
CSCI 2021: Assembly Basics and x86-64

Chris Kauffman

Last Updated:
Fri Feb 25 01:05:20 PM CST 2022

1

Logistics

Reading Bryant/O’Hallaron
▶ Now Ch 3.1-7: Assembly,

Arithmetic, Control
▶ Later Ch 3.8-11: Arrays,

Structs, Floats
▶ Any overview guide to

x86-64 assembly instructions
such as Brown University’s
x64 Cheat Sheet

Goals
▶ Assembly Basics
▶ x86-64 Overview

Lab / HW
▶ Lab05/HW05: Bit ops
▶ Lab06: GDB Basics
▶ HW06: Assembly Basics

Project 2: Due Mon 2/28
▶ Problem 1: Bit shift

operations (50%)
▶ Problem 2: Puzzlebox via

debugger (50% + makeup)
NOTE: Line Count Limits + Bit
Shift Ops

2

https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

GDB: The GNU Debugger

▶ Overview for C and Assembly Programs here:
https://www-users.cs.umn.edu/~kauffman/2021/gdb

▶ Most programming environments feature a Debugger
▶ Java, Python, OCaml, etc.

▶ GDB works well C and Assembly programs
▶ Features in P2 (C programs) and P3 (Assembly Programs)
▶ P2 Demo has some basics for C programs including

▶ TUI Mode
▶ Breakpoint / Continue
▶ Next / Step

3

https://www-users.cs.umn.edu/~kauffman/2021/gdb

The Many Assembly Languages
▶ Most microprocessors are created to understand a binary

machine language
▶ Machine Language provides means to manipulate internal

memory, perform arithmetic, etc.
▶ The Machine Language of one processor is not understood

by other processors
MOS Technology 6502
▶ 8-bit operations, limited

addressable memory, 1
general purpose register,
powered notable gaming
systems in the 1980s

▶ Apple IIe, Atari 2600,
Commodore

▶ Nintendo Entertainment
System / Famicom

IBM Cell Microprocessor
▶ Developed in early 2000s,

many cores (execution
elements), many registers
(32 on the PPE), large
addressable space, fast
multimedia performance, is
a pain to program

▶ Playstation 3 and Blue Gene
Supercomputer

4

Assemblers and Compilers

▶ Compiler: chain of tools that translate high level languages
to lower ones, may perform optimizations

▶ Assembler: translates text description of the machine code to
binary, formats for execution by processor, late compiler stage

▶ Consequence: The compiler can generate assembly code
▶ Generated assembly is a pain to read but is often quite fast
▶ Consequence: A compiler on an Intel chip can generate

assembly code for a different processor, cross compiling
5

Our focus: The x86-64 Assembly Language

▶ x86-64 Targets Intel/AMD chips with 64-bit word size
Reminder: 64-bit “word size” ≈ size of pointers/addresses

▶ Descended from IA32: Intel Architecture 32-bit systems
▶ IA32 descended from earlier 16-bit systems like Intel 8086
▶ There is a LOT of cruft in x86-64 for backwards compatibility

▶ Can run compiled code from the 70’s / 80’s on modern
processors without much trouble

▶ x86-64 is not the assembly language you would design from
scratch today

▶ Will touch on evolution of Intel Assembly as we move forward
▶ Warning: Lots of information available on the web for Intel

assembly programming BUT some of it is dated, IA32 info
which may not work on 64-bit systems

6

x86-64 Assembly Language Syntax(es)
▶ Different assemblers understand different syntaxes for the

same assembly language
▶ GCC use the GNU Assembler (GAS, command 'as file.s')
▶ GAS and Textbook favor AT&T syntax so we will too
▶ NASM assembler favors Intel, may see this online

AT&T Syntax (Our Focus)
multstore:

pushq %rbx
movq %rdx, %rbx
call mult2@PLT
movq %rax, (%rbx)
popq %rbx
ret

▶ Use of % to indicate registers
▶ Use of q/l/w/b to indicate

64 / 32 / 16 / 8-bit operands

Intel Syntax
multstore:

push rbx
mov rbx, rdx
call mult2@PLT
mov QWORD PTR [rbx], rax
pop rbx
ret

▶ Register names are bare
▶ Use of QWORD etc. to indicate

operand size

7

Generating Assembly from C Code

▶ gcc -S file.c will stop compilation at assembly generation
▶ Leaves assembly code in file.s

