
CSCI 2021: Introduction

Chris Kauffman

Last Updated:
Wed Jan 19 01:02:20 PM CST 2022

1

CSCI 2021 - Logistics
Reading
▶ Bryant/O’Hallaron: Ch 1
▶ C references: basic syntax, types, compilation

Goals
▶ Basic Model of Computation
▶ Begin discussion of C
▶ Course Mechanics

Assignments
Due Tue 1/25 11:59pm
▶ Lab01: Setup, submit to Gradescope
▶ HW01: Basics, online Gradescope Quiz

How did Lab01 go?
2

“Von Kauffman” Model: CPU, Memory, Screen, Program
Most computers have 4 basic, physical components1

1. A CPU which can execute instructions
2. CPU knows WHICH instruction to execute at all times
3. MEMORY where data is stored and can change
4. Some sort of Input/Output device like a SCREEN

The CPU is executes a set of instructions, usually called a
program, which change MEMORY and the SCREEN
Example of a Running Computer Program
CPU: at instruction 10: MEMORY: SCREEN:
> 10: set #1024 to 1801 | Addr | Value |

11: set #1028 to 220 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 19 |

1Of course it’s a little more complex than this but the addage, “All models
are wrong but some are useful.” applies here. This class is about asking “what
is really happening?” and going deep down the resulting rabbit hole.

3

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

Sample Run Part 1

CPU: at instruction 10: MEMORY: SCREEN:
> 10: set #1024 to 1801 | Addr | Value |

11: set #1028 to 220 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 19 |

CPU: at instruction 11: MEMORY: SCREEN:
10: set #1024 to 1801 | Addr | Value |

> 11: set #1028 to 220 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1024 | 1801 |

CPU: at instruction 12: MEMORY: SCREEN:
10: set #1024 to 1801 | Addr | Value |
11: set #1028 to 220 |-------+-------|

> 12: sum #1024,#1028 into #1032 | #1032 | -137 |
13: print #1024, "plus", #1028 | #1028 | 220 |
14: print "is", #1032 | #1024 | 1801 |

4

Sample Run Part 2

CPU: at instruction 13: MEMORY: SCREEN:
10: set #1024 to 1801 | Addr | Value |
11: set #1028 to 220 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | 2021 |

> 13: print #1024, "plus", #1028 | #1028 | 220 |
14: print "is", #1032 | #1024 | 1801 |

CPU: at instruction 14: MEMORY: SCREEN:
10: set #1024 to 1801 | Addr | Value | 1801 plus 220
11: set #1028 to 220 |-------+-------|
12: sum #1024,#1028 into #1032 | #1032 | 2021 |
13: print #1024, "plus", #1028 | #1028 | 220 |

> 14: print "is", #1032 | #1024 | 1801 |

CPU: at instruction 15: MEMORY: SCREEN:
10: set #1024 to 1801 | Addr | Value | 1801 plus 220
11: set #1028 to 220 |-------+-------| is 2021
12: sum #1024,#1028 into #1032 | #1032 | 2021 |
13: print #1024, "plus", #1028 | #1028 | 220 |
14: print "is", #1032 | #1024 | 1801 |

> 15:

5

Observations: CPU and Program Instructions

▶ Program instructions are usually small, simple operations:
▶ Put something in a specific memory cell using its address
▶ Copy the contents of one cell to another
▶ Do arithmetic (+, -, *, /) on cells or constants
▶ Print stuff to the screen

▶ The CPU keeps track of which instruction to execute next
▶ In many cases after executing it moves ahead by one

instruction but you all know jumping around is also possible
▶ This program is in pseudocode: not C or Java or Assembly…
▶ Pseudocode can have almost anything in it so long as a

human reader understands the meaning
▶ Real machines require more precise languages to execute as

they are (still) much dumber than humans

6

Observations: Screen and Memory
Screen versus Memory
▶ Nothing is on the screen

until it is explicitly print-ed
by the program

▶ Normally you don’t get to
see memory while the
program runs

▶ Good programmers can
quickly form a mental
picture of what memory
looks like and draw it when
needed

▶ You will draw memory
diagrams in this class to
develop such mental models

Memory Cells
▶ Memory cells have

Fixed ADDRESS
Changeable CONTENTS

▶ Random Access Memory
(RAM): the value in any
memory cell can be retrieved
FAST using its address

▶ My laptop has 16GB of
memory = 4,294,967,296
(4 billion) integer boxes (!)

