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Logistics
Reading Bryant/O’Hallaron
▶ Ch 4: Finish / Skim
▶ Ch 6: Memory

Lab / HW 11
▶ Lab 11: clock() function

Used in P4 Problem 2
▶ HW 11: Memory

Optimization
Useful optimization for P4
Problem 1 though the
project version is
significantly more complex

Goals
▶ 2D arrays
▶ Timing code
▶ Cache Basics + Details
▶ Permanent Storage

Schedule
Date Event
Mon 4/11 Storage
Wed 4/13 Micro Opts

Lab: Preprocessor
Fri 4/15 Micro Opts
Mon 4/18 Review

P4 Due
Wed 4/20 Lab: Review

Exam 3
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Architecture Performance

// LOOP 1
for(i=0; i<iters; i++){
retA += delA;
retB += delB;

}
*start = retA+retB;

// LOOP 2
for(i=0; i<iters; i++){
retA += delA;
retA += delB;

}
*start = retA;

From Lab10 + HW10
▶ LOOP1 or LOOP2 faster?
▶ Why?
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Exercise: 2D Arrays
▶ Several ways to construct “2D” arrays in C
▶ All must embed a 2D construct into 1-dimensional memory
▶ Consider the 2 styles below: how will the picture of memory

look different?
// REPEATED MALLOC
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));

for(int i=0; i<rows; i++){
mat[i] = malloc(cols*sizeof(int));

}

// do work
mat[i][j] = ...

// free memory
for(int i=0; i<rows; i++){

free(mat[i]);
}
free(mat);

// TWO MALLOCs
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));
int *data =

malloc(rows*cols*sizeof(int));
for(int i=0; i<rows; i++){

mat[i] = data+i*cols;
}

// do work
mat[i][j] = ...

// free memory
free(data);

free(mat);
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Answer: 2D Arrays

5



Single Malloc Matrices

Somewhat common to use a 1D array as a 2D matrix as in
int *matrix =

malloc(rows*cols*sizeof(int));

int i=5, j=20;
int elem_ij = matrix[ i*cols + j ]; // retrieve element i,j

HW11/P4 will use this technique along with some structs and
macros to make it more readable:
matrix_t mat;
matrix_init(&mat, rows, cols);

int elij = MGET(mat,i,j);
// elij = mat.data[ mat.cols*i + j]

MSET(mat,i,j, 55);
// mat.data[ mat.cols*i + j ] = 55;
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Aside: Row-Major vs Col-Major Layout
▶ Many languages use Row-Major order for 2D arrays/lists

▶ C, Java, Python, Ocaml,…
▶ mat[i] is a contiguous row, mat[i][j] is an element

▶ Numerically-oriented languages use Column-Major order
▶ Fortran, Matlab/Octave, R, Ocaml (?)…
▶ mat[j] is a contiguous column, mat[i][j] is an element

▶ Being aware of language convention can increase efficiency

Source: The Craft of Coding
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Exercise: Matrix Summing

▶ How are the two codes below different?
▶ Are they doing the same number of operations?
▶ Which will run faster?

int sumR = 0;
for(int i=0; i<rows; i++){
for(int j=0; j<cols; j++){

sumR += mat[i][j];
}

}

int sumC = 0;
for(int j=0; j<cols; j++){

for(int i=0; i<rows; i++){
sumC += mat[i][j];

}
}
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Answer: Matrix Summing

▶ Show timing in matrix_timing.c
▶ sumR faster the sumC: caching effects
▶ Discuss timing functions used to determine duration of runs

> gcc -Og matrix_timing.c
> a.out 50000 10000
sumR: 1711656320 row-wise CPU time: 0.265 sec, Wall time: 0.265
sumC: 1711656320 col-wise CPU time: 1.307 sec, Wall time: 1.307

▶ sumR runs about 6 times faster than sumC
▶ Understanding why requires knowledge of the memory

hierarchy and cache behavior
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Measuring Time in Code
▶ Measure CPU time with the standard clock() function;

measure time difference and convert to seconds
▶ Measure Wall (real) time with gettimeofday() or related

functions; fills struct with info on time of day (duh)

CPU Time
#include <time.h>

clock_t begin, end;
begin = clock(); // current cpu moment

do_something();

end = clock(); // later moment

double cpu_time =
((double) (end-begin)) / CLOCKS_PER_SEC;

