
CSCI 2021: Memory Systems

Chris Kauffman

Last Updated:
Mon Apr 11 03:28:35 PM CDT 2022

1

Logistics
Reading Bryant/O’Hallaron
▶ Ch 4: Finish / Skim
▶ Ch 6: Memory

Lab / HW 11
▶ Lab 11: clock() function

Used in P4 Problem 2
▶ HW 11: Memory

Optimization
Useful optimization for P4
Problem 1 though the
project version is
significantly more complex

Goals
▶ 2D arrays
▶ Timing code
▶ Cache Basics + Details
▶ Permanent Storage

Schedule
Date Event
Mon 4/11 Storage
Wed 4/13 Micro Opts

Lab: Preprocessor
Fri 4/15 Micro Opts
Mon 4/18 Review

P4 Due
Wed 4/20 Lab: Review

Exam 3
2

Architecture Performance

// LOOP 1
for(i=0; i<iters; i++){
retA += delA;
retB += delB;

}
*start = retA+retB;

// LOOP 2
for(i=0; i<iters; i++){
retA += delA;
retA += delB;

}
*start = retA;

From Lab10 + HW10
▶ LOOP1 or LOOP2 faster?
▶ Why?

3

Exercise: 2D Arrays
▶ Several ways to construct “2D” arrays in C
▶ All must embed a 2D construct into 1-dimensional memory
▶ Consider the 2 styles below: how will the picture of memory

look different?
// REPEATED MALLOC
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));

for(int i=0; i<rows; i++){
mat[i] = malloc(cols*sizeof(int));

}

// do work
mat[i][j] = ...

// free memory
for(int i=0; i<rows; i++){

free(mat[i]);
}
free(mat);

// TWO MALLOCs
// allocate
int rows=100, cols=30;
int **mat =

malloc(rows * sizeof(int*));
int *data =

malloc(rows*cols*sizeof(int));
for(int i=0; i<rows; i++){

mat[i] = data+i*cols;
}

// do work
mat[i][j] = ...

// free memory
free(data);

free(mat);
4

Answer: 2D Arrays

5

Single Malloc Matrices

Somewhat common to use a 1D array as a 2D matrix as in
int *matrix =

malloc(rows*cols*sizeof(int));

int i=5, j=20;
int elem_ij = matrix[i*cols + j]; // retrieve element i,j

HW11/P4 will use this technique along with some structs and
macros to make it more readable:
matrix_t mat;
matrix_init(&mat, rows, cols);

int elij = MGET(mat,i,j);
// elij = mat.data[mat.cols*i + j]

MSET(mat,i,j, 55);
// mat.data[mat.cols*i + j] = 55;

6

Aside: Row-Major vs Col-Major Layout
▶ Many languages use Row-Major order for 2D arrays/lists

▶ C, Java, Python, Ocaml,…
▶ mat[i] is a contiguous row, mat[i][j] is an element

▶ Numerically-oriented languages use Column-Major order
▶ Fortran, Matlab/Octave, R, Ocaml (?)…
▶ mat[j] is a contiguous column, mat[i][j] is an element

▶ Being aware of language convention can increase efficiency

Source: The Craft of Coding

7

https://craftofcoding.wordpress.com/2017/02/03/column-major-vs-row-major-arrays-does-it-matter/

Exercise: Matrix Summing

▶ How are the two codes below different?
▶ Are they doing the same number of operations?
▶ Which will run faster?

int sumR = 0;
for(int i=0; i<rows; i++){
for(int j=0; j<cols; j++){

sumR += mat[i][j];
}

}

int sumC = 0;
for(int j=0; j<cols; j++){

for(int i=0; i<rows; i++){
sumC += mat[i][j];

}
}

8

Answer: Matrix Summing

▶ Show timing in matrix_timing.c
▶ sumR faster the sumC: caching effects
▶ Discuss timing functions used to determine duration of runs

> gcc -Og matrix_timing.c
> a.out 50000 10000
sumR: 1711656320 row-wise CPU time: 0.265 sec, Wall time: 0.265
sumC: 1711656320 col-wise CPU time: 1.307 sec, Wall time: 1.307

