Shared Memory Architectures

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Today

» Shared Memory Architecture
Theory/Practicalities

» Cache Performance Effects

> Next Week: OpenMP for
shared memory machines

Reading

» Grama 2.4.1 (PRAM), 2.4.6
(cache)

» Grama 7.10 (OpenMP)

» OpenMP Tutorial at
Laurence Livermorem

HW 3: Up later today

Problem 1: IPC Heat
Problems 2&3: Textbook

Problem 4: OpenMP
Exercises

Due: Fri 4/1 (8 days)

v

v

v

v

Mini-exam 3
Thu: 4/7

https://computing.llnl.gov/tutorials/openMP
https://computing.llnl.gov/tutorials/openMP

PRAM: Parallel Random Access Machine
Grama Ch 2.4.1
RAM: Random access machine

» An unfortunate name, but so it goes
» Single CPU attached to random access memory

» Simplistic model for a real machine: CPU reads memory,
performs operations in registers, writes to memory, repeates

Parallel alternative to RAM: PRAM

v

Again, theoretical model for a real parallel machine

v

Multiple CPUs attached to memory, share clock but can
execute different instructions

v

In some version of PRAM, allowed infinite processors

Question: What immediate problems are there with PRAM
that don't exist in RAM?

v

Theoretical Flavors of PRAM
Exclusive-read, exclusive-write (EREW) PRAM

Multiple CPUs cannot touch same memory at all. No concurrency
possible for reads or writes

Concurrent-read, exclusive-write (CREW) PRAM

Multiple CPUs can read same location at same time. Writes to
same location must be resolved.

Exclusive-read, concurrent-write (ERCW) PRAM

Multiple write accesses are allowed to a memory location, but
multiple read accesses are serialized. (This is just weird)

Concurrent-read, concurrent-write (CRCW) PRAM

Multiple read and write accesses to a common memory location.
This is the most "powerful" PRAM model.

What is meant by powerful here?

Anything flaws in the above classification?

Resolution Schemes for Concurrent Reads/Writes

» Common, in which the concurrent write is allowed if all the
values that the processors are attempting to write are identical.

» Arbitrary, in which an arbitrary processor is allowed to proceed
with the write operation and the rest fail.

» Priority, in which all processors are organized into a predefined
prioritized list, and the processor with the highest priority
succeeds and the rest fail.

» Sum, in which the sum of all the quantities is written

None of these deal with resolution resolution of concurrent
read /write

MEM[1024] is 10
PO reads MEM[1024] into R1
P1 writes 20 to MEM[1024]

But deeper studies of PRAM might resolve this (everyone reads
first, then writes if needed...)

Pros and Cons of PRAM

Why the PRAM Model?

> It's simple
» Lots of study of different algorithms

» Has significant theoretical importance

Why Not PRAM

» No general machine currently implements the model

» Seen some references that GPUs might sort of implement but
would require some more work

» Conclusions one might draw about "good" algorithms is
skewed

Recall the Cache

» Parallel programs are driven towards performance

» Optimize serial performance first: requires understanding of
the memory hierarchy

» From your computer architecture experience. ..

» Describe a memory cache and why most CPUs have several
layers of them

» Give an example of strange cache effects

Matrix Multiplication Examples

Sum R Sum C

double X[N][N]; // N by N mat double X[N][N]; // N by N mat

sum = 0; sum = 0;
for(i=0; i<N; i++){ for(j=0; j<N; j++){
for(j=0; j<N; j++){ for(i=0; i<N; i++){
sum += X[i] [j] sum += X[i] [j]
} }
} }

» What's the Big O complexity of each?
» What happens with cache?
» Will one be faster than the other?

Numbers Everyone Should Know

Edited Excerpt of Jeff Dean's talk on data centers.

Reference Time Analogy
Register - Your brain

L1 cache reference 0.5 ns Your desk

L2 cache reference 7 ns Neighbor's Desk
Main memory reference 100 ns This Room

Disk seek 10,000,000 ns Salt Lake City

Does Big-O analysis capture these effects?

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Cache Affects Performance
As measured by hardware counters using linux's perf on

model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
cache size : 6144 KB

with

perf stat $opts java MatrixSums 8000 4000 row
perf stat $opts java MatrixSums 8000 4000 col

Measurement row col

cycles 3,507,364,715 5,605,621,966
instructions 2,353,887,029 2,543,165,478
L1-dcache-loads 527,694,054 561,540,169
L1-dcache-load-misses 25,638,014 122,663,199
Runtime (seconds) 1.001 1.620

L1 data cache load misses
» Row: 25K /548K = 4% main memory access
» Col: 122/585K = 20% main memory access

Caches Strike Back

Consider a Typical Shared Memory machine
» Single hunk of RAM (random access memory)
» Several CPUs (2, 4, 8 typical)

Where does the cache live and why is this a problem?