▶ Cell Address #’s never
change: always cell #1024

▶ Cell Contents frequently
change: set #1024 to 42

7

Variables: Named Memory Cells
▶ Dealing with raw memory addresses is tedious
▶ Any programming language worth its salt will have variables:

symbolic names associated with memory cells
▶ You pick variable names; compiler/interpreter automatically

translates to memory cell/address
PROGRAM ADDRESSES ONLY
CPU: at instruction 50: MEMORY:
> 50: copy #1024 to #1032 | Addr | Value |

51: copy #1028 to #1024 |-------+-------|
52: copy #1032 to #1028 | #1032 | ? |
53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1024 | 42 |

PROGRAM WITH NAMED CELLS MEMORY:
CPU: at instruction 51: | Addr | Name | Value |
> 50: copy x to temp |-------+------+-------|

51: copy y to x | #1032 | temp | ? |
52: copy temp to y | #1028 | y | 31 |
53: print "first",x | #1024 | x | 42 |
54: print "second",y

8

Correspondence of C Programs to Memory
▶ C programs require memory cell names to be declared with the type of

data they will hold (a novel idea when C was invented).
▶ The equal sign (=) means

“store the result on the right in the cell named on the left”
▶ Creating a cell and giving it a value can be combined

int x; // need a cell named x, holds an integer
x = 42; // put 42 in cell x
int y = 31; // need a cell named y and put 31 in it
int tmp = x + y; // cell named tmp, fill with sum of x and y

Other Rules
▶ C/Java compilers read whole programs to figure out how many memory

cells are needed based on declarations like int a; and int c=20;
▶ Lines that only declare a variable do nothing except indicate a cell is

needed to the compiler
▶ In C, uninitialized variables may have arbitrary crud in them making them

dangerous to use: we’ll find out why in this course

9

Exercise: First C Snippet
▶ Lines starting with // are comments, ignored
▶ printf("%d %d\n",x,y) shows variable values on the screen

CPU: at line 50 MEMORY: SCREEN:
> 50: int x; | Addr | Name | Value |

51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | ? |
53: // swap x and y (?) | #1028 | x | ? |
54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

With your nearby Room colleagues:
1. Show what memory / screen look like after running the program
2. Correct the program if needed: make swapping work

I will chat with a couple folks about their answers which will earn credit
towards bonus Engagement Points.

10

Answer: First C Snippet
CPU: at line 54 MEMORY: SCREEN:

50: int x; | Addr | Name | Value |
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | 31 |
53: // swap x and y (?) | #1028 | x | 42 |

> 54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

CPU: at line 55 MEMORY: SCREEN:
50: int x; | Addr | Name | Value |
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | y | 31 |
53: // swap x and y (?) | #1028 | x | 31 |
54: x = y; | #1024 | | |

> 55: y = x;
56: printf("%d %d\n",x,y);

CPU: at line 57 MEMORY: SCREEN:
50: int x; | Addr | Name | Value | 31 31
51: x = 42; |-------+------+-------|
52: int y = 31; | #1032 | x | 31 |
53: // swap x and y (?) | #1028 | y | 31 |
54: x = y; | #1024 | | |
55: y = x;
56: printf("%d %d\n",x,y);

> 57: ...

Clearly incorrect: how does one swap values properly? (fix swap_main_bad.c)
11

First Full C Program: swap_main.c
1 /* First C program which only has a main(). Demonstrates proper
2 swapping of two int variables declared in main() using a third
3 temporary variable. Uses printf() to print results to the screen
4 (standard out). Compile run with:
5
6 > gcc swap_main.c
7 > ./a.out
8 */
9

10 #include <stdio.h> // headers declare existence of functions
11 // printf in this case
12 int main(int argc, char *argv[]){ // ENTRY POINT: always start in main()
13 int x; // declare a variable to hold an integer
14 x = 42; // set its value to 42
15 int y = 31; // declare and set a variable
16 int tmp = x; // declare and set to same value as x
17 x = y; // put y's value in x's cell
18 y = tmp; // put tmp's value in y's cell
19 printf("%d %d\n",x,y); // print the values of x and y
20 return 0; // return from main(): 0 indicates success
21 }

▶ Swaps variables using tmp space (exotic alternatives exist)
▶ Executables always have a main() function: starting point
▶ Note inclusion of stdio.h header to declare printf()

exists, allusions to C’s (limited and clunky) library system
12

https://stackoverflow.com/questions/1826159/swapping-two-variable-value-without-using-third-variable

Exercise: Functions in C, swap_func.c
1 // C program which attempts to swap using a function.
2 //
3 // > gcc swap_func.c
4 // > ./a.out
5
6 #include <stdio.h> // declare existence printf()
7 void swap(int a, int b); // function exists, defined below main
8
9 int main(int argc, char *argv[]){ // ENTRY POINT: start executing in main()