▶ sumR runs about 6 times faster than sumC
▶ Understanding why requires knowledge of the memory

hierarchy and cache behavior

9

Measuring Time in Code
▶ Measure CPU time with the standard clock() function;

measure time difference and convert to seconds
▶ Measure Wall (real) time with gettimeofday() or related

functions; fills struct with info on time of day (duh)

CPU Time
#include <time.h>

clock_t begin, end;
begin = clock(); // current cpu moment

do_something();

end = clock(); // later moment

double cpu_time =
((double) (end-begin)) / CLOCKS_PER_SEC;

Real (Wall) Time
#include <sys/time.h>

struct timeval tv1, tv2;
gettimeofday(&tv1, NULL); // early time

do_something();

gettimeofday(&tv2, NULL); // later time

double wall_time =
((tv2.tv_sec-tv1.tv_sec)) +
((tv2.tv_usec-tv1.tv_usec) / 1000000.0);

10

Tools to Measure Performance: perf

▶ The Linux perf tool is useful to measure performance of an
entire program

▶ Shows variety of statistics tracked by the kernel about things
like memory performance

▶ Examine examples involving the matrix_timing program:
sumR vs sumC

▶ Determine statistics that explain the performance gap
between these two?

11

Exercise: perf stats for sumR vs sumC, what’s striking?

> perf stat $perfopts ./matrix_timing 8000 4000 row ## RUN sumR ROW SUMMING
sumR: 1227611136 row-wise CPU time: 0.019 sec, Wall time: 0.019
Performance counter stats for './matrix_timing 8000 4000 row': %SAMPLED
135,161,407 cycles:u (45.27%)
417,889,646 instructions:u # 3.09 insn per cycle (56.22%)
56,413,529 L1-dcache-loads:u (55.96%)
3,843,602 L1-dcache-load-misses:u # 6.81% of all L1-dcache hits (50.41%)
28,153,429 L1-dcache-stores:u (47.42%)

125 L1-icache-load-misses:u (44.77%)
3,473,211 cache-references:u # last level of cache (56.22%)
1,161,006 cache-misses:u # 33.427 % of all cache refs (56.22%)

> perf stat $perfopts ./matrix_timing 8000 4000 col # RUN sumC COLUMN SUMMING
sumC: 1227611136 col-wise CPU time: 0.086 sec, Wall time: 0.086
Performance counter stats for './matrix_timing 8000 4000 col': %SAMPLED
372,203,024 cycles:u (40.60%)
404,821,793 instructions:u # 1.09 insn per cycle (57.23%)
61,990,626 L1-dcache-loads:u (60.21%)
39,281,370 L1-dcache-load-misses:u # 63.37% of all L1-dcache hits (45.66%)
23,886,332 L1-dcache-stores:u (43.24%)

2,486 L1-icache-load-misses:u (40.82%)
32,582,656 cache-references:u # last level of cache (59.38%)
1,894,514 cache-misses:u # 5.814 % of all cache refs (60.38%)

12

Answers: perf stats for sumR vs sumC, what’s striking?
Observations
▶ Similar number of instructions between row/col versions
▶ #cycles lower for row version → higher insn per cycle
▶ L1-dcache-misses: marked difference between row/col

version
▶ Last Level Cache Refs : many, many more in col version
▶ Col version: much time spent waiting for memory system to

feed in data to the processor

Notes
▶ The right-side percentages like (50.41%) indicate how much

of how much of the time this feature is measured; some items
can’t be monitored all the time.

▶ Specific perf invocation is in
10-memory-systems-code/measure-cache.sh

13

Exercise: Time and Throughput

Consider the following simple
loop to sum elements of an array
from stride_throughput.c

int *data = ...; // global array
int sum_simple(int len, int stride){
int sum = 0;
for(int i=0; i<len; i+=stride)
{

sum += data[i];
}
return sum;

}

▶ Param stride controls step
size through loop

▶ Interested in two features of
the sum_simple() function:

1. Total Time to complete
2. Throughput:

Throughput = #Additions

Second

▶ How would one measure and
calculate these two in a
program?