Real (Wall) Time
#include <sys/time.h>

struct timeval tv1, tv2;
gettimeofday(&tv1, NULL); // early time

do_something();

gettimeofday(&tv2, NULL); // later time

double wall_time =
((tv2.tv_sec-tv1.tv_sec)) +
((tv2.tv_usec-tv1.tv_usec) / 1000000.0);
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Tools to Measure Performance: perf

▶ The Linux perf tool is useful to measure performance of an
entire program

▶ Shows variety of statistics tracked by the kernel about things
like memory performance

▶ Examine examples involving the matrix_timing program:
sumR vs sumC

▶ Determine statistics that explain the performance gap
between these two?
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Exercise: perf stats for sumR vs sumC, what’s striking?

> perf stat $perfopts ./matrix_timing 8000 4000 row ## RUN sumR ROW SUMMING
sumR: 1227611136 row-wise CPU time: 0.019 sec, Wall time: 0.019
Performance counter stats for './matrix_timing 8000 4000 row': %SAMPLED
135,161,407 cycles:u (45.27%)
417,889,646 instructions:u # 3.09 insn per cycle (56.22%)
56,413,529 L1-dcache-loads:u (55.96%)
3,843,602 L1-dcache-load-misses:u # 6.81% of all L1-dcache hits (50.41%)
28,153,429 L1-dcache-stores:u (47.42%)

125 L1-icache-load-misses:u (44.77%)
3,473,211 cache-references:u # last level of cache (56.22%)
1,161,006 cache-misses:u # 33.427 % of all cache refs (56.22%)

> perf stat $perfopts ./matrix_timing 8000 4000 col # RUN sumC COLUMN SUMMING
sumC: 1227611136 col-wise CPU time: 0.086 sec, Wall time: 0.086
Performance counter stats for './matrix_timing 8000 4000 col': %SAMPLED
372,203,024 cycles:u (40.60%)
404,821,793 instructions:u # 1.09 insn per cycle (57.23%)
61,990,626 L1-dcache-loads:u (60.21%)
39,281,370 L1-dcache-load-misses:u # 63.37% of all L1-dcache hits (45.66%)
23,886,332 L1-dcache-stores:u (43.24%)

2,486 L1-icache-load-misses:u (40.82%)
32,582,656 cache-references:u # last level of cache (59.38%)
1,894,514 cache-misses:u # 5.814 % of all cache refs (60.38%)
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Answers: perf stats for sumR vs sumC, what’s striking?
Observations
▶ Similar number of instructions between row/col versions
▶ #cycles lower for row version → higher insn per cycle
▶ L1-dcache-misses: marked difference between row/col

version
▶ Last Level Cache Refs : many, many more in col version
▶ Col version: much time spent waiting for memory system to

feed in data to the processor

Notes
▶ The right-side percentages like (50.41%) indicate how much

of how much of the time this feature is measured; some items
can’t be monitored all the time.

▶ Specific perf invocation is in
10-memory-systems-code/measure-cache.sh
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Exercise: Time and Throughput

Consider the following simple
loop to sum elements of an array
from stride_throughput.c

int *data = ...; // global array
int sum_simple(int len, int stride){
int sum = 0;
for(int i=0; i<len; i+=stride)
{

sum += data[i];
}
return sum;

}

▶ Param stride controls step
size through loop

▶ Interested in two features of
the sum_simple() function:

1. Total Time to complete
2. Throughput:

Throughput = #Additions

Second

▶ How would one measure and
calculate these two in a
program?

▶ As stride increases, predict
how Total Time and
Throughput change
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Answers: Time and Throughput

Measuring Time/Throughput
Most interested in CPU time so
begin = clock();
sum_simple(length,stride);
end = clock();
cpu_time = ((double) (end-begin))

/ CLOCKS_PER_SEC;

throughput = ((double) length) /
stride /
cpu_time;