▶ file.s and file.S conventionally assembly code though
sometimes file.asm is used

▶ By default, compiler performs lots of optimizations to code
▶ gcc -Og file.c: disable optimizations to make it easier to

debug, generated assembly is slightly more readable assembly

8

Example of Generating Assembly from C
>> cat exchange.c # show C file to be translated
// exchange.c: sample C function
// to compile to assembly
long exchange(long *xp, long y){ # function to translate

long x = *xp; # involves pointer deref
*xp = y;
return x;

}

>> gcc -Og -S exchange.c # Compile to show assembly
-Og: debugging level optimization
-S: only output assembly

>> cat exchange.s # show assembly output
.file "exchange.c"
.text
.globl exchange
.type exchange, @function

exchange: # beginning of exchange function
.LFB0:

.cfi_startproc
movq (%rdi), %rax # pointer derefs in assembly
movq %rsi, (%rdi) # uses registers
ret
.cfi_endproc

.LFE0:
.size exchange, .-exchange
.ident "GCC: (GNU) 11.1.0"
.section .note.GNU-stack,"",@progbits

9

gcc -Og -S mstore.c
> cat mstore.c # show a C file
long mult2(long a, long b);
void multstore(long x, long y, long *dest){

long t = mult2(x, y);
*dest = t;

}

> gcc -Og -S mstore.c # Compile to show assembly
-Og: debugging level optimization
-S: only output assembly

> cat mstore.s # show assembly output
.file "mstore.c"
.text
.globl multstore # function symbol for linking
.type multstore, @function

multstore: # beginning of mulstore function
.LFB0:

.cfi_startproc # assembler directives
pushq %rbx # assembly instruction
.cfi_def_cfa_offset 16 # directives
.cfi_offset 3, -16
movq %rdx, %rbx # assembly instructions
call mult2@PLT # function call
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret # function return
.cfi_endproc

10

Every Programming Language

Look for the following as it should almost always be there
□ Comments
□ Statements/Expressions
□ Variable Types
□ Assignment
□ Basic Input/Output
□ Function Declarations
□ Conditionals (if-else)
□ Iteration (loops)
□ Aggregate data (arrays, structs, objects, etc)
□ Library System

11

Exercise: Examine col_simple_asm.s
Take a simple sample problem to demonstrate assembly:

Computes Collatz Sequence starting at n=10:
if n is ODD n=n*3+1; else n=n/2.
Return the number of steps to converge to 1 as the return
code from main()

The following codes solve this problem

Code Notes
col_simple_asm.s Hand-coded assembly for obvious algorithm

Straight-forward reading
col_unsigned.c Unsigned C version

Generated assembly is reasonably readable
col_signed.c Signed C vesion

Generated assembly is … interesting
▶ Kauffman will Compile/Run code
▶ Students should study the code and predict what lines do
▶ Illustrate tricks associated with gdb and assembly 12

Exercise: col_simple_asm.s
1 ### Compute Collatz sequence starting at 10 in assembly.
2 .section .text
3 .globl main
4 main:
5 movl $0, %r8d # int steps = 0;
6 movl $10, %ecx # int n = 10;
7 .LOOP:
8 cmpl $1, %ecx # while(n > 1){ // immediate must be first
9 jle .END # n <= 1 exit loop

10 movl $2, %esi # divisor in esi
11 movl %ecx,%eax # prep for division: must use edx:eax
12 cqto # extend sign from eax to edx
13 idivl %esi # divide edx:eax by esi
14 # eax has quotient, edx remainder
15 cmpl $1,%edx # if(n % 2 == 1) {
16 jne .EVEN # not equal, go to even case
17 .ODD:
18 imull $3, %ecx # n = n * 3
19 incl %ecx # n = n + 1 OR n++
20 jmp .UPDATE # }
21 .EVEN: # else{
22 sarl $1,%ecx # n = n / 2; via right shift
23 .UPDATE: # }
24 incl %r8d # steps++;
25 jmp .LOOP # }
26 .END:
27 movl %r8d, %eax # r8d is steps, move to eax for return value
28 ret