10 int x = 42;
11 int y = 31;
12 swap(x, y); // invoke function to swap x/y (?)
13 printf("%d %d\n",x,y); // print the values of x and y
14 return 0;
15 }
16
17 // Function to swap (?) contents of two memory cells
18 void swap(int a, int b){ // arguments to swap
19 int tmp = a; // use a temporary to save a
20 a = b; // a <- b
21 b = tmp; // b <- tmp=a
22 return;
23 }

Does swap() “work”? Discuss with neighbors and justify why the
code works or why not 13

Answers: The Function Call Stack and swap()
9: int main(...){ STACK: Caller main(), prior to swap()
10: int x = 42; | FRAME | ADDR | SYM | VALUE |
11: int y = 31; |---------+-------+-----+-------|

+-<12: swap(x, y); | main() | #2048 | x | 42 | stack frame
| 13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 | for main()
| 14: return 0; |---------+-------+-----+-------|
V 15: }
| STACK: Callee swap() takes control
| 18: void swap(int a, int b){ | FRAME | ADDR | SYM | VALUE |
+->19: int tmp = a; |---------+-------+-----+-------|

20: a = b; | main() | #2048 | x | 42 | main() frame
21: b = tmp; | line:12 | #2044 | y | 31 | now inactive
22: return; |---------+-------+-----+-------|
23: } | swap() | #2040 | a | 42 | new frame

| line:19 | #2036 | b | 31 | for swap()
| | #2032 | tmp | ? | now active

▶ Caller function main() and Callee function swap()
▶ Caller pushes a stack frame onto the function call stack
▶ Frame has space for all Callee parameters/locals
▶ Caller tracks where it left off to resume later
▶ Caller copies values to Callee frame for parameters
▶ Callee begins executing at its first instruction

14

Answers: Function Call Stack: Returning from swap()
9: int main(...){ STACK: Callee swap() returning
10: int x = 42; | FRAME | ADDR | SYM | VALUE |
11: int y = 31; |---------+-------+-----+-------|
12: swap(x, y); | main() | #2048 | x | 42 | inactive

+->13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |
| 14: return 0; |---------+-------+-----+-------|
| 15: } | swap() | #2040 | a | 31 | about to
| | line:22 | #2036 | b | 42 | return
^ 18: void swap(int a, int b){ | | #2032 | tmp | 42 |
| 19: int tmp = a;
| 20: a = b; STACK: Caller main() gets control back
| 21: b = tmp; | FRAME | ADDR | SYM | VALUE |
+-<22: return; |---------+-------+-----+-------|

23: } | main() | #2048 | x | 42 | now
| line:13 | #2044 | y | 31 | active
|---------+-------+-----+-------|

▶ On finishing, Callee stack frame pops off, returns control back
to Caller which resumes executing next instruction

▶ Callee may pass a return value to Caller but otherwise needs
proper setup to alter the Caller stack frame.

▶ swap() does NOT swap the variables in main()
15

Motivation for C

Bare Metal

Pure Abstraction

Wires

VHDL

Binary
Opcodes

Assembly C
C++, D

Java

Python, JS
Ruby, Shell

Prolog, Lisp
ML,Haskell

Bread
Board

Electrons

Source

If this were Java, Python, many
others, discussion would be over:
▶ Provide many safety and

convenience features
▶ Insulate programmer from

hardware for ease of use
C presents many CPU capabilities
directly
▶ Very few safety features
▶ Little between programmer and

hardware
You just have to know C. Why?
Because for all practical purposes, every
computer in the world you’ll ever use is
a von Neumann machine, and C is a
lightweight, expressive syntax for the
von Neumann machine’s capabilities.
–Steve Yegge, Tour de Babel 16

http://bpmredux.files.wordpress.com/2012/03/man-vs-machine.jpg
https://sites.google.com/site/steveyegge2/tour-de-babel

Von Neumann Machine / Architecture (Wikip)
Processing
▶ Wires/gates that accomplish

fundamental ops
▶ +, -, *, AND, OR, move, copy,

shift, etc.
▶ Ops act on contents of memory

cells to change them

Control
▶ Memory address of next

instruction to execute
▶ After executing, move ahead

one unless instruction was to
jump elsewhere

Memory
▶ Giant array of bits/bytes so

everything is represented as
1’s and 0’s, including
instructions

▶ Memory cells accessible by
address number

Input/Output
▶ Allows humans to interpret

what is happening
▶ Often special memory

locations for screen and
keyboard

Wait, these items seem kind of familiar… 17

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Exercise: C allows direct use of memory cell addresses
SYNTAX MEANING
&x memory address of variable x
int *a a stores a memory address (pointer to integer(s))
*a get/set the memory pointed to by a (dereference)