Time vs Throughput
As stride increases…
▶ Time decreases: doing fewer

additions (duh)
▶ Throughput decreases

Plot of Stride vs Throughput

▶ Stride = 1: consecutive
memory accesses

▶ Stride = 16: jumps through
memory, more time
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Memory Mountains from Bryant/O’Hallaron
▶ Varying stride for a fixed length leads to decreasing

performance, 2D plot
▶ Can also vary length for size of array to get a 3D plot
▶ Illustrates features of CPU/memory on a system
▶ The “Memory Mountain” on the cover of our textbook
▶ What interesting structure do you see?
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Increasing Efficiency

▶ Can increase the efficiency
of loop summing with tricks

▶ B/O’H use multiple
accumulators: multiple
variables for summing

▶ Facilitates pipelining /
superscalar processor

▶ Code is significantly faster
BUT much trickier and less
readable

▶ May be compiler options
which enable this but not
with defaults in gcc -O3
(try searching optimization
options, ~67 pages)

// From Bryant/O'Hallaron
int sum_add4(int elems, int stride){
int i,

sx1 = stride*1, sx2 = stride*2,
sx3 = stride*3, sx4 = stride*4,
acc0 = 0, acc1 = 0,
acc2 = 0, acc3 = 0;

int length = elems;
int limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+sx1];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i += stride) {

acc0 = acc0 + data[i];
}
return acc0+acc1+acc2+acc3;

}
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Temporal and Spatial Locality
▶ In the beginning, there was only CPU and Memory
▶ Both ran at about the same speed (same clock frequency)
▶ CPUs were easier to make faster, began outpacing speed of

memory
▶ Hardware folks noticed programmers often write loops like

for(int i=0; i<0; i++){
sum += array[i];

}
▶ Led to development of faster memories exploit Locality
▶ Temporal Locality: memory recently used likely to be used

again soon
▶ Spatial Locality: memory near to recently used memory

likely to be used
▶ Register file and Cache were developed to exploit this: faster

memory that is automatically managed
18



The Memory Pyramid

Source

19

https://linux2me.wordpress.com/2017/09/15/linux-introduction-to-memory-management/


Numbers Everyone Should Know

Edited Excerpt of Jeff Dean’s talk on data centers.

Reference Time Analogy
Register - Your brain
L1 cache reference 0.5 ns Your desk
L2 cache reference 7 ns Neighbor’s Desk
Main memory reference 100 ns This Room
Disk seek 10,000,000 ns Salt Lake City

Big-O Analysis does NOT capture these; proficient programmers do
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http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf


Diagrams of Memory Interface and Cache Levels

Source: Bryant/O’Hallaron CS:APP 3rd Ed.

Source: SO “Where exactly L1, L2 and L3 Caches
located in computer?”
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https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer


Why isn’t Everything Cache?
Metric 1985 1990 1995 2000 2005 2010 2015 2015/1985
SRAM $/MB 2,900 320 256 100 75 60 25 116
SRAM access (ns) 150 35 15 3 2 1.5 1.3 115
DRAM $/MB 880 100 30 1 0.1 0.06 0.02 44,000
DRAM access (ns) 200 100 70 60 50 40 20 10

Source: Bryant/O’Hallaron CS:APP 3rd Ed., Fig 6.15, pg 603

1 bit SRAM = 6 transistors 1 bit DRAM = 1 transistor + 1 capacitor

“What Every Programmer Should Know
About Memory” by Ulrich Drepper, Red
Hat, Inc.
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https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf


Cache Principles: Hits and Misses
CPU-Memory is a Client-Server
▶ CPU makes requests
▶ Memory system services

request as fast as possible

Cache Hit
▶ CPU requests memory at

address 0xFFFF1234 be
loaded into register %rax

▶ Finds valid data for
0xFFFF1234 in L1 Cache:
L1 Hit

▶ Loads into register fast

Cache Miss
▶ CPU requests memory at

address 0xFFFF7890 be
loaded into register %rax

▶ 0xFFFF7890 not in L1
Cache: L1 Miss

▶ Search L2: if found move
into L1, then %rax

▶ Search L3: if found move
into L2, L1, %rax

▶ Search main memory: if
found, move into caches,
if not…

Wait, how could 0xFFFF7890
not be in main memory… ?
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Types of Cache Misses
Compulsory “Cold” Miss: Program Getting Started
▶ All cache entries start with valid=0: cache contains leftover

garbage from previous program runs
▶ After the cache “warms up” most entries will have Valid=1,

data for running program

Capacity Miss: Data Too Big to Fit
▶ Working set is set of memory being frequently accessed in a

particular phase of a program run
▶ Large working set may exceed the size of a cache causing

misses

Conflict Miss: This Stall Occupied
▶ Internal placement policy of cache dictates where data goes
▶ If two needed piece of data both go to the same position in

cache, leads to misses as they overwrite each other
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Diagram of Direct Mapped Cache