▶ As stride increases, predict
how Total Time and
Throughput change

14

Answers: Time and Throughput

Measuring Time/Throughput
Most interested in CPU time so
begin = clock();
sum_simple(length,stride);
end = clock();
cpu_time = ((double) (end-begin))

/ CLOCKS_PER_SEC;

throughput = ((double) length) /
stride /
cpu_time;

Time vs Throughput
As stride increases…
▶ Time decreases: doing fewer

additions (duh)
▶ Throughput decreases

Plot of Stride vs Throughput

▶ Stride = 1: consecutive
memory accesses

▶ Stride = 16: jumps through
memory, more time

15

Memory Mountains from Bryant/O’Hallaron
▶ Varying stride for a fixed length leads to decreasing

performance, 2D plot
▶ Can also vary length for size of array to get a 3D plot
▶ Illustrates features of CPU/memory on a system
▶ The “Memory Mountain” on the cover of our textbook
▶ What interesting structure do you see?

16

Increasing Efficiency

▶ Can increase the efficiency
of loop summing with tricks

▶ B/O’H use multiple
accumulators: multiple
variables for summing

▶ Facilitates pipelining /
superscalar processor

▶ Code is significantly faster
BUT much trickier and less
readable

▶ May be compiler options
which enable this but not
with defaults in gcc -O3
(try searching optimization
options, ~67 pages)

// From Bryant/O'Hallaron
int sum_add4(int elems, int stride){
int i,

sx1 = stride*1, sx2 = stride*2,
sx3 = stride*3, sx4 = stride*4,
acc0 = 0, acc1 = 0,
acc2 = 0, acc3 = 0;

int length = elems;
int limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+sx1];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i += stride) {

acc0 = acc0 + data[i];
}
return acc0+acc1+acc2+acc3;

}

17

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Temporal and Spatial Locality
▶ In the beginning, there was only CPU and Memory
▶ Both ran at about the same speed (same clock frequency)
▶ CPUs were easier to make faster, began outpacing speed of

memory
▶ Hardware folks noticed programmers often write loops like

for(int i=0; i<0; i++){
sum += array[i];

}
▶ Led to development of faster memories exploit Locality
▶ Temporal Locality: memory recently used likely to be used

again soon
▶ Spatial Locality: memory near to recently used memory

likely to be used
▶ Register file and Cache were developed to exploit this: faster

memory that is automatically managed
18

The Memory Pyramid

Source

19

https://linux2me.wordpress.com/2017/09/15/linux-introduction-to-memory-management/

Numbers Everyone Should Know

Edited Excerpt of Jeff Dean’s talk on data centers.

Reference Time Analogy
Register - Your brain
L1 cache reference 0.5 ns Your desk
L2 cache reference 7 ns Neighbor’s Desk
Main memory reference 100 ns This Room
Disk seek 10,000,000 ns Salt Lake City

Big-O Analysis does NOT capture these; proficient programmers do

20

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

Diagrams of Memory Interface and Cache Levels

Source: Bryant/O’Hallaron CS:APP 3rd Ed.

Source: SO “Where exactly L1, L2 and L3 Caches
located in computer?”

21

https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer
https://superuser.com/questions/196143/where-exactly-l1-l2-and-l3-caches-located-in-computer

Why isn’t Everything Cache?
Metric 1985 1990 1995 2000 2005 2010 2015 2015/1985
SRAM $/MB 2,900 320 256 100 75 60 25 116
SRAM access (ns) 150 35 15 3 2 1.5 1.3 115
DRAM $/MB 880 100 30 1 0.1 0.06 0.02 44,000
DRAM access (ns) 200 100 70 60 50 40 20 10

Source: Bryant/O’Hallaron CS:APP 3rd Ed., Fig 6.15, pg 603

1 bit SRAM = 6 transistors 1 bit DRAM = 1 transistor + 1 capacitor

“What Every Programmer Should Know
About Memory” by Ulrich Drepper, Red
Hat, Inc.

22

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Cache Principles: Hits and Misses
CPU-Memory is a Client-Server
▶ CPU makes requests
▶ Memory system services

request as fast as possible

Cache Hit
▶ CPU requests memory at

address 0xFFFF1234 be
loaded into register %rax

▶ Finds valid data for
0xFFFF1234 in L1 Cache:
L1 Hit

▶ Loads into register fast

Cache Miss
▶ CPU requests memory at

address 0xFFFF7890 be
loaded into register %rax

▶ 0xFFFF7890 not in L1
Cache: L1 Miss

▶ Search L2: if found move
into L1, then %rax

▶ Search L3: if found move
into L2, L1, %rax

▶ Search main memory: if
found, move into caches,
if not…

Wait, how could 0xFFFF7890
not be in main memory… ?

