter(root_data, elements_per_proc, MPI_INT,

data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

// data[] now filled with unique portion from root_data[]

Gather from All to One

Source: Shun Yan Cheung Notes on MPI

I Every processor has data in send buffer
I Root processor needs all data ordered by proc_id
I Root ends with all data in a receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Gather Example
In gather_demo.c
// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

/* Each proc fills data[] with unique values */
int x = 1;
for(i=0; i<elements_per_proc; i++){

data[i] = x;
x *= (procid+2);

}
// data[] now filled with unique values on each proc

// Root allocates root_data to be filled with gathered data
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
}

// Everyone calls gather, root proc receives, others send
MPI_Gather(data, elements_per_proc, MPI_INT,

root_data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

// root_data[] now contains each procs data[] in order

All Gather: Everyone to Everyone

Source: Shun Yan Cheung Notes on MPI

I Every processor has data in send buffer
I All processors need all data ordered by proc_id
I All procs end with all data in receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

All-Gather Example
In allgather_demo.c

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

/* Each proc fills data[] with unique values */
int x = 1;
for(i=0; i<elements_per_proc; i++){

data[i] = x;
x *= (proc_id+2);

}
// data[] now filled with unique values on each proc

// Everyone allocates all_data to be filled with gathered data
all_data = malloc(sizeof(int) * total_elements);

// Everyone calls all-gather, everyone sends and receives
MPI_Allgather(data, elements_per_proc, MPI_INT,

all_data, elements_per_proc, MPI_INT,
MPI_COMM_WORLD);

// all_data[] now contains each procs data[] in order on
// all procs

Reduction: All to One

Source: Shun Yan Cheung Notes on MPI

I Every processor has data in send buffer
I Root processor needs all data reduced

I Reduction operation is transitive
I Several pre-defined via constants
I Common: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

I Root ends with reduced data in receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Reduce Example

{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){

data[i] = x;
x *= (procid+2);

}
// data[] now filled with unique values on each proc

// Root allocates root_data to be filled with reduced data
if(procid == root_proc){

root_data = malloc(sizeof(int) * total_elements);
}

// Everyone calls reduce, root proc receives,
// others send and accumulate
MPI_Reduce(data, root_data, total_elements, MPI_INT,

MPI_SUM, // operation to perform on each element
root_proc, MPI_COMM_WORLD);

// root_data[] now contains each procs data[] summed up
}

Reduction: All to All

Source: Shun Yan Cheung Notes on MPI

I Every processor has data in send buffer
I All processors need all data reduced
I All procs end with reduced data in a receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Allreduce Example

{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){

data[i] = x;
x *= (procid+2);

}
// data[] now filled with unique values on each proc

// Everyone allocates reduced_data to be filled with reduced data
reduced_data = malloc(sizeof(int) * total_elements);

// Everyone calls reduce, everyone sends and receives
MPI_Allreduce(data, reduced_data, total_elements, MPI_INT,

MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD);

// reduced_data[] now contains each procs data[] summed up
}

In-place Reduction

I Occasionally want to do reductions in-place: send and receive
buffers are the same.

I Useful for updating pagerank array in HW2
I Use MPI_IN_PLACE for the send buffer

{ // Everyone calls reduce, everyone sends and receives
MPI_Allreduce(MPI_IN_PLACE, data, total_elements, MPI_INT,

MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD);

// data[] now contains each procs data[], min elements
}

Summary of Communications

Operation MPI Function Synopsis HW2?
Individual

Send MPI_Send One-to-one send
Receive MPI_Recv One-to-one receive
Send/Receive MPI_Sendrecv One-to-one send/receive X

Collective
Barrier MPI_Barrier All wait for stragglers -
Broadcast MPI_Bcast Root to all else, same data X
Scatter MPI_Scatter Root to all else, different data X
Gather MPI_Gather All to root, data ordered X
Reduce MPI_Reduce All to root, data reduced
All-Gather MPI_Allgather All to all, data ordered X
All-Reduce MPI_Allreduce All to all, data reduced X

Not Discussed
Prefix MPI_Prefix All-to-all, data ordered/reduced
All-to-AllP MPI_Alltoall All-to-all, personal messages

Exercise: Plan for Pagerank

PROCEDURE PAGERANK:

load N by N matrix LINKS from file

// Normalize LINKS matrix
allocate COL_SUMS array size N
fill COL_SUMS with sum of each column of LINKS
divide each entry A[r,c] by COLSUM[c]

// Setup rank arrays
allocate CUR_RANKS array size N
allocate OLD_RANKS array size N
initialize elements of OLD_RANKS to 1/N

// Main loop to iteratively compute pageranks
repeat

CUR_RANKS = LINKS * OLD_RANKS // matrix mult
verity sum of CUR_RANKS is 1 // error checking
DIFF = sum(abs(CUR_RANKS - OLD_RANKS))
if DIFF < tolerance

exit loop
copy CUR_RANKS to OLD_RANKS

end

CUR_RANKS are the pageranks of pages

I Where are there
opportunities for
parallelization?

I Which collective
communication
operations will be
required and where
would you put them?

I Where will the answer
be stored at the end
of the day?

Vector Versions

I Collective comm ops like MPI_Scatter assume same amount
of data to/from each processor

I Not a safe assumption for many problems (Pagerank)
I Vector versions of each comm op exist which relax these

assumptions
I Provide additional arguments indicating

I counts: How many elements each proc has
I displs: Offsets elements are/will be stored in master array

Operation Equal counts Different counts
Broadcast MPI_Bcast
Scatter MPI_Scatter MPI_Scatterv
Gather MPI_Gather MPI_Gatherv
All-Gather MPI_Allgather MPI_Allgatherv
Reduce MPI_Reduce
All-Reduce MPI_Allreduce

MPI_Scatterv Example

Source: SKIRT Docs

// P0 P1 P2
int counts[] = { 3, 1, 2};
int displs[] = { 0, 3, 4};
// P0 P0 P0 P1 P2 P2
int send[] = { 10, 20, 30, 40, 50, 60 };
int *recv = malloc(counts[rank] * sizeof(int));
MPI_Scatterv(send, counts, displs, MPI_INT,

recv, counts[rank], MPI_INT,
0, MPI_COMM_WORLD);

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

MPI_Gatherv Example

Source: SKIRT Docs

int total = 6;
int counts[] = { 3, 1, 2};
int displs[] = { 0, 3, 4};
int send[counts[rank]];
int *recv, i;
for(i=0; i<counts[rank]; i++){

send[i] = rank*(i+1);
}

recv = (rank !=0) ? null :
malloc(total * sizeof(int));

MPI_Gatherv(
send, counts[rank], MPI_INT,
recv, counts, displs, MPI_INT,
0, MPI_COMM_WORLD);

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

Dynamic Count and Displacements for Vector Comm Ops
I Common problem: # of procs does not evenly divide input size
I Use the vector versions of collective ops
I To calculate counts and displacements and spread work evenly,

use a pattern like the below (see scatterv_demo.c)

int total_elements = 16;
int *counts = malloc(total_procs * sizeof(int));
int *displs = malloc(total_procs * sizeof(int));

// Divide total_elements as evenly as possible: lower numbered
// processors get one extra element each.
int elements_per_proc = total_elements / total_procs;
int surplus = total_elements % total_procs;
for(i=0; i<total_procs; i++){

counts[i] = (i < surplus) ? elements_per_proc+1 : elements_per_proc;
displs[i] = (i == 0) ? 0 : displs[i-1] + counts[i-1];

}
// counts[] and displs[] now contain relevant data for a scatterv,
// gatherv, all-gatherv calls