Source: Dive into Systems dot org
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https://diveintosystems.org/book/C11-MemHierarchy/caching.html


Memory Address Determines Location in a Cache
Cache is like a Hash Table
▶ Cache has a # of Sets

which can hold a copy of
Main Memory

▶ Each Main Memory address
has some bits indicating
▶ Set - where in cache data

should go
▶ Tag - identifier to track

what’s in cache
▶ Each cache Set can hold 1

or more Lines of data with a
specific Tag

▶ Main Memory divides into
cache Blocks which share
Tag/Set and move in/out of
cache together

Address Bits to Cache Location

▶ Bits from address determine
location for memory in cache

▶ Direct-Mapped cache, 4 sets
and 16 byte blocks/lines

▶ Load address 0x28
0 2 8

0x28 = 00 10 1000
| | |
| | +-> Offset: 4 bits
| +-> Set: 2 bits
+-> Tag: Remaining bits

▶ 0x20 in the same line, will
also be loaded int set #2
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Exercises: Anatomy of a Simple CPU Cache
MAIN MEMORY CACHE
| Addr | Addr Bits | Value | | | | | Blocks/Line |
|------+----------------+-------+ | Set | V | Tag | 0-7 8-15 |
| 00 | 00 00 0000 | 331 | |-----+---+-----+-------------|
| 08 | 00 00 1000 | 332 | | 00 | 0 | - | - |
| 10 | 00 01 0000 | 333 | | 01 | 1 | 00 | 333 334 |
| 18 | 00 01 1000 | 334 | | 10 | 1 | 11 | 555 556 |
| 20 | 00 10 0000 | 335 | | 11 | 1 | 00 | 337 338 |
| 28 | 00 10 1000 | 336 | |-----+---+-----+-------------|
| 30 | 00 11 0000 | 337 | | | | | 0-7 8-15 |
| 38 | 00 11 1000 | 338 | DIRECT-MAPPED Cache
| | .. . | | - Direct-mapped: 1 Line per Set
| C0 | 11 00 0000 | 551 | - 16-byte lines = 4-bit offset
| C8 | 11 00 1000 | 552 | - 4 Sets = 2-bit index
| D0 | 11 01 0000 | 553 | - 8-bit Address = 2-bit tag
| D8 | 11 01 1000 | 554 | - Total Cache Size = 64 bytes
| E0 | 11 10 0000 | 555 | 4 sets * 16 bytes
| E8 | 11 10 1000 | 556 |
| F0 | 11 11 0000 | 557 | HITS OR MISSES? Show effects
| F8 | 11 11 1000 | 558 | 1. Load 0x08
|------+----------------+-------+ 2. Load 0xF0
| | Tag Set Offset | | 3. Load 0x18
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Answers: Anatomy of a Simple CPU Cache
MAIN MEMORY CACHE
| Addr | Addr Bits | Value | | | | | Blocks/Line |
|------+----------------+-------+ | Set | V | Tag | 0-7 8-15 |
| 00 | 00 00 0000 | 331 | |-----+---+-----+-------------|
| 08 | 00 00 1000 | 332 | | 00 | 1 | *00 | 331 332 |
| 10 | 00 01 0000 | 333 | | 01 | 1 | 00 | 333 334 |
| 18 | 00 01 1000 | 334 | | 10 | 1 | 11 | 555 556 |
| 20 | 00 10 0000 | 335 | | 11 | 1 | *11 | 557 558 |
| 28 | 00 10 1000 | 336 | |-----+---+-----+-------------|
| 30 | 00 11 0000 | 337 | | | | | 0-7 8-15 |
| 38 | 00 11 1000 | 338 | DIRECT-MAPPED Cache
| | .. . | | - Direct-mapped: 1 line per set
| C0 | 11 00 0000 | 551 | - 16-byte lines = 4-bit offset
| C8 | 11 00 1000 | 552 | - 4 Sets = 2-bit index
| D0 | 11 01 0000 | 553 | - 8-bit Address = 2-bit tag
| D8 | 11 01 1000 | 554 | - Total Cache Size = 64 bytes
| E0 | 11 10 0000 | 555 | 4 sets * 16 bytes
| E8 | 11 10 1000 | 556 |
| F0 | 11 11 0000 | 557 | HITS OR MISSES? Show effects
| F8 | 11 11 1000 | 558 | 1. Load 0x08: MISS to set 00
|------+----------------+-------+ 2. Load 0xF0: MISS overwrite
| | Tag Set Offset | | set 11