13

Answers: x86-64 Assembly Basics for AT&T Syntax
▶ Comments are one-liners starting with #
▶ Statements: each line does ONE thing, frequently text

representation of an assembly instruction
movq %rdx, %rbx # move rdx register to rbx

▶ Assembler directives and labels are also possible:
.global multstore # notify linker of location multstore
multstore: # label beginning of multstore section

blah blah blah # instructions in this this section
▶ Variables: mainly registers, also memory ref’d by registers

maybe some named global locations
▶ Assignment: instructions like movX that put move bits into

registers and memory
▶ Conditionals/Iteration: assembly instructions that jump to

code locations
▶ Functions: code locations that are labeled and global
▶ Aggregate data: none, use the stack/multiple registers
▶ Library System: link to other code

14

So what are these Registers?
▶ Memory locations directly wired to the CPU
▶ Usually very fast to access, faster than main memory
▶ Most instructions involve registers, access or change reg val

Example: Adding Together Integers
▶ Ensure registers have desired values in them
▶ Issue an addX instruction involving the two registers
▶ Result will be stored in a register

addl %eax, %ebx
add ints in eax and ebx, store result in ebx

addq %rcx, %rdx
add longs in rcx and rdx, store result in rdx

▶ Note instruction and register names indicate whether 32-bit
int or 64-bit long are being added

15

x86-64 “General Purpose” Registers
Many “general purpose” registers
have special purposes and
conventions associated such as
▶ %rax | %eax | %ax

contains return value from
functions

▶ %rdi,%rsi,%rdx,
%rcx,%r8, %r9
contain first 6 arguments in
function calls

▶ %rsp is top of the stack
▶ %rbp (base pointer) may be

the beginning of current
stack but is often optimized
away by the compiler

64-bit 32-bit 16-bit 8-bit Notes
%rax %eax %ax %al Return Val
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl Arg 4
%rdx %edx %dx %dl Arg 3
%rsi %esi %si %sil Arg 2
%rdi %edi %di %dil Arg 1
%rsp %esp %sp %spl Stack Ptr
%rbp %ebp %bp %bpl Base Ptr?
%r8 %r8d %r8w %r8b Arg 5
%r9 %r9d %r9w %r9b Arg 6
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b
Caller Save: Restore after calling func
Callee Save: Restore before returning

16

https://stackoverflow.com/questions/41912684/what-is-the-purpose-of-the-rbp-register-in-x86-64-assembler
https://stackoverflow.com/questions/41912684/what-is-the-purpose-of-the-rbp-register-in-x86-64-assembler
https://stackoverflow.com/questions/41912684/what-is-the-purpose-of-the-rbp-register-in-x86-64-assembler

Register Naming Conventions
▶ AT&T syntax identifies registers with prefix %
▶ Naming convention is a historical artifact
▶ Originally 16-bit architectures in x86 had

▶ General registers ax,bx,cx,dx,
▶ Special Registers si,di,sp,bp

▶ Extended to 32-bit: eax,ebx,...,esi,edi,...
▶ Grew again to 64-bit: rax,rbx,...,rsi,rdi,...
▶ Added additional 64-bit regs r8,r9,...,r14,r15 with 32-bit

r8d,r9d,... and 16-bit r8w,r8w...
▶ Instructions must match registers sizes:

addw %ax, %bx # words (16-bit)
addl %eax, %ebx # long word (32-bit)
addq %rax, %rbx # quad-word (64-bit)

▶ When hand-coding assembly, easy to mess this up, assembler
will error out

17

Hello World in x86-64 Assembly : Not that Easy
▶ Non-trivial in assembly because output is involved

▶ Try writing helloworld.c without printf()
▶ Output is the business of the operating system, always a

request to the almighty OS to put something somewhere
▶ Library call: printf("hello"); mangles some bits but

eventually results with a …
▶ System call: Unix system call directly implemented in the OS

kernel, puts bytes into files / onto screen as in
write(1, buf, 5); // file 1 is screen output

This gives us several options for hello world in assembly:
1. hello_printf64.s: via calling printf() which means the C

standard library must be (painfully) linked
2. hello64.s via direct system write() call which means no

external libraries are needed: OS knows how to write to
files/screen. Use the 64-bit Linux calling convention.