Where/how are these used in the code below?
1 // swap_pointer.c: swaps values using a function with pointer arguments.
2
3 #include <stdio.h> // declare existence printf()
4 void swap_ptr(int *a, int *b); // function exists, defined below main
5
6 int main(int argc, char *argv[]){ // ENTRY POINT: start executing in main()
7 int x = 42;
8 int y = 31;
9 swap_ptr(&x, &y); // call swap() with addresses of x/y

10 printf("%d %d\n",x,y); // print the values of x and y
11 return 0;
12 }
13
14 // Function to swap contents of two memory cells
15 void swap_ptr(int *a, int *b){ // a/b are addresses of memory cells
16 int tmp = *a; // go to address a, copy value int tmp
17 *a = *b; // copy val at addr in b to addr in a
18 *b = tmp; // copy temp into address in b
19 return;
20 } 18

Swapping with Pointers/Addresses: Call Stack
9: int main(...){ STACK: Caller main(), prior to swap()
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|

+-<12: swap_ptr(&x, &y); | main() | #2048 | x | 42 |
| 13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |
| 14: return 0; |---------+-------+------+-------|
V 15: }
| STACK: Callee swap() takes control
| 18: void swap_ptr(int *a,int *b){ | FRAME | ADDR | NAME | VALUE |
+->19: int tmp = *a; |---------+-------+------+-------|

20: *a = *b; | main() | #2048 | x | 42 |<-+
21: *b = tmp; | line:12 | #2044 | y | 31 |<-|+
22: return; |---------+-------+------+-------| ||
23: } | swap_ptr| #2036 | a | #2048 |--+|

| line:19 | #2028 | b | #2044 |---+
| | #2024 | tmp | ? |

▶ Syntax &x reads “Address of cell associated with x” or just
“Address of x”. Ampersand & is the address-of operator.

▶ Swap takes int *a: pointer to integer / memory address
▶ Values associated with a/b are the addresses of other cells

19

Swapping with Pointers/Addresses: Dereference/Use

9: int main(...){ LINE 19 executed: tmp gets 42
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 42 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:20 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | ?->42 |
19: int tmp = *a; // copy val at #2048 to #2032

>20: *a = *b;
21: *b = tmp;
22: return;
23: }

▶ Syntax *a reads “Dereference a to operate on the cell pointed
to by a” or just “Deref a”

▶ Line 19 dereferences via * operator:
▶ Cell #2040 (a) contains address #2048,
▶ Copy contents of #2048 (42) into #2032 (tmp)

20

Aside: Star/Asterisk * has 3 uses in C
1. Multiply as in

w = c*d;
2. Declare a pointer as in

int *x; // pointer to integer(s)
int b=4;
x = &b; // point x at b
int **r; // pointer to int pointer(s)

3. Dereference a pointer as in
int p = *x; // x must be an int pointer

// retrieve contents at address
Three different context sensitive meanings for the same symbol
makes * hard on humans to parse, a BAD move by K&R.

int z = *x * *y + *(p+2); // standard, 'unambiguous' C
The duck is ready to eat. // English is more ambiguous

21

Swapping with Pointers/Addresses: Dereference/Assign

9: int main(...){ LINE 20 executed: alters x using a
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x |42->31 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 31 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:21 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
19: int tmp = *a;
20: *a = *b; // copy val at #2044 (31) to #2048 (was 42)

>21: *b = tmp;
22: return;
23: }

▶ Dereference can be used to get values at an address
▶ Can be used on left-hand-side of assignment to set contents

at an address
▶ Line 20: dereference a to change contents at #2048

22

Swapping with Pointers/Addresses: Deref 2
9: int main(...){ LINE 21 executed: alters y using b
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 31 |<-+
13: printf("%d %d\n",x,y); | line:12 | #2044 | y |31->42 |<-|+
14: return 0; |---------+-------+------+-------| ||
15: } | swap_ptr| #2036 | a | #2048 |--+|

| line:22 | #2028 | b | #2044 |---+
18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
19: int tmp = *a;
20: *a = *b;
21: *b = tmp; // copy val at #2032 (42) to #2044 (was 31)

>22: return;
23: }

▶ Can be used on left-hand-side of assignment to set contents
at an address

▶ Line 21: dereference *b = ... to change contents at #2044
▶ Use of variable name tmp retrieves contents of cell associated

with tmp
23

Swapping with Pointers/Addresses: Returning

9: int main(...){ LINE 22: prior to return
10: int x = 42; | FRAME | ADDR | NAME | VALUE |
11: int y = 31; |---------+-------+------+-------|
12: swap_ptr(&x, &y); | main() | #2048 | x | 31 |<-+

