MPI| and Communication Patterns

Chris Kauffman

CS 499: Spring 2016 GMU

Mini-exam 1 back

Stat Val

Count 34

Average 35.44 88.6%
Median 36.50 91.3%
Standard Deviation 3.32 8.3%

Results overall good

Logistics

Today

» Mini-exams back
» HW 2 Overview
» Finish up discussion of heat

» Collective Communication

Reading: Grama Ch 6 + 4
» Ch 6: MPI basics

» Ch 4: Communication
patterns

Career Fairl!

» 11:00 a.m.- 4:00 p.m.

» Dewberry Hall, Johnson
Center

» Wed 2/17: Science/Tech

» Thu 2/18:
Business/Non-tech

From Last Time

» What are the two basic operations required for distributed
memory parallel programming?

» Describe some variants for these operations.

» What is a very common library for doing distributed parallel
programming?

» How do the two main operations look in that library?

» How does one compile/run programs with this library?

Answers

» send(data,count,dest) and
receive(data,count,source) are the two essential ops for
distributed parallel programming

» send/receive can be

» blocking: wait for the partner to link up and complete the
transaction

» non-blocking: don't wait now but check later to before
using/changing the message data

» buffered: a special area of memory is used to facilitate the
sends more efficiently

» MPI: The Message Passing Interface, common distributed
memory programming library

» Send and Receive in MPI
MPI_Send(buf, len, MPI_INT, dest, MPI_COMM_WORLD) ;
MPI_Recv(buf, len, MPI_INT, source, MPI_COMM_WORLD,

MPI_STATUS_IGNORE) ;

» Compile/Run
mpicc -o prog parallel-program.c
mpirun -np 8 prog

Exercise: MPI version of HW1's heat.c

v

How should data in H divided among procs?

v

Is communication required?

v

How would one arrange MPI_Send / MPI_Recv calls?

How much data needs to be transferred and between who?

v

v

When the computation is finished, how can all data be
displayed?
Where might the following be used?

int MPI_Init(int *argc, char *x*argv) ;

int MPI_Finalize() ;

int MPI_Comm_size (MPI_Comm comm, int *size);

int MPI_Comm_rank(MPI_Comm comm, int *rank);

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

Patterns of Communication

» Common patterns exist in many algorithms
» Reasoning about algorithms easier if these are "primitives"
» "I'll broadcast to all procs here and gather all results here"
Vs
"I'll use a loop here to send this data to every processor and a
loop here for every processor to send its data to proc 0 which
needs all of it."
» MPI provides a variety of collective communication operations
which make these single function calls

» Vendors of super-computers usually implement those functions
to run as quickly as possible on the network provided -
repeated halving/double if the network matches

» By making the function call, you get all the benefit the
network can provide in terms of speed

Broadcasting One-to-All

PO b)] b P2 b Ps
")) e
MPI_Bcast(biif, ..., 0, ...);
P P Pz P

0
b buf buf buf
u (Comn| Y [Com]

Source: Shun Yan Cheung Notes on MPI

» Root processor wants to transmit data buffer to all processors
» Broadcast distributes to all procs

» Each proc gets same stuff in data buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Broadcast Example Code

In broadcast_demo.c

// Everyone allocates
data = (int*)malloc(sizeof(int) * num_elements);

// Root fills data by reading from file/computation
if (procid == root_proc){
for(i=0; i<num_elements; i++){
datali] = i*i;
}
}

// Everyone calls broadcast, root proc sends, others receive
MPI_Bcast(data, num_elements, MPI_INT, root_proc,

MPI_COMM_WORLD) ;
// datal[] now filled with same portion of root_datal[] on each proc

Scatter from One To All

send Py s%rlz& 51 S%’,ﬁ P, sgn Py

b
”f [o i R []

MPI_Secatter(sendbuf, .}, recvbuf, .., 0, ... };

Buf i buf " buf 2oy B
i
[Ennn]] -

Source: Shun Yan Cheung Notes on MPI

» Root processor has slice of data for each proc
» Scatter distributes to each proc

» Each proc gets an individualized message

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Scatter Example

In scatter_demo.c

// Root allocates/fills root_data by reading from file/computation
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);
for(i=0; i<total_elements; i++){
root_datal[i] = i*i;
}
}

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

// Everyone calls scatter, root proc sends, others receive
MPI_Scatter(root_data, elements_per_proc, MPI_INT,
data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);
// datal] now filled with unique portion from root_datal[]

Gather from All to One

A B AL .
U
[N [T WEE]|

MPI Gather(sendbuf, .}., recvbuf, .., 0, ...);

recv P recy
0 uf‘

™ [

FECY FECV
It M

Djjj |

Source: Shun Yan Cheung Notes on MPI

» Every processor has data in send buffer
» Root processor needs all data ordered by proc_id

