
Unix Inter-process Communication

Chris Kauffman

CS 499: Spring 2016 GMU



Mini-exam 2 back

Stat Val
Mini-exam 2
Count 32
Average 35.84 89.6%
Median 36.00 90.0%
Standard Deviation 3.45 8.6%

Mini-exam 1
Count 34
Average 35.44 88.6%
Median 36.50 91.3%
Standard Deviation 3.32 8.3%

Results overall good (again)



Basic Process Architecture

Source: Tutorials Point

I Separate Memory Image for
Each Process

I OS + Hardware keeps
processes inside their own
address space

http://www.tutorialspoint.com/operating_system/os_memory_management.htm


Unix Interprocess Communication

I Single Machine
I Controlled mechanisms for one process to pass info to another
I Simple: Pipes
I Moderate: Message Queues
I Complex: Shared memory with semaphores (locks)
I Complex involves IPC library calls, centralized authority (OS)

to manage shared resources like queues, shmem



Use of Shared Memory Resources

1. Single proc creates shard
memory area

2. Multiple procs attach/map
local address to shared
memory

3. IPC via shared memory now
possible



Two Distinct Flavors of Unix IPC
System V

I Older, somewhat more archaic
I Widely implemented, many existing codes based on it
I May not be thread safe

POSIX
I Newer, simpler interfaces
I Not as widely implemented
I Thread Safe

Both Provide Similar Basic Tools
I Message Queues: Basic send/receive
I Semaphores: Atomic get/set with blocking
I Shared Memory: Raw arrays of shared data
I Additional differences on StackOverflow

http://stackoverflow.com/questions/4582968/system-v-ipc-vs-posix-ipc


Focus for the Moment on System V

I Will visit POSIX stuff via POSIX threads
I Just want rough overview anyway



Semaphores

I General purpose locking mechanism
I Atomic operations to decrement/increment
I Typically allocate an array of semaphores
I IPC allows atomic operation on multiple semaphores in the

array simultaneously: useful for dining philosophers



Activity: Revisiting the Philosophers

Examine the dining philosophers code here:
https://cs.gmu.edu/~kauffman/cs499/philosophers.c
Use the IPC guide here: http://beej.us/guide/bgipc/output/
html/singlepage/bgipc.html
Find out how the following are done:

I Spawn a new process
I Determine child/parent
I What is a semaphore?
I How does one get a semaphore?
I What does one do with a semaphore?

https://cs.gmu.edu/~kauffman/cs499/philosophers.c
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html
http://beej.us/guide/bgipc/output/html/singlepage/bgipc.html


Lessons Learned from philosophers.c
I fork() is used to create new processes, clones of the parent

save for the return value of fork() call which is child PID in
the parent and 0 for the child

I int semid = semget(...); is used to obtain a semaphore
from the operating system which returns an integer id of a
semaphore. Options allow retrieval of an existing semaphore or
creation of a new one.

I System V semaphores are arrays of counters and operations
must specify which element in the array is operated upon

I On creation, the values in the semaphore are undefined and
must be specified.

I semctl() is used to get and set values from the semaphore
which is done atomically but cannot be used to
increment/decrement values

I semop() is used to atomically increment/decrement values in
the semaphore and requires use of a struct sembuf

I Processes can attempting to decrement a semaphore below 0
will block and wait until its value returns becomes positive.



The Nature of a Semaphore

SO: cucufrog on Condition Variables vs Semaphores
A condition variable is essentially a wait-queue, that supports
blocking-wait and wakeup operations, i.e. you can put a thread into
the wait-queue and set its state to BLOCK, and get a thread out
from it and set its state to READY.

I Requires use of a mutex/lock in conjuction
A Semaphore is essentially a counter + a mutex + a wait queue.

I It can be used as it is without external dependencies.
I You can use it either as a mutex or as a conditional variable.

http://stackoverflow.com/questions/3513045/conditional-variable-vs-semaphore


Message Queues

I Implements basic send/receive functionality through shared
memory

I Similar to MPI: one process sends, another receives
I Atomic access/removal taken care of for you
I Allow message filtering to take place based on a tag



Kirk and Spock: Talking Across Interprocess Space

I Demo the following pair of
simple communication codes
which use System V IPC
Message Queues.

I Examine source code to
figure out how they work.

https://cs.gmu.edu/~kauffman/cs499/kirk.c
https://cs.gmu.edu/~kauffman/cs499/spock.c

https://cs.gmu.edu/~kauffman/cs499/kirk.c
https://cs.gmu.edu/~kauffman/cs499/spock.c


Viewing Shared System Resources

Shared memory resources can outlast the program which created
them. The following unix commands are useful for manipulating
them from the command line.

ipcs (1) - show information on IPC facilities
ipcrm (1) - remove certain IPC resources
ipcmk (1) - make various IPC resources

Mostly ipcs to list, ipcrm to clean up when something has gone
wrong.



System V IPC Shared Memory Segments

I The ultimate in flexibility is to get a segment of raw bytes that
can be shared between processes

I Examine shmdemo.c to see how this works
I Importantly, this program creates shared memory that outlives

the program

https://cs.gmu.edu/~kauffman/cs499/shmdemo.c

https://cs.gmu.edu/~kauffman/cs499/shmdemo.c


Recall Heat

I Finite element simulation of a 1D rod, fixed heat reservoirs at
both ends

I Calculate 2D Array of heat values over time, each row is a
single time step



Share the Warmth: Sys V IPC for Heat
Construct a plan to use them to simulate the heated rod from
earlier in the class.

// Make a new process
int pid = fork(..);

// Get+manipulate semaphores
int semid = semget(key,...);
semctl(semid, i, GETVAL);
semctl(semid, i, SETVAL, 1);
op.sem_op = -1;
op.sem_num = index;
semop(semid, &op, 1);

// get+manipulate message queues
int msqid = msgget(key, ...);
msgsnd(msqid, &buf, ...);
msgrcv(msqid, &buf, ...);

// get/attach shared memory
int shmid = shmget(key);
int *data = shmat(shmid,..);



Two IPC Heat Designs
Both

I Divide the Heat matrix into column blocks owned by each
processor

I Each proc works on its own block
I Communicates with neighboring processors to calculate

boundary elements

Like MPI Version
I Very little data shared between processes
I Use message queues to coordinate work

Like a Shared Memory Version

I Use a hunk of shared memory
I Use semaphores or message queues to coordinate multiple

processes

Give details of one or the other



More Resources

http://www.tldp.org/LDP/tlk/ipc/ipc.html

http://www.tldp.org/LDP/tlk/ipc/ipc.html