23

Types of Cache Misses
Compulsory “Cold” Miss: Program Getting Started
▶ All cache entries start with valid=0: cache contains leftover

garbage from previous program runs
▶ After the cache “warms up” most entries will have Valid=1,

data for running program

Capacity Miss: Data Too Big to Fit
▶ Working set is set of memory being frequently accessed in a

particular phase of a program run
▶ Large working set may exceed the size of a cache causing

misses

Conflict Miss: This Stall Occupied
▶ Internal placement policy of cache dictates where data goes
▶ If two needed piece of data both go to the same position in

cache, leads to misses as they overwrite each other
24

Diagram of Direct Mapped Cache

Source: Dive into Systems dot org
25

https://diveintosystems.org/book/C11-MemHierarchy/caching.html

Memory Address Determines Location in a Cache
Cache is like a Hash Table
▶ Cache has a # of Sets

which can hold a copy of
Main Memory

▶ Each Main Memory address
has some bits indicating
▶ Set - where in cache data

should go
▶ Tag - identifier to track

what’s in cache
▶ Each cache Set can hold 1

or more Lines of data with a
specific Tag

▶ Main Memory divides into
cache Blocks which share
Tag/Set and move in/out of
cache together

Address Bits to Cache Location

▶ Bits from address determine
location for memory in cache

▶ Direct-Mapped cache, 4 sets
and 16 byte blocks/lines

▶ Load address 0x28
0 2 8

0x28 = 00 10 1000
| | |
| | +-> Offset: 4 bits
| +-> Set: 2 bits
+-> Tag: Remaining bits

▶ 0x20 in the same line, will
also be loaded int set #2

26

Exercises: Anatomy of a Simple CPU Cache
MAIN MEMORY CACHE
Addr	Addr Bits	Value					Blocks/Line
------+----------------+-------+	Set	V	Tag	0-7 8-15			
00	00 00 0000	331		-----+---+-----+-------------			
08	00 00 1000	332		00	0	-	-
10	00 01 0000	333		01	1	00	333 334
18	00 01 1000	334		10	1	11	555 556
20	00 10 0000	335		11	1	00	337 338
28	00 10 1000	336		-----+---+-----+-------------			
30	00 11 0000	337					0-7 8-15
38	00 11 1000	338	DIRECT-MAPPED Cache				
	.. .		- Direct-mapped: 1 Line per Set				
C0	11 00 0000	551	- 16-byte lines = 4-bit offset				
C8	11 00 1000	552	- 4 Sets = 2-bit index				
D0	11 01 0000	553	- 8-bit Address = 2-bit tag				
D8	11 01 1000	554	- Total Cache Size = 64 bytes				
E0	11 10 0000	555	4 sets * 16 bytes				
E8	11 10 1000	556					
F0	11 11 0000	557	HITS OR MISSES? Show effects				
F8	11 11 1000	558	1. Load 0x08				
------+----------------+-------+ 2. Load 0xF0							
	Tag Set Offset		3. Load 0x18				

27

Answers: Anatomy of a Simple CPU Cache
MAIN MEMORY CACHE
Addr	Addr Bits	Value					Blocks/Line
------+----------------+-------+	Set	V	Tag	0-7 8-15			
00	00 00 0000	331		-----+---+-----+-------------			
08	00 00 1000	332		00	1	*00	331 332
10	00 01 0000	333		01	1	00	333 334
18	00 01 1000	334		10	1	11	555 556
20	00 10 0000	335		11	1	*11	557 558
28	00 10 1000	336		-----+---+-----+-------------			
30	00 11 0000	337					0-7 8-15
38	00 11 1000	338	DIRECT-MAPPED Cache				
	.. .		- Direct-mapped: 1 line per set				
C0	11 00 0000	551	- 16-byte lines = 4-bit offset				
C8	11 00 1000	552	- 4 Sets = 2-bit index				
D0	11 01 0000	553	- 8-bit Address = 2-bit tag				
D8	11 01 1000	554	- Total Cache Size = 64 bytes				
E0	11 10 0000	555	4 sets * 16 bytes				
E8	11 10 1000	556					
F0	11 11 0000	557	HITS OR MISSES? Show effects				
F8	11 11 1000	558	1. Load 0x08: MISS to set 00				
------+----------------+-------+ 2. Load 0xF0: MISS overwrite							
	Tag Set Offset		set 11				