3. hello32.s via direct system call using the older 32 bit Linux
calling convention which “traps” to the operating system.

18

(Optional): The OS Privilege: System Calls
▶ Most interactions with the outside world happen via

Operating System Calls (or just “system calls”)
▶ User programs indicate what service they want performed by

the OS via making system calls
▶ System Calls differ for each language/OS combination

▶ x86-64 Linux: set %rax to system call number, set other args
in registers, issue syscall

▶ IA32 Linux: set %eax to system call number, set other args in
registers, issue an interrupt

▶ C Code on Unix: make system calls via write(), read() and
others (studied in CSCI 4061)

▶ Tables of Linux System Call Numbers
▶ 64-bit (335 calls)
▶ 32-bit (190 calls)

▶ Mac OS X: very similar to the above (it’s a Unix)
▶ Windows: use OS wrapper functions

▶ OS executes priveleged code that can manipulate any part of
memory, touch internal data structures corresponding to files,
do other fun stuff discussed in CSCI 4061 / 5103

19

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://asm.sourceforge.net/syscall.html

Basic Instruction Classes

▶ x86 Assembly Guide
from Yale summarizes
well though is 32-bit
only, function calls
different

▶ Remember: Goal is
to understand
assembly as a target
for higher languages,
not become expert
“assemblists”

▶ Means we won’t hit
all 5,038 pages of the
Intel x86-64 Manual

Kind Assembly Instructions
Fundamentals
- Memory Movement mov
- Stack manipulation push,pop
- Addressing modes (%eax),12(%eax,%ebx)...
Arithmetic/Logic
- Arithmetic add,sub,mul,div,lea
- Bitwise Logical and,or,xor,not
- Bitwise Shifts sal,sar,shr
Control Flow
- Compare / Test cmp,test
- Set on result set
- Jumps (Un)Conditional jmp,je,jne,jl,jg,...
- Conditional Movement cmove,cmovg,...
Procedure Calls
- Stack manipulation push,pop
- Call/Return call,ret
- System Calls syscall
Floating Point Ops
- FP Reg Movement vmov
- Conversions vcvts
- Arithmetic vadd,vsub,vmul,vdiv
- Extras vmins,vmaxs,sqrts

20

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

Data Movement: movX instruction
movX SOURCE, DEST # move source value to destination

Overview
▶ Moves data…

▶ Reg to Reg
▶ Mem to Reg
▶ Reg to Mem
▶ Imm to …

▶ Reg: register
▶ Mem: main memory
▶ Imm: “immediate” value

(constant) specified like
▶ $21 : decimal
▶ $0x2f9a : hexadecimal
▶ NOT 1234 (mem adder)

▶ More info on operands next

Examples
64-bit quadword moves
movq $4, %rbx # rbx = 4;
movq %rbx,%rax # rax = rbx;
movq $10, (%rcx) # *rcx = 10;

32-bit longword moves
movl $4, %ebx # ebx = 4;
movl %ebx,%eax # eax = ebx;
movl $10, (%rcx) # *(int*)rcx=10;
Note variations

▶ movq for 64-bit (8-byte)
▶ movl for 32-bit (4-byte)
▶ movw for 16-bit (2-byte)
▶ movb for 8-bit (1-byte)

21

Operands and Addressing Modes
In many instructions like movX, operands can have a variety of
forms called addressing modes, may include constants and
memory addresses

Style Address Mode C-like Notes
$21 immediate 21 value of constant like 21
$0xD2 or 0xD2 = 210

%rax register rax to/from register contents
(%rax) indirect *rax reg holds memory address, deref
8(%rax) displaced *(rax+2) base plus constant offset, often
4(%rdx) rdx->field used for strcut field derefs

(%rax,%rbx) indexed *(rax+rbx) base plus offset in given reg
char_arr[rbx] actual value of rbx is used,

NOT multiplied by sizeof()

(%rax,%rbx,4) scaled index rax[rbx] like array access with sizeof(..)=4
(%rax,%rbx,8) rax[rbx] “” with sizeof(..)=8

