
Parallel Program Performance Analysis

Chris Kauffman

CS 499: Spring 2016 GMU



Logistics

Today

I Final details of HW2
interviews

I HW2 timings
I HW2 Questions
I Parallel Performance

Theory

Special Office Hours

I Mon 2/29 3:30-4:30
I Don’t wait until the

last minute to start
HW2

Reading: Grama Ch 5

I Performance Analysis
I Performance Metrics

Schedule

Tue 2/23 PageRank & MPI
Thu 2/25 Performance Analysis
Mon 2/29 HW 2 Due 11:59pm
Tue 3/1 Performance Analysis
Thu 3/3 Guest Lecture, Mini-Exam 2
3/1-3/4 HW 2 Interviews



HW2 Interview Logistics
Will post a means to sign up for GTA interview time shortly.
Synopsis:

I 20-minute interview

I Demonstrate compiling and running a parallel program interactively
on medusa

I Demonstrate submitting a parallel job on the batch queue with a
certain number of processors

I Outline how the Problem 1: Heat program was parallelized

I Give a brief walk-through of code for Problem 1: Heat

I Explain some MPI calls as they appear in the Heat program

I Outline how the Problem 2: Pagerank program was parallelized

I Explain some MPI calls as they appear in the Pagerank program

I Describe timing results associated with parallel Pagerank runs with
different numbers of processors and input sizes

I For groups of 2, interviewer may direct a question at individual
group members to assess that both members understand the content



Specific Sample Interview Questions
I "Here you called MPI_XXX(...) in your Pagerank code. What

is being accomplished there and why is it necessary?"
I "What kind of decomposition did you use for your parallel

Heat code? What kind of communication did it require?"
I "Show me the timing results for running your Pagerank code

on 4, 8, and 16 processors for the notredame-8000.txt
graph."

I "Show me how you would run your parallel Heat program with
8 processors and width 64 interactively."

I "Submit a job to the batch queue which runs your parallel
Heat program with 8 processors and width 64 and puts the
output in testout.txt."

I "At the end of your Pagerank program, where are is the entire
array of Pageranks stored? Show me where this happens in
your code."

Other similar questions possible.



Warm-up / Review

Draw pictures or show examples of the following collective
communication operations

Operation MPI Function
Broadcast MPI_Bcast
Scatter MPI_Scatter
Gather MPI_Gather
All-Gather MPI_Allgather
Reduce MPI_Reduce
All-Reduce MPI_Allreduce



PageRank Planning

I Overview Matrix-vector multiplication and parallel
decomposition

I Discuss Vector Versions of Collective Comm Ops
I Spend more time planning/coding for PageRank
I Determine specifically which collective comm operations are

needed at which parts of the program



Evaluating Parallel Algorithms
I Model problem: adding N numbers
I Ts: Serial execution time
I Tp: Parallel execution time
I Parallel Metrics

I Speedup: S = Ts / Tp
I Efficiency: E = S / P
I Cost: C = Tp * P

I Amount of work W = time for best serial algorithm to
complete, akin to problem size

Amdahl’s Law
Speedup is limited by the portion of the program that can be
parallelized and the degree to which that portion can be parallelized

I W = Wser + Wpar

I Supposing Wpar can be reduced to near 0 through parallelism
I Speedup S = W / Wser : upper bound on speedup
I More refined versions of Amdahl’s law exist (see Wikipedia)



Exercise: Expensive Summing

I Adding N numbers on P = N processors can be done in
2 ∗ log2 N steps. How?

I Standard serial algorithm takes N steps to sum N numbers.
I For 8, 32, and 1024 processors, calculate

I Speedup: S = Ts/Tp
I Efficiency: E = S/P
I Cost: C = Tp ∗ P

I What happens to efficiency as N increases
I Give an analytic expression for the Efficiency of this algorithm

for any N
I Is this algorithm worth the cost in terms of processors?



Exercise: Realistic Summing
I Adding N numbers on P < N processors can be done in

N/P + 2 ∗ log2 P steps. How?
I Standard serial algorithm takes N steps to sum N numbers.
I Fill in the following table

I Speedup: S = Ts/Tp
I Efficiency: E = S/P
I Cost: C = Tp ∗ P

P N Speedup Efficiency Cost
4 64
8 64
8 192

16 192
16 512

I What happens to efficiency as N increases
I Give an analytic expression for the Efficiency of this algorithm

for any N and P
I How fast does N need to increase to maintain efficiency?



Answers from Textbook (Grama Ch 5.4)

Table 5.1. Efficiency as a function of N and P for adding N
numbers on P processing elements.

n p=1 p=4 p=8 p=16 p=32
64 1.0 0.80 0.57 0.33 0.17

192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62



Observations about Efficiency

I E Decreases as number of processors increases while work
remains fixed

I E Increases as number of processors remains fixed while work
increases



Isoefficiency and Parallel Overhead
I Isoefficiency: to go from P processors to P + K processors,

amount that work needs to increase to keep efficiency
constant; a function of processors and problem size

I Isoefficiency: W = K To(W, P)
I K = E/(1-E): constant based on target efficiency
I To(W, P): parallel overhead based on algorithm/system

I Smaller isoefficiency is better, indicates more processors can be
added

I Parallel overheaad: To = PTp − Ts
I For adding N numbers on P processors

To(N,P) = N − P ∗ (N
P

+ 2 log2(P))

To(N,P) = N − N + 2P log2(P)

To(N,P) = 2P log2(P)

I For adding N numbers on P procs
I Increase P to 2 ∗ P
I Increase N by 2 ∗ (2 ∗ P) ∗ log2(2 ∗ P)
I Stay at the same efficiency E