3. Load 0x18: HIT in set 01
no change
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Direct vs Associative Caches
Direct Mapped
One line per set
| | | | Blocks/Line |
| Set | V | Tag | 0-7 8-15 |
|-----+---+-----+-------------|
| 00 | 0 | - | - |
| 01 | 1 | 00 | 333 334 |
| 10 | 1 | 11 | 555 556 |
| 11 | 1 | 00 | 337 338 |
|-----+---+-----+-------------|
| | | | 0-7 8-15 |
▶ Simple circuitry
▶ Conflict misses may result: 1

slot for many possible tags
▶ Thrashing: need memory with

overlapping tags

vv
0x10 = 00 01 0000 : in cache
0xD8 = 11 01 1000 : conflict

^^

N-Way Associative Cache
Ex: 2-way = 2 lines per set
| | | | Blocks |
| Set | V | Tag | 0-7 8-15 |
|-----+---+-----+-------------|
| 00 | 0 | - | - | Line1
| | 1 | 11 | 551 552 | Line2
|-----+---+-----+-------------|
| 01 | 1 | 00 | 333 334 | Line1
| | 1 | 11 | 553 554 | Line2
|-----+---+-----+-------------|
| 10 | 1 | 11 | 555 556 | Line1
| | 0 | - | - | Line2
|-----+---+-----+-------------|
| 11 | 1 | 00 | 337 338 | Line1
| | 1 | 11 | 557 558 | Line2
|-----+---+-----+-------------|
| | | | 0-7 8-15 |
▶ Complex circuitry → $$
▶ Requires an eviction policy,

usually least recently used
29



How big is your cache? Check Linux System special Files
lscpu Utility
Handy Linux program that
summarizes info on CPU(s)
> lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 36 bits physical,

48 bits virtual
CPU(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Core(TM)

i7-3667U CPU @ 2.00GHz
...
L1d cache: 64 KiB
L1i cache: 64 KiB
L2 cache: 512 KiB
L3 cache: 4 MiB
Vulnerability Meltdown: Mitigation; ...
Vulnerability Spectre v1: Mitigation ...
...

Detailed Hardware Info
Files under /sys/devices/...
show hardware info (caches)
> cd /sys/devices/system/cpu/cpu0/cache/
> ls
index0 index1 index2 index3 ...

> ls index0/
number_of_sets type level size
ways_of_associativity ...

> cd index0
> cat level type number_* ways_* size
1 Data 64 8 32K

> cd ../index1
> cat level type number_* ways_* size
1 Instruction 64 8 32K

> cd ../index3
> cat level type number_* ways_* size
3 Unified 8192 20 10240K
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Disks: Persistent Block Storage
▶ Have discussed a variety of fast memories which are small
▶ At the bottom of the pyramid are disks: slow but large

memories
▶ These are persistent: when powered off, they retain

information

Using Disk as Main Memory
▶ Operating Systems can create the illusion that main memory

is larger than it is in reality
▶ Ex: 2 GB DRAM + 6 GB of disk space = 8 GB Main Memory
▶ Disk file is called swap or a swap file
▶ Naturally much slower than RAM so OS will try to limit its use
▶ A Virtual Memory system manages RAM/Disk as main

memory, will discuss later in the course
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Flavors of Permanent Storage

▶ Permanent storage often referred to as a “drive”
▶ Comes in many variants but these 3 are worth knowing about

in the modern era
1. Rotating Disk Drive
2. Solid State Drive
3. Magnetic Tape Drive