» Root ends with all data in a receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Gather Example

In gather_demo.c

// Everyone allocates for their share of data including root
data = malloc(sizeof(int) * elements_per_proc);

/* Each proc fills data[] with unique values */
int x = 1;
for(i=0; i<elements_per_proc; i++){

datali] = x;

x *= (procid+2);

}

// datal] now filled with unique values on each proc

// Root allocates root_data to be filled with gathered data
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);

3

// Everyone calls gather, root proc receives, others send

MPI_Gather(data, elements_per_proc, MPI_INT,
root_data, elements_per_proc, MPI_INT,
root_proc, MPI_COMM_WORLD);

// root_datal[] now contains each procs datal]l in order

All Gather: Everyone to Everyone

A B R
14
[Enmn]ipay[unw]

AllGather(sendbuf, .., recvbuf, .., 0, ... };

.I"CV

\[E[D\

recv P recv
uf ‘

" [

F‘(;Jl«"f
[E[D\ \ |

Source: Shun Yan Cheung Notes on MPI

» Every processor has data in send buffer
» All processors need all data ordered by proc_id

» All procs end with all data in receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

All-Gather Example

In allgather_demo.c

// Everyone allocates for their share of data including root
data = malloc(sizeof (int) * elements_per_proc);

/* Each proc fills datal[] with unique values */
int x = 1;
for(i=0; i<elements_per_proc; i++){
datali] = x;
x *= (proc_id+2);
}

// datal[] now filled with unique values on each proc

// Everyone allocates all_data to be filled with gathered data
all_data = malloc(sizeof(int) * total_elements);

// Everyone calls all-gather, everyone sends and receives

MPI_Allgather(data, elements_per_proc, MPI_INT,
all_data, elements_per_proc, MPI_INT,
MPI_COMM_WORLD) ;

// all_datal[] now contains each procs datal] in order on

// all procs

Reduction: All to One

VA S SR M
i
) e

MPI_Reduce(sendbuf, .., recvbuf, .., MPL OP, 0, ...);

-
-
-

-

_—

FECV I‘ FECV
%‘"’f uf‘

b“f-) e

Source: Shun Yan Cheung Notes on MPI

recv
uf‘

» Every processor has data in send buffer
» Root processor needs all data reduced
» Reduction operation is transitive
» Several pre-defined via constants
» Common: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

» Root ends with reduced data in receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Reduce Example

{ // Each proc fills data[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){
datal[i] = x;
x *= (procid+2);
}

// data[] now filled with unique values on each proc

// Root allocates root_data to be filled with reduced data
if (procid == root_proc){
root_data = malloc(sizeof(int) * total_elements);

}

// Everyone calls reduce, root proc receives,

// others send and accumulate

MPI_Reduce(data, root_data, total_elements, MPI_INT,
MPI_SUM, // operation to perform on each element
root_proc, MPI_COMM_WORLD);

// root_datal[] now contains each procs data[] summed up

Reduction: All to All

VA S SR M
i
) e

MPI_AlIReduce(sendbuf, 1., recvbuf, .., MPL OP, 0, ...);

-
-

-

\ljjj\

Source: Shun Yan Cheung Notes on MPI

recy t%c-vf

b“f-

recy recy
uf‘ uf‘

» Every processor has data in send buffer
» All processors need all data reduced
» All procs end with reduced data in a receive buffer

http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/92-MPI/group-comm.html

Allreduce Example

{ // Each proc fills datal[] with unique values
int x = 1;
for(i=0; i<total_elements; i++){
datal[i] = x;
x *= (procid+2);
}

// datal[] now filled with unique values on each proc

// Everyone allocates reduced_data to be filled with reduced data
reduced_data = malloc(sizeof(int) * total_elements);

// Everyone calls reduce, everyone sends and receives

MPI_Allreduce(data, reduced_data, total_elements, MPI_INT,
MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD) ;

// reduced_data[] now contains each procs datal[] summed up

In-place Reduction

» Occasionally want to do reductions in-place: send and receive
buffers are the same.