1024 absolute … Absolute address #1024
Rarely used

22

Exercise: Show movX Instruction Execution
Code movX_exercise.s
movl $16, %eax
movl $20, %ebx
movq $24, %rbx
POS A

movl %eax,%ebx
movq %rcx,%rax
POS B

movq $45,(%rdx)
movl $55,16(%rdx)
POS C

movq $65,(%rcx,%rbx)
movq $3,%rbx
movq $75,(%rcx,%rbx,8)
POS D

Registers/Memory
INITIAL
|-----+-------+-------|
REG	%rax	0
	%rbx	0
	%rcx	#1024
	%rdx	#1032
-----+-------+-------		
MEM	#1024	35
	#1032	25
	#1040	15
	#1048	5
-----+-------+-------		
Lookup…
May need to look up addressing
conventions for things like…
movX %y,%x # reg y to reg x
movX $5,(%x) # 5 to address in %x

23

Answers Part 1/2: movX Instruction Execution
movl $16, %eax
movl $20, %ebx movl %eax,%ebx
movq $24, %rbx movq %rcx,%rax #WARNING!

INITIAL ## POS A ## POS B
-------+-------		-------+-------		-------+-------			
REG	VALUE		REG	VALUE		REG	VALUE
%rax	0		%rax	16		%rax	#1024
%rbx	0		%rbx	24		%rbx	16
%rcx	#1024		%rcx	#1024		%rcx	#1024
%rdx	#1032		%rdx	#1032		%rdx	#1032
-------+-------		-------+-------		-------+-------			
MEM	VALUE		MEM	VALUE		MEM	VALUE
#1024	35		#1024	35		#1024	35
#1032	25		#1032	25		#1032	25
#1040	15		#1040	15		#1040	15
#1048	5		#1048	5		#1048	5
-------+-------		-------+-------		-------+-------			

#!: On 64-bit systems, ALWAYS use a 64-bit reg name like %rdx
and movq to copy memory addresses; using smaller name like %edx
will miss half the memory addressing leading to major memory
problems

24

Answers Part 2/2: movX Instruction Execution

movq $65,(%rcx,%rbx)
movq $45,(%rdx) #1024+16 = #1040

movl %eax,%ebx #1032 movq $3,%rbx
movq %rcx,%rax #! movq $55,16(%rdx) movq $75,(%rcx,%rbx,8)

16+#1032=#1048 #1024 + 3*8 = #1048
POS B ## POS C ## POS D

-------+-------		-------+-------		-------+-------			
REG	VALUE		REG	VALUE		REG	VALUE
%rax	#1024		%rax	#1024		%rax	#1024
%rbx	16		%rbx	16		%rbx	3
%rcx	#1024		%rcx	#1024		%rcx	#1024
%rdx	#1032		%rdx	#1032		%rdx	#1032
-------+-------		-------+-------		-------+-------			
MEM	VALUE		MEM	VALUE		MEM	VALUE
#1024	35		#1024	35		#1024	35
#1032	25		#1032	45		#1032	45
#1040	15		#1040	15		#1040	65
#1048	5		#1048	55		#1048	75
-------+-------		-------+-------		-------+-------			

25

gdb Assembly: Examining Memory

gdb commands print and x allow one to print/examine memory
memory of interest. Try on movX_exercises.s
(gdb) tui enable # TUI mode
(gdb) layout asm # assembly mode
(gdb) layout reg # show registers
(gdb) stepi # step forward by single Instruction
(gdb) print $rax # print register rax
(gdb) print *($rdx) # print memory pointed to by rdx
(gdb) print (char *) $rdx # print as a string (null terminated)
(gdb) x $r8 # examine memory at address in r8
(gdb) x/3d $r8 # same but print as 3 4-byte decimals
(gdb) x/6g $r8 # same but print as 6 8-byte decimals
(gdb) x/s $r8 # print as a string (null terminated)
(gdb) print *((int*) $rsp) # print top int on stack (4 bytes)
(gdb) x/4d $rsp # print top 4 stack vars as ints
(gdb) x/4x $rsp # print top 4 stack vars as ints in hex

Many of these tricks are needed to debug assembly.