3. Load 0x18: HIT in set 01
no change

28

Direct vs Associative Caches
Direct Mapped
One line per set
| | | | Blocks/Line |
| Set | V | Tag | 0-7 8-15 |
|-----+---+-----+-------------|
00	0	-	-
01	1	00	333 334
10	1	11	555 556
11	1	00	337 338
-----+---+-----+-------------			
			0-7 8-15
▶ Simple circuitry
▶ Conflict misses may result: 1

slot for many possible tags
▶ Thrashing: need memory with

overlapping tags

vv
0x10 = 00 01 0000 : in cache
0xD8 = 11 01 1000 : conflict

^^

N-Way Associative Cache
Ex: 2-way = 2 lines per set
| | | | Blocks |
| Set | V | Tag | 0-7 8-15 |
|-----+---+-----+-------------|
| 00 | 0 | - | - | Line1
| | 1 | 11 | 551 552 | Line2
|-----+---+-----+-------------|
| 01 | 1 | 00 | 333 334 | Line1
| | 1 | 11 | 553 554 | Line2
|-----+---+-----+-------------|
| 10 | 1 | 11 | 555 556 | Line1
| | 0 | - | - | Line2
|-----+---+-----+-------------|
| 11 | 1 | 00 | 337 338 | Line1
| | 1 | 11 | 557 558 | Line2
|-----+---+-----+-------------|
| | | | 0-7 8-15 |
▶ Complex circuitry → $$
▶ Requires an eviction policy,

usually least recently used
29

How big is your cache? Check Linux System special Files
lscpu Utility
Handy Linux program that
summarizes info on CPU(s)
> lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 36 bits physical,

48 bits virtual
CPU(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Core(TM)

i7-3667U CPU @ 2.00GHz
...
L1d cache: 64 KiB
L1i cache: 64 KiB
L2 cache: 512 KiB
L3 cache: 4 MiB
Vulnerability Meltdown: Mitigation; ...
Vulnerability Spectre v1: Mitigation ...
...

Detailed Hardware Info
Files under /sys/devices/...
show hardware info (caches)
> cd /sys/devices/system/cpu/cpu0/cache/
> ls
index0 index1 index2 index3 ...

> ls index0/
number_of_sets type level size
ways_of_associativity ...

> cd index0
> cat level type number_* ways_* size
1 Data 64 8 32K

> cd ../index1
> cat level type number_* ways_* size
1 Instruction 64 8 32K

> cd ../index3
> cat level type number_* ways_* size
3 Unified 8192 20 10240K

30

Disks: Persistent Block Storage
▶ Have discussed a variety of fast memories which are small
▶ At the bottom of the pyramid are disks: slow but large

memories
▶ These are persistent: when powered off, they retain

information

Using Disk as Main Memory
▶ Operating Systems can create the illusion that main memory

is larger than it is in reality
▶ Ex: 2 GB DRAM + 6 GB of disk space = 8 GB Main Memory
▶ Disk file is called swap or a swap file
▶ Naturally much slower than RAM so OS will try to limit its use
▶ A Virtual Memory system manages RAM/Disk as main

memory, will discuss later in the course

31

Flavors of Permanent Storage

▶ Permanent storage often referred to as a “drive”
▶ Comes in many variants but these 3 are worth knowing about

in the modern era
1. Rotating Disk Drive
2. Solid State Drive
3. Magnetic Tape Drive

▶ Surveyed in the slides that follow

32

Ye Olde Rotating Disk
▶ Store bits “permanently” as

magnetized areas on special
platters

▶ Magnetic disks: moving
parts → slow

▶ Cheap per GB of space

Source: CS:APP Slides

Source: Realtechs.net

Source: CS:APP Slides

33

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf
http://www.realtechs.net/data%20recovery/process2.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/11-memory-hierarchy.pdf