Cache Problems

single core AMD Optetron, Athion intel Core Duo, Xeon iritel ftanium 2
| Core | | Core 0 | | Core 1 | | Core 0 | | Core 1 | | Core 0 | | Core1 |
[L1 cache | [L1 cache | [L1cache | [L1 cache | [L1cache | [L1 cache | [Licache |
| L2 cache | | L2 cache | | L2 cache | | L2 cache |

) EEE

Source: Multi-core, Threads & Message Passing by llya Grigorik

Consider cache coherencef

// MEM[1024] has value 5

PO: load R1 MEM[1024] // slow, populates cache

PO: load R2 MEM[1024] // fast, from cache

PO: ADD R1 R1 R2 // Rl is 10

PO: store R1 MEM[1024] // cache dirty, MEM[1024] unchanged
P1: load R3 MEM[1024] // read 5 or 107

https://www.igvita.com/2010/08/18/multi-core-threads-message-passing/

Cache Coherence Protocols: Invalidate and Update

Grama 2.4.6
P Pl Pl Pl
load = load x write #3, x
x =1 x =1 x = 3
x =1 | ! - ><{
: Invalidate ')
Memory Memory
(&)
PO Pl PO Pl
load = load x write #3, x
x =1 x =1 x = 3 x = 3
®x =1 = x =3
Update —_—
Memory Memory

ik

Cache Coherence

Each element in the ProcX's
cache is one of -
Shared valid for to L

read /write

_read

read ' write

Dirty written by me, must
eventually write to
main memory

Invalid write © Dirty | read/write

C_read

C_write

Invalid someone else wrote .
it in their cache, o
must reload

Demonstration

Time

Instructionat | Instructionat | Variables and | Variables and | Variables and
Processor (1 Processor | their states at | their states at | their states in
Processor Processor | Global mem.

x =5 D
y =12, D

read x x =5, 8 x=25, 8
read ¥ ¥y =12, 8 |y = 12, 8

x=x + 1 x =6, D x=251I
¥o= oy o+ 1 =13, D |y = 12, I

read v ¥y =13, 8 =13, 5 |y = 13, 8

read x * =6, 8 |x=26, 8 *x =6, 8

=X LY *x =19, D |x =6, I *x =6, I
Y=X+¥ |y=13, I |y =19, D |y =13, I

X m X + 1 x = 20, D Xx = 6, I
y=y+1 ¥ =20, D |y=13, I

The Magical Memory Bus

Cache coherence protocols
rely on the Memory Bus

Handwavy hardware
construct to move data
around

All PEs use the bus to
communicate all other PEs

Every PE has a way of
knowing a bus message is for
it

Bus can get crowded if there
there are lots of memory
requests

Can alleviate somewhat
through caches but that
leads to trouble

Address

Processar ()

Data

Address

Processor 0

Datn

=

Cache /
Local Memory

Processor |

Shared Memory

Shared Memory

Snoopy Cache

ﬂ\ﬂ! P‘mcuﬂ Processor
z 2|,],
:;. é‘ Cache :; | E"‘ Cache ?l.._ I E,." Cache
Dirty
M D Addressida
F. idressidata
¢ |)
‘ Memory
Basics Example
» Additional hardware watches » x in PO cache dirty
messages on the bus . .
& » x in Global mem invalid
» Writing to cache invalidates » P1 reads x
global memory > PO "snoops" request
» Message pertaining to a » Flushes x to global mem
dirty memory address cause > P1 can read x from global
flush, state back to shared » x is now shared

Cache Coherence Overall

» Coordinating caches across several cores and main memory is
complex

» Requires additional hardware such for Snooping, alternatively
Directory-based approach (textbook)

» Be sensitive to read/write conflicts: avoid when possible

» Look for false sharing due to cache (next)

Different Variable but Same Cache Line — Collisions

void collide(){

int x=42;
» Performance problem: two int y=31;
processors grinding on if (proc_id == 0){
different but close variables int 1;))
for(i=0; i<1000; i++){
» Consider the following x = (x+1)*(x+3)/x;
program: x,y are adjacent }
in main memory, likely to }
share same cache line elée{ .
» ProcO and Procl each have ;22(;0; 1<1000; 1+4)9
own cache, will interfere with v = y/2;
one another despite working y = y+2xy;
on different variables }
}

3

Small Stacks for Threads — False Sharing Collisions

#include <pthread.h>

#include <stdio.h>

void *fx(void *param) {
int i, x=(int) param;

for(i=0; i<1000; i++){ int main(int argc, char *argv[]) {

x = (x+1)%(x+3) /x: pthread_t thread_1;
printf ("x %d\n",x); pthread_t thread_2;

} e pthread_create(&thread_1, NULL,
fx, 42);
return (void *) x; *)

} pthread_create(&thread_2, NULL,
fy, 31);

int *xres, *yres;
pthread_join(thread_1, &xres);
pthread_join(thread_2, &yres);
printf("x is %d\ny is %d\n",

void *fy(void *param){
int i, y=(int) param;
for(i=0; i<1000; i++){

g : ?i;iy‘ (int) xres, (int) yres);
printf("y %d\n",y); r

}

return (void *) y;

}

False Sharing of Thread Stacks

Main memory Main memory
s s
o®a o®a
- 22 o2l
SEQ < PRI
4G £4g
92> 2>
9]
D
s
> - i @
=
- - ®
o222 ocoe
e} o
3w < 3E® <
== 29 =
= 5 © = 5 @
3> Fg>
~ “
Figure 9.1 Per-thread variable memory layout Figure 9.2 Memory layout showing cache line
boundaries

Source: Building Parallel Programs, Kaminsky

https://www.cs.rit.edu/~ark/bpp/

Padding Can fix This

Main memory

Thread 0
per-thread
variables

fea -]

Thread 1
per-thread
variables

Figure 9.3 Memory layout with extra padding

<— Accessed
-<+— Padding

aul| ayoe)

#include <pthread.h>
#include <stdio.h>
void *fx(void *param) {
int i, x=(int) param;
int padding[32]; // PADDING
for(i=0; i<1000; i++){
x = (x+1)*(x+3)/x;
printf("x %d\n",x);
}
return (void *) x;

}

void *fy(void *param){
int i, y=(int) param;
int padding[32]; // PADDING
for(i=0; i<1000; i++){

y = y/2;
y = yt2*y;
printf("y %d\n",y);

}
return (void *) y;

}