26

Register Size and Movement
▶ Recall %rax is 64-bit register, %eax is lower 32 bits of it
▶ Data movement involving small registers may NOT overwrite

higher bits in extended register
▶ Moving data to low 32-bit regs automatically zeros high 32-bits

movabsq $0x1122334455667788, %rax # 8 bytes to %rax
movl $0xAABBCCDD, %eax # 4 bytes to %eax
%rax is now 0x00000000AABBCCDD

▶ Moving data to other small regs DOES NOT ALTER high bits
movabsq $0x1122334455667788, %rax # 8 bytes to %rax
movw $0xAABB, %ax # 2 bytes to %ax
%rax is now 0x112233445566AABB

▶ Gives rise to two other families of movement instructions for moving
little registers (X) to big (Y) registers, see movz_examples.s
movzXY move zero extend, movsXY move sign extend
movabsq $0x112233445566AABB,%rdx
movzwq %dx,%rax # %rax is 0x000000000000AABB
movswq %dx,%rax # %rax is 0xFFFFFFFFFFFFAABB

27

Exercise: movX differences in Memory

Instr # bytes
movb 1 byte
movw 2 bytes
movl 4 bytes
movq 8 bytes

Show the result of each of the
following copies to main memory
in sequence.
movl %eax, (%rsi) #1
movq %rax, (%rsi) #2
movb %cl, (%rsi) #3
movw %cx, 2(%rsi) #4
movl %ecx, 4(%rsi) #5

INITIAL
|-------+--------------------|
REG	
rax	0x00000000DDCCBBAA
rcx	0x000000000000FFEE
rsi	#1024
-------+--------------------	
MEM	
#1024	0x00
#1025	0x11
#1026	0x22
#1027	0x33
#1028	0x44
#1029	0x55
#1030	0x66
#1031	0x77
#1032	0x88
#1033	0x99
-------+--------------------	

28

Answers: movX to Main Memory 1/2

|-----+--------------------| movl %eax, (%rsi) #1 4 bytes rax -> #1024
| REG | | movq %rax, (%rsi) #2 8 bytes rax -> #1024
| rax | 0x00000000DDCCBBAA | movb %cl, (%rsi) #3 1 byte rcx -> #1024
| rcx | 0x000000000000FFEE | movw %cx, 2(%rsi) #4 2 bytes rcx -> #1026
| rsi | #1024 | movl %ecx, 4(%rsi) #5 4 bytes rcx -> #1028
|-----+--------------------|

#1 #2 #3 #4 #5
INITIAL movl %eax,(%rsi) movq %rax,(%rsi) movb %cl,(%rsi) movw %cx,2(%rsi) movl %ecx,4(%rsi)
-------+------		-------+------		-------+------		-------+------		-------+------		-------+------						
MEM			MEM			MEM			MEM			MEM			MEM	
#1024	0x00		#1024	0xAA		#1024	0xAA		#1024	0xEE		#1024	0xEE		#1024	0xEE
#1025	0x11		#1025	0xBB		#1025	0xBB		#1025	0xBB		#1025	0xBB		#1025	0xBB
#1026	0x22		#1026	0xCC		#1026	0xCC		#1026	0xCC		#1026	0xEE		#1026	0xEE
#1027	0x33		#1027	0xDD		#1027	0xDD		#1027	0xDD		#1027	0xFF		#1027	0xFF
#1028	0x44		#1028	0x44		#1028	0x00		#1028	0x00		#1028	0x00		#1028	0xEE
#1029	0x55		#1029	0x55		#1029	0x00		#1029	0x00		#1029	0x00		#1029	0xFF
#1030	0x66		#1030	0x66		#1030	0x00		#1030	0x00		#1030	0x00		#1030	0x00
#1031	0x77		#1031	0x77		#1031	0x00		#1031	0x00		#1031	0x00		#1031	0x00
#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88
#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99
-------+------		-------+------		-------+------		-------+------		-------+------		-------+------						

