
Shared Memory Architectures

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Today

I Shared Memory Architecture
Theory/Practicalities

I Cache Performance Effects
I Next Week: OpenMP for

shared memory machines

Reading

I Grama 2.4.1 (PRAM), 2.4.6
(cache)

I Grama 7.10 (OpenMP)
I OpenMP Tutorial at

Laurence Livermorem

HW 3: Up later today

I Problem 1: IPC Heat
I Problems 2&3: Textbook
I Problem 4: OpenMP

Exercises
I Due: Fri 4/1 (8 days)

Mini-exam 3
Thu: 4/7

https://computing.llnl.gov/tutorials/openMP
https://computing.llnl.gov/tutorials/openMP

PRAM: Parallel Random Access Machine
Grama Ch 2.4.1

RAM: Random access machine
I An unfortunate name, but so it goes
I Single CPU attached to random access memory
I Simplistic model for a real machine: CPU reads memory,

performs operations in registers, writes to memory, repeates

Parallel alternative to RAM: PRAM
I Again, theoretical model for a real parallel machine
I Multiple CPUs attached to memory, share clock but can

execute different instructions
I In some version of PRAM, allowed infinite processors
I Question: What immediate problems are there with PRAM

that don’t exist in RAM?

Theoretical Flavors of PRAM

Exclusive-read, exclusive-write (EREW) PRAM
Multiple CPUs cannot touch same memory at all. No concurrency
possible for reads or writes

Concurrent-read, exclusive-write (CREW) PRAM
Multiple CPUs can read same location at same time. Writes to
same location must be resolved.

Exclusive-read, concurrent-write (ERCW) PRAM
Multiple write accesses are allowed to a memory location, but
multiple read accesses are serialized. (This is just weird)

Concurrent-read, concurrent-write (CRCW) PRAM
Multiple read and write accesses to a common memory location.
This is the most "powerful" PRAM model.
What is meant by powerful here?
Anything flaws in the above classification?

Resolution Schemes for Concurrent Reads/Writes
I Common, in which the concurrent write is allowed if all the

values that the processors are attempting to write are identical.
I Arbitrary, in which an arbitrary processor is allowed to proceed

with the write operation and the rest fail.
I Priority, in which all processors are organized into a predefined

prioritized list, and the processor with the highest priority
succeeds and the rest fail.

I Sum, in which the sum of all the quantities is written

None of these deal with resolution resolution of concurrent
read/write

MEM[1024] is 10
P0 reads MEM[1024] into R1
P1 writes 20 to MEM[1024]

But deeper studies of PRAM might resolve this (everyone reads
first, then writes if needed. . .)

Pros and Cons of PRAM

Why the PRAM Model?

I It’s simple
I Lots of study of different algorithms
I Has significant theoretical importance

Why Not PRAM

I No general machine currently implements the model
I Seen some references that GPUs might sort of implement but

would require some more work
I Conclusions one might draw about "good" algorithms is

skewed

Recall the Cache

I Parallel programs are driven towards performance
I Optimize serial performance first: requires understanding of

the memory hierarchy
I From your computer architecture experience. . .
I Describe a memory cache and why most CPUs have several

layers of them
I Give an example of strange cache effects

Matrix Multiplication Examples

Sum R

double X[N][N]; // N by N mat
...
sum = 0;
for(i=0; i<N; i++){

for(j=0; j<N; j++){
sum += X[i][j]

}
}

Sum C

double X[N][N]; // N by N mat
...
sum = 0;
for(j=0; j<N; j++){

for(i=0; i<N; i++){
sum += X[i][j]

}
}

I What’s the Big O complexity of each?
I What happens with cache?
I Will one be faster than the other?

Numbers Everyone Should Know

Edited Excerpt of Jeff Dean’s talk on data centers.

Reference Time Analogy
Register - Your brain
L1 cache reference 0.5 ns Your desk
L2 cache reference 7 ns Neighbor’s Desk
Main memory reference 100 ns This Room
Disk seek 10,000,000 ns Salt Lake City

Does Big-O analysis capture these effects?