Rotating Disk Drive Features of Interest

Measures of Quality
▶ Capacity: bigger is usually better
▶ Seek Time: delay before a head assembly reaches an arbitrary

track of the disk that contains data
▶ Rotational Latency: time for disk to spin around to correct

position; faster rotation → lower Latency
▶ Transfer Rate: once correct read/write position is found, how

fast data moves between disk and RAM

Sequential vs Random Access
Due to the rotational nature of Magnetic Disks…
▶ Sequential reads/writes comparatively FAST
▶ Random reads/writes comparatively very SLOW

34

Solid State Drives

▶ No moving parts → speed
▶ Most use “flash” memory,

non-volatile circuitry
▶ Major drawback: limited

number of writes, disk
wears out eventually

▶ Reads faster than writes
▶ Sequential somewhat faster

than random access
▶ Expensive:

A 1TB internal 2.5-inch hard
drive costs between $40 and
$50, but as of this writing,
an SSD of the same capac-
ity and form factor starts at
$250. That translates into
– 4 to 5 cents/GB for HDD
– 25 cents/GB for the SSD.
PC Magazine, “SSD vs
HDD” by Tom Brant and
Joel Santo Domingo March
26, 2018

35

https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp
https://www.pcmag.com/article2/0,2817,2404258,00.asp

Tape Drives

▶ Slowest yet: store bits as
magnetic field on a piece of
“tape” a la 1980’s cassette
tape / video recorder

▶ Extremely cheap per GB so
mostly used in backup
systems

▶ Ex: CSELabs does nightly
backups of home directories,
recoverable from tape at
request to Operator

36

The I/O System Connects CPU and Peripherals

37

Terminology
Bus A collection of wires which allow communication

between parts of the computer. May be serial (single
wire) or parallel (several wires), must have a
communication protocol over it.

Bus Speed Frequency of the clock signal on a particular bus,
usually different between components/buses requiring
interface chips
CPU Frequency > Memory Bus > I/O Bus

Interface/Bridge Computing chips that manage communications
across the bus possibly routing signals to correct part
of the computer and adapting to differing speeds of
components

Motherboard A printed circuit board connects to connect CPU to
RAM chips and peripherals. Has buses present on it
to allow communication between parts. Form factor
dictates which components can be handled.

38

The Motherboard

Source: Wikipedia

39

https://commons.wikimedia.org/wiki/File:ASRock_K7VT4A_Pro_Mainboard_Labeled_English.svg

Memory Mapped I/O
▶ Modern systems are a collection of devices and

microprocessors
▶ CPU usually uses memory mapped I/O: read/write certain

memory addresses translated to communication with devices
on I/O bus

40

Direct Memory Access

▶ Communication received by other microprocessors like a Disk
Controller or Memory Management Unit (MMU)

▶ Other controllers may talk: Disk Controller loads data directly
into Main Memory via direct memory access

41

Interrupts and I/O
Recall access times

Place Time
L1 cache 0.5 ns
RAM 100 ns
Disk 10,000,000 ns

▶ While running Program
X, CPU reads an int
from disk into %rax

▶ Communicates to disk
controller to read from
file

▶ Rather than wait, OS
puts Program X to
“sleep”, starts running
program Y

▶ When disk controller completes
read, signals the CPU via an
interrupt, electrical signals
indicating an event

▶ OS handles interrupt, schedules
Program X as “ready to run”

42

Interrupts from Outside and Inside
▶ Examples of events that generate interrupts

▶ Integer divide by 0
▶ I/O Operation complete
▶ Memory address not in RAM (Page Fault)
▶ User generated: x86 instruction int 80

▶ Interrupts are mainly the business of the Operating System
▶ Usually cause generating program to immediately transfer

control to the OS for handling
▶ When building your own OS, must write “interrupt handlers”

to deal with above situations
▶ Divide by 0: signal program usually terminating it
▶ I/O Complete: schedule requesting program to run
▶ Page Fault: sleep program until page loaded
▶ User generated: perform system call

▶ User-level programs will sometimes get a little access to
interrupts via signals, a topic for CSCI 4061

43