29

Answers: movX to Main Memory 2/2

|-----+--------------------| movl %eax, (%rsi) #1 4 bytes rax -> #1024
| REG | | movq %rax, (%rsi) #2 8 bytes rax -> #1024
| rax | 0x00000000DDCCBBAA | movb %cl, (%rsi) #3 1 byte rcx -> #1024
| rcx | 0x000000000000FFEE | movw %cx, 2(%rsi) #4 2 bytes rcx -> #1026
| rsi | #1024 | movl %ecx, 4(%rsi) #5 4 bytes rcx -> #1028
|-----+--------------------|
#3 #4 #5
movb %cl,(%rsi) movw %cx,2(%rsi) movl %ecx,4(%rsi)
-------+------		-------+------		-------+------			
MEM			MEM			MEM	
#1024	0xEE		#1024	0xEE		#1024	0xEE
#1025	0xBB		#1025	0xBB		#1025	0xBB
#1026	0xCC		#1026	0xEE		#1026	0xEE
#1027	0xDD		#1027	0xFF		#1027	0xFF
#1028	0x00		#1028	0x00		#1028	0xEE
#1029	0x00		#1029	0x00		#1029	0xFF
#1030	0x00		#1030	0x00		#1030	0x00
#1031	0x00		#1031	0x00		#1031	0x00
#1032	0x88		#1032	0x88		#1032	0x88
#1033	0x99		#1033	0x99		#1033	0x99
-------+------		-------+------		-------+------			

30

addX : A Quintessential ALU Instruction
addX B, A # A = A+B

OPERANDS
addX %reg, %reg
addX (%mem),%reg
addX %reg, (%mem)
addX $con, %reg
addX $con, (%mem)

No mem+mem or con+con

EXAMPLES
addq %rdx, %rcx # rcx = rcx + rdx
addl %eax, %ebx # ebx = ebx + eax
addq $42, %rdx # rdx = rdx + 42
addl (%rsi),%edi # edi = edi + *rsi
addw %ax, (%rbx) # *rbx = *rbx + ax
addq $55, (%rbx) # *rbx = *rbx + 55

addl (%rsi,%rax,4),%edi # edi = edi+rsi[rax] (int)

▶ Addition represents most 2-operand
ALU instructions well

▶ Second operand A is modified by first
operand B, No change to B

▶ Variety of register, memory, constant
combinations honored

▶ addX has variants for each register
size: addq, addl, addw, addb

31

Exercise: Addition
Show the results of the following addX/movX ops at each of the
specified positions

addq $1,%rcx # con + reg
addq %rbx,%rax # reg + reg
POS A

addq (%rdx),%rcx # mem + reg
addq %rbx,(%rdx) # reg + mem
addq $3,(%rdx) # con + mem
POS B

addl $1,(%r8,%r9,4) # con + mem
addl $1,%r9d # con + reg
addl %eax,(%r8,%r9,4) # reg + mem
addl $1,%r9d # con + reg
addl (%r8,%r9,4),%eax # mem + reg
POS C

INITIAL
|-------+-------|
REGS	
%rax	15
%rbx	20
%rcx	25
%rdx	#1024
%r8	#2048
%r9	0
-------+-------	
MEM	
#1024	100
...	...
#2048	200
#2052	300
#2056	400
-------+-------	

32

Answers: Addition
INITIAL POS A POS B POS C
-------+-------		-------+-------		-------+-------		-------+-------				
REG			REG			REG			REG	
%rax	15		%rax	35		%rax	35		%rax	435
%rbx	20		%rbx	20		%rbx	20		%rbx	20
%rcx	25		%rcx	26		%rcx	126		%rcx	126
%rdx	#1024		%rdx	#1024		%rdx	#1024		%rdx	#1024
%r8	#2048		%r8	#2048		%r8	#2048		%r8	#2048
%r9	0		%r9	0		%r9	0		%r9	2
-------+-------		-------+-------		-------+-------		-------+-------				
MEM			MEM			MEM			MEM	
#1024	100		#1024	100		#1024	123		#1024	123
...
#2048	200		#2048	200		#2048	200		#2048	201
#2052	300		#2052	300		#2052	300		#2052	335
#2056	400		#2056	400		#2056	400		#2056	400
-------+-------		-------+-------		-------+-------		-------+-------				

addq $1,%rcx addq (%rdx),%rcx addl $1,(%r8,%r9,4)
addq %rbx,%rax addq %rbx,(%rdx) addl $1,%r9d

addq $3,(%rdx) addl %eax,(%r8,%r9,4)
addl $1,%r9d
addl (%r8,%r9,4),%eax

33

The Other ALU Instructions
▶ Most ALU instructions follow the same patter as addX: two

operands, second gets changed.
▶ Some one operand instructions as well.