▶ Surveyed in the slides that follow
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Ye Olde Rotating Disk
▶ Store bits “permanently” as

magnetized areas on special
platters

▶ Magnetic disks: moving
parts → slow

▶ Cheap per GB of space

Source: CS:APP Slides

Source: Realtechs.net

Source: CS:APP Slides
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http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf
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Rotating Disk Drive Features of Interest

Measures of Quality
▶ Capacity: bigger is usually better
▶ Seek Time: delay before a head assembly reaches an arbitrary

track of the disk that contains data
▶ Rotational Latency: time for disk to spin around to correct

position; faster rotation → lower Latency
▶ Transfer Rate: once correct read/write position is found, how

fast data moves between disk and RAM

Sequential vs Random Access
Due to the rotational nature of Magnetic Disks…
▶ Sequential reads/writes comparatively FAST
▶ Random reads/writes comparatively very SLOW

34



Solid State Drives

▶ No moving parts → speed
▶ Most use “flash” memory,

non-volatile circuitry
▶ Major drawback: limited

number of writes, disk
wears out eventually

▶ Reads faster than writes
▶ Sequential somewhat faster

than random access
▶ Expensive:

A 1TB internal 2.5-inch hard
drive costs between $40 and
$50, but as of this writing,
an SSD of the same capac-
ity and form factor starts at
$250. That translates into
– 4 to 5 cents/GB for HDD
– 25 cents/GB for the SSD.
PC Magazine, “SSD vs
HDD” by Tom Brant and
Joel Santo Domingo March
26, 2018
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https://www.pcmag.com/article2/0,2817,2404258,00.asp
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Tape Drives

▶ Slowest yet: store bits as
magnetic field on a piece of
“tape” a la 1980’s cassette
tape / video recorder

▶ Extremely cheap per GB so
mostly used in backup
systems

▶ Ex: CSELabs does nightly
backups of home directories,
recoverable from tape at
request to Operator
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The I/O System Connects CPU and Peripherals
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Terminology
Bus A collection of wires which allow communication

between parts of the computer. May be serial (single
wire) or parallel (several wires), must have a
communication protocol over it.

Bus Speed Frequency of the clock signal on a particular bus,
usually different between components/buses requiring
interface chips
CPU Frequency > Memory Bus > I/O Bus

Interface/Bridge Computing chips that manage communications
across the bus possibly routing signals to correct part
of the computer and adapting to differing speeds of
components

Motherboard A printed circuit board connects to connect CPU to
RAM chips and peripherals. Has buses present on it
to allow communication between parts. Form factor
dictates which components can be handled.
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The Motherboard

Source: Wikipedia
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https://commons.wikimedia.org/wiki/File:ASRock_K7VT4A_Pro_Mainboard_Labeled_English.svg


Memory Mapped I/O
▶ Modern systems are a collection of devices and

microprocessors
▶ CPU usually uses memory mapped I/O: read/write certain

memory addresses translated to communication with devices
on I/O bus
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Direct Memory Access

▶ Communication received by other microprocessors like a Disk
Controller or Memory Management Unit (MMU)

▶ Other controllers may talk: Disk Controller loads data directly
into Main Memory via direct memory access
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Interrupts and I/O
Recall access times

Place Time
L1 cache 0.5 ns
RAM 100 ns
Disk 10,000,000 ns

▶ While running Program
X, CPU reads an int
from disk into %rax

▶ Communicates to disk
controller to read from
file

▶ Rather than wait, OS
puts Program X to
“sleep”, starts running
program Y

▶ When disk controller completes
read, signals the CPU via an
interrupt, electrical signals
indicating an event

▶ OS handles interrupt, schedules
Program X as “ready to run”
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Interrupts from Outside and Inside
▶ Examples of events that generate interrupts

▶ Integer divide by 0
▶ I/O Operation complete
▶ Memory address not in RAM (Page Fault)
▶ User generated: x86 instruction int 80

▶ Interrupts are mainly the business of the Operating System
▶ Usually cause generating program to immediately transfer

control to the OS for handling
▶ When building your own OS, must write “interrupt handlers”

to deal with above situations
▶ Divide by 0: signal program usually terminating it
▶ I/O Complete: schedule requesting program to run
▶ Page Fault: sleep program until page loaded
▶ User generated: perform system call

▶ User-level programs will sometimes get a little access to
interrupts via signals, a topic for CSCI 4061
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