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Cache Affects Performance
As measured by hardware counters using linux’s perf on

model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
cache size : 6144 KB

with

perf stat $opts java MatrixSums 8000 4000 row
perf stat $opts java MatrixSums 8000 4000 col

Measurement row col
cycles 3,507,364,715 5,605,621,966
instructions 2,353,887,029 2,543,165,478
L1-dcache-loads 527,694,054 561,540,169
L1-dcache-load-misses 25,638,014 122,663,199
Runtime (seconds) 1.001 1.620

L1 data cache load misses
I Row: 25K/548K = 4% main memory access
I Col: 122/585K = 20% main memory access

Caches Strike Back

Consider a Typical Shared Memory machine
I Single hunk of RAM (random access memory)
I Several CPUs (2, 4, 8 typical)

Where does the cache live and why is this a problem?

Cache Problems

Source: Multi-core, Threads & Message Passing by Ilya Grigorik

Consider cache coherencef

// MEM[1024] has value 5
P0: load R1 MEM[1024] // slow, populates cache
P0: load R2 MEM[1024] // fast, from cache
P0: ADD R1 R1 R2 // R1 is 10
P0: store R1 MEM[1024] // cache dirty, MEM[1024] unchanged

P1: load R3 MEM[1024] // read 5 or 10?

https://www.igvita.com/2010/08/18/multi-core-threads-message-passing/

Cache Coherence Protocols: Invalidate and Update
Grama 2.4.6

Cache Coherence

Each element in the ProcX’s
cache is one of

Shared valid for to
read/write

Dirty written by me, must
eventually write to
main memory

Invalid someone else wrote
it in their cache,
must reload

Demonstration

The Magical Memory Bus

I Cache coherence protocols
rely on the Memory Bus

I Handwavy hardware
construct to move data
around

I All PEs use the bus to
communicate all other PEs

I Every PE has a way of
knowing a bus message is for
it

I Bus can get crowded if there
there are lots of memory
requests

I Can alleviate somewhat
through caches but that
leads to trouble

Snoopy Cache

Basics
I Additional hardware watches

messages on the bus
I Writing to cache invalidates

global memory
I Message pertaining to a

dirty memory address cause
flush, state back to shared

Example

I x in P0 cache dirty
I x in Global mem invalid
I P1 reads x

I P0 "snoops" request
I Flushes x to global mem
I P1 can read x from global

I x is now shared

Cache Coherence Overall

I Coordinating caches across several cores and main memory is
complex

I Requires additional hardware such for Snooping, alternatively
Directory-based approach (textbook)

I Be sensitive to read/write conflicts: avoid when possible
I Look for false sharing due to cache (next)

Different Variable but Same Cache Line → Collisions

I Performance problem: two
processors grinding on
different but close variables

I Consider the following
program: x,y are adjacent
in main memory, likely to
share same cache line

I Proc0 and Proc1 each have
own cache, will interfere with
one another despite working
on different variables

void collide(){
int x=42;
int y=31;
if(proc_id == 0){

int i;
for(i=0; i<1000; i++){

x = (x+1)*(x+3)/x;
}

}
else{

int i;
for(i=0; i<1000; i++){

y = y/2;
y = y+2*y;

}
}

}

Small Stacks for Threads → False Sharing Collisions

#include <pthread.h>
#include <stdio.h>
void *fx(void *param) {

int i, x=(int) param;
for(i=0; i<1000; i++){

x = (x+1)*(x+3)/x;
printf("x %d\n",x);

}
return (void *) x;

}

void *fy(void *param){
int i, y=(int) param;
for(i=0; i<1000; i++){

y = y/2;
y = y+2*y;
printf("y %d\n",y);

}
return (void *) y;

}

int main(int argc, char *argv[]) {
pthread_t thread_1;
pthread_t thread_2;
pthread_create(&thread_1, NULL,

fx, 42);
pthread_create(&thread_2, NULL,

fy, 31);
int *xres, *yres;
pthread_join(thread_1, &xres);
pthread_join(thread_2, &yres);
printf("x is %d\ny is %d\n",

(int) xres,(int) yres);
}

False Sharing of Thread Stacks

Source: Building Parallel Programs, Kaminsky

https://www.cs.rit.edu/~ark/bpp/

Padding Can fix This

#include <pthread.h>
#include <stdio.h>
void *fx(void *param) {

int i, x=(int) param;
int padding[32]; // PADDING
for(i=0; i<1000; i++){

x = (x+1)*(x+3)/x;
printf("x %d\n",x);

}
return (void *) x;

}

void *fy(void *param){
int i, y=(int) param;
int padding[32]; // PADDING
for(i=0; i<1000; i++){

y = y/2;
y = y+2*y;
printf("y %d\n",y);

}
return (void *) y;

}