» Useful for updating pagerank array in HW2
» Use MPI_IN_PLACE for the send buffer

{ // Everyone calls reduce, everyone sends and receives
MPI_Allreduce(MPI_IN_PLACE, data, total_elements, MPI_INT,
MPI_SUM, // operation to perform on each element
MPI_COMM_WORLD) ;
// data[] now contains each procs datal[], min elements

}

Summary of Communications

Operation MPI Function Synopsis HW27
Individual

Send MPI_Send One-to-one send

Receive MPI_Recv One-to-one receive

Send/Receive MPI_Sendrecv One-to-one send/receive X
Collective

Barrier MPI_Barrier All wait for stragglers -

Broadcast MPI_Bcast Root to all else, same data X

Scatter MPI_Scatter Root to all else, different data X

Gather MPI_Gather All to root, data ordered X

Reduce MPI_Reduce All to root, data reduced

All-Gather MPI_Allgather All to all, data ordered X

All-Reduce MPI_Allreduce All to all, data reduced X
Not Discussed

Prefix MPI_Prefix All-to-all, data ordered/reduced

All-to-AllP MPI_Alltoall All-to-all, personal messages

Exercise: Plan for Pagerank

PROCEDURE PAGERANK:
load N by N matrix LINKS from file

// Normalize LINKS matrix

allocate COL_SUMS array size N

fill COL_SUMS with sum of each column of LINKS
divide each entry A[r,c] by COLSUM[c]

// Setup rank arrays >
allocate CUR_RANKS array size N

allocate OLD_RANKS array size N

initialize elements of OLD_RANKS to 1/N

// Main loop to iteratively compute pageranks
repeat
CUR_RANKS = LINKS * OLD_RANKS // matrix mult
verity sum of CUR_RANKS is 1 // error checking
DIFF = sum(abs(CUR_RANKS - OLD_RANKS))
if DIFF < tolerance
exit loop
copy CUR_RANKS to OLD_RANKS
end

>

Where are there
opportunities for
parallelization?

Which collective
communication
operations will be
required and where
would you put them?

Where will the answer
be stored at the end
of the day?

Vector Versions

» Collective comm ops like MPI_Scatter assume same amount
of data to/from each processor

» Not a safe assumption for many problems (Pagerank)
» Vector versions of each comm op exist which relax these
assumptions

» Provide additional arguments indicating

» counts: How many elements each proc has
» displs: Offsets elements are/will be stored in master array

Operation Equal counts Different counts
Broadcast MPI_Bcast

Scatter MPI_Scatter MPI_Scatterv
Gather MPI_Gather MPI_Gatherv
All-Gather MPI_Allgather MPI_Allgatherv
Reduce MPI_Reduce

All-Reduce MPI_Allreduce

MPI_Scatterv Example

Filled send Empty Safe to Filled
buffer receive buffer overwrite receive buffer

Empty send Empty Safe to Filled
buffer receive buffer overwrite receive buffer
Memory
Source: SKIRT Docs
// PO P1 P2
int counts[] = { 3, 1, 2};
int displs[] = { 0, 3, 4};
// PO PO PO P1 P2 P2
int send[] = { 10, 20, 30, 40, 50, 60 };

int *recv = malloc(counts[rank] * sizeof(int));
MPI_Scatterv(send, counts, displs, MPI_INT,
recv, counts[rank], MPI_INT,
0, MPI_COMM_WORLD);

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

MPI_Gatherv Example

Filled send Empty Safe to Filled
buffer receive buffer overwrite receive buffer
—— A
ProcessA [
Process B []
ProcessC [] 11 'ﬂ..."l
— y —_—
Filled send Empty Safe to Empty
buffer receive buffer overwrite receive buffer
Memory

Source: SKIRT Docs

int total = 6; recv = (rank '=0) ? null

int counts[] = { 3, 1, 2}; malloc(total * sizeof(int));

int displs[] = { 0, 3, 4};

int send[counts[rank]]; MPI_Gatherv(

int *recv, ij; send, counts[rank], MPI_INT,

for(i=0; i<counts[rank]; i++){ recv, counts, displs, MPI_INT,
send[i] = rank*(i+1); 0, MPI_COMM_WORLD) ;

}

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html

Dynamic Count and Displacements for Vector Comm Ops

» Common problem: # of procs does not evenly divide input size
» Use the vector versions of collective ops

» To calculate counts and displacements and spread work evenly,
use a pattern like the below (see scatterv_demo.c)

int total_elements = 16;
int *counts = malloc(total_procs * sizeof(int));
int *displs = malloc(total_procs * sizeof(int));

// Divide total_elements as evenly as possible: lower numbered

// processors get one extra element each.

int elements_per_proc = total_elements / total_procs;

int surplus total_elements % total_procs;

for(i=0; i<total_procs; i++){
counts[i] = (i < surplus) 7 elements_per_proc+l : elements_per_proc;
displs[i] = (i == 0) 7 O : displs[i-1] + counts[i-1];

}

// counts[] and displs[] now contain relevant data for a scatterv,

// gatherv, all-gatherv calls