+->13: printf("%d %d\n",x,y); | line:12 | #2044 | y | 42 |<-|+
| 14: return 0; |---------+-------+------+-------| ||
| 15: } | swap_ptr| #2036 | a | #2048 |--+|
| | line:22 | #2028 | b | #2044 |---+
| 18: void swap_ptr(int *a,int *b){ | | #2024 | tmp | 42 |
| 19: int tmp = *a;
| 20: *a = *b; LINE 12 finished/return pops frame
| 21: *b = tmp; | FRAME | ADDR | NAME | VALUE |
+-<22: return; |---------+-------+------+-------|

23: } | main() | #2048 | x | 31 |
| line:13 | #2044 | y | 42 |
|---------+-------+------+-------|

▶ swap_ptr() finished so frame pops off
▶ Variables x,y in main() have changed due to use of

references to them.

24

Important Principle: Non-local Changes
▶ Pointers allow functions to

change variables associated
with other running functions

▶ Common beginner example:
scanf() family which is
used to read values from
terminal or files

▶ Snippet from scanf_demo.c
1 int main(...){
2 int num = -1;
3 scanf("%d", &num); // addr
4 printf("%d\n",num); // val
4 return 0;
5 }

▶ See scanf_error.c :
forgetting & yields great
badness

scanf() called
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():3 | #2500 | num | -1 |<-+
|----------+-------+------+-------| |
| scanf() | #2492 | fmt | #400 | |
| | #2484 | arg1 | #2500 |--+

scanf() changes contents of #2500
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():3 | #2500 | num | 5 |<-+
|----------+-------+------+-------| |
| scanf() | #2492 | fmt | #400 | |
| | #2484 | arg1 | #2500 |--+

scanf() returns
| FRAME | ADDR | NAME | VALUE |
|----------+-------+------+-------|
| main():4 | #2500 | num | 5 |
|----------+-------+------+-------|

25

Uncle Ben Said it Best…

All of these apply to our context..

▶ Pointers allow any line of
C programs to modify any
of its data

▶ A BLESSING: fine control of
memory → efficiency,
machine’s true capability

▶ A CURSE: opens up many
errors not possible in langs
like Java/Python which
restrict use of memory
1972 - Dennis Ritchie invents a
powerful gun that shoots both
forward and backward simulta-
neously. Not satisfied with the
number of deaths and perma-
nent maimings from that inven-
tion he invents C and Unix.
– A Brief, Incomplete, and
Mostly Wrong History of Pro-
gramming Languages

26

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Beneath the C
C is “high-level” as it abstracts away from a real machine. It must
be translated to lower levels to be executed.

Assembly Language
▶ Specific to each CPU

architecture (Intel, etc)
▶ Still “human readable” but

fairly directly translated to
binary using Assemblers

Binary Opcodes
▶ 1’s and 0’s, represent the

digital signal of the machine
▶ Codes corresponds to

instructions directly
understood by processor

INTEL x86-64 ASSEMBLY HEXADECIMAL/BINARY OPCODES
cmpl $1, %ecx 1124: 83 f9 01
jle .END 1127: 7e 1e = 0111 1110 0001 1110
movl $2, %esi 1129: be 02 00 00 00
movl %ecx,%eax 112e: 89 c8
cqto 1130: 48 99
idivl %esi 1132: f7 fe
cmpl $1,%edx 1134: 83 fa 01
jne .EVEN 1137: 75 07

Looks like fun, right? You bet it is! Assembly coding is 1 month away…
27

CSCI 2021: Course Goals

▶ Basic proficiency at C programming
▶ Knowledge of running programs in physical memory including

the stack, heap, global, and text areas of memory
▶ Understanding of the essential elements of assembly languages
▶ Knowledge of the correspondence between high-level program

constructs.
▶ Ability to use a symbolic debugger
▶ Basic understanding of how data is encoded in binary
▶ Knowledge of computer memory systems
▶ Basic knowledge of computer architecture

28

A Word on Safety
Please wear your mask during lecture

▶ For your safety, my safety,
the safety of the class, and
the safety of all the old,
young, and immuno-
compromised loved ones
that we see but do not want
to hurt, Mask Up.

▶ Refrain from eating/drinking
during lecture

▶ Keep your mask on the
whole time

▶ If you feel sick, stay home,
watch the videos, notify me
if the illness is prolonged and
we will make arrangements

29