Instruction Name Effect Notes
addX B, A Add A = A + B Two Operand Instructions
subX B, A Subtract A = A - B
imulX B, A Multiply A = A * B Has a limited 3-arg variant
andX B, A And A = A & B
orX B, A Or A = A | B
xorX B, A Xor A = A ^ B
salX B, A Shift Left A = A << B
shlX B, A A = A << B
sarX B, A Shift Right A = A >> B Arithmetic: Sign carry
shrX B, A A = A >> B Logical: Zero carry
incX A Increment A = A + 1 One Operand Instructions
decX A Decrement A = A - 1
negX A Negate A = -A
notX A Complement A = ~A

34

leaX: Load Effective Address
▶ Memory addresses must often be loaded into registers
▶ Often done with a leaX, usually leaq in 64-bit platforms
▶ Sort of like “address-of” op & in C but a bit more general

INITIAL
|-------+-------|
REG	VAL
rax	0
rcx	2
rdx	#1024
rsi	#2048
-------+-------	
MEM	
#1024	15
#1032	25
...	
#2048	200
#2052	300
#2056	400
-------+-------	

leaX_examples.s:
movq 8(%rdx),%rax # rax = *(rdx+1) = 25
leaq 8(%rdx),%rax # rax = rdx+1 = #1032
movl (%rsi,%rcx,4),%eax # rax = rsi[rcx] = 400
leaq (%rsi,%rcx,4),%rax # rax = &(rsi[rcx]) = #2056

Compiler sometimes uses leaX for multiplication
as it is usually faster than imulX but less readable.
Odd Collatz update n = 3*n+1
#READABLE with imulX #OPTIMIZED with leaX:
imul $3,%eax leal 1(%eax,%eax,2),%eax
addl $1,%eax
eax = eax*3 + 1 # eax = eax + 2*eax + 1,
3-4 cycles # 1 cycle

gcc, you are so clever...

35

Division: It’s a Pain (1/2)
▶ Unlike other ALU operations, idivX operation has some

special rules
▶ Dividend must be in the rax / eax / ax register
▶ Sign extend to rdx / edx / dx register with cqto
▶ idivX takes one register argument which is the divisor
▶ At completion

▶ rax / eax / ax holds quotient (integer part)
▶ rdx / edx / dx holds the remainder (leftover)

division.s:
movl $15, %eax # set eax to int 15
cqto # extend sign of eax to edx
combined 64-bit register %edx:%eax is
now 0x00000000 0000000F = 15
movl $2, %esi # set esi to 2
idivl %esi # divide combined register by 2
15 div 2 = 7 rem 1
%eax == 7, quotient
%edx == 1, remainder
Compiler avoids division whenever possible: compile
col_unsigned.c and col_signed.c to see some tricks.

36

Division: It’s a Pain (2/2)
▶ When performing division on 8-bit or 16-bit quantities, use

instructions to sign extend small reg to all rax register
division with 16-bit shorts from division.s
movq $0,%rax # set rax to all 0's
movq $0,%rdx # set rdx to all 0's

rax = 0x00000000 00000000
rdx = 0x00000000 00000000

movw $-17, %ax # set ax to short -17
rax = 0x00000000 0000FFEF
rdx = 0x00000000 00000000

cwtl # "convert word to long" sign extend ax to eax
rax = 0x00000000 FFFFFFEF
rdx = 0x00000000 00000000

cltq # "convert long to quad" sign extend eax to rax
rax = 0xFFFFFFFF FFFFFFEF
rdx = 0x00000000 00000000

cqto # sign extend rax to rdx
rax = 0xFFFFFFFF FFFFFFEF
rdx = 0xFFFFFFFF FFFFFFFF

movq $3, %rcx # set rcx to long 3
idivq %rcx # divide combined rax/rdx register by 3

rax = 0xFFFFFFFF FFFFFFFB = -5 (quotient)
rdx = 0xFFFFFFFF FFFFFFFE = -2 (remainder)

37

