
CSCI 2021: Virtual Memory

Chris Kauffman

Last Updated:
Mon Apr 25 01:06:15 PM CDT 2022

1

Logistics
Reading Bryant/O’Hallaron
▶ Ch 9: Virtual Memory
▶ Ch 7: Linking (next)

P5
▶ 1 Problem
▶ Implement a small version of

malloc() / free()
▶ Post later today with video,

due last day of class

Goals
▶ Address Spaces, Translation,

Paged Memory
▶ mmap(), Sharing Pages

Date Event
Fri 4/22 Virtual Mem 1/2
Mon 4/25 Virtual Mem 2/2

Wed 4/27 ELF Files/Linking 1/2
Lab 14 mmap()
HW 14 Linking

Fri 4/29 Obj Code/Linking 2/2
Mon 5/2 Last Lecture, Review

P5 Due

2

Exercise: The View of Memory Addresses so Far
▶ Every process (running program) has some memory, divided

into roughly 4 areas (which are…?)
▶ Reference different data/variables through their addresses
▶ If only a single program could run at time, no trouble: load

program into memory and go
▶ Running multiple programs gets interesting particularly if they

both reference the same memory location, e.g. address 1024
PROGRAM 1 PROGRAM 2
... ...
load global from #1024 ## add to global at #1024
movq 1024, %rax addl %esi, 1024
... ...

▶ What conflict exists between these programs?
▶ What are possible solutions to this conflict?

3

Answers: The View of Memory Addresses so Far
▶ 4 areas of memory are roughly: (1) Stack (2) Heap (3)

Globals (4) Text/Instructions
▶ Both programs use physical address #1024, behavior depends

on order that instructions are interleaved between them
ORDER A: Program 1 loads first ORDER B: Program 2 adds first
--------------------------------- -----------------------------------
PROGRAM 1 PROGRAM 2 PROGRAM 1 PROGRAM 2
movq 1024, %rax addl %esi, 1024
... addl %esi, 1024 movq 1024, %rax ...

▶ Solution 1: Never let Programs 1 and 2 run together (bleck!)
▶ Solution 2: Translate every memory address in every program

on loading it, run with physical addresses
▶ Tough/impossible as not all addresses are known at

compile/load time…
▶ Solution 3: Translate every memory address/access in every

program while it runs (!!!)
4

Paged Memory
▶ Physical memory is divided into hunks called pages
▶ Common page size supported by many OS’s (Linux) and

hardware is 4KB = 4096 bytes, can be larger with OS config
▶ CPU models use some # of bits for Virtual Addresses

> cat /proc/cpuinfo
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz
...
address sizes : 46 bits physical, 48 bits virtual

^^^^^^^
▶ Example of address with page number and offset labelled

xxxxPagenumbrOff : 48 bits used
0x00007ffa0997a428 : 64 bit address
| | |
| | +-> Offset 0x428 within page, 12 bits
| +-> Page number 0x7ffa0997a, 36 bits
+-> Constant bits, not used by processor

5

Translation happens at the Page Level
▶ Within a page, addresses are sequential
▶ Between pages, may be non-sequential

Page Table:
|------------------+------+-----------------------|
| Virtual Page | Size | Physical Page |
|------------------+------+-----------------------|
00007ffa0997a000	4K	RAM: 0000564955aa1000
00007ffa0997b000	4K	RAM: 0000321e46937000
...		...
------------------+------+-----------------------		

Address Space From Page Table:
|------------------+-------------+------------------|
| Virtual Address | Page Offset | Physical Address |
|------------------+-------------+------------------|
00007ffa0997a000	0	0000564955aa1000
00007ffa0997a001	1	0000564955aa1001
00007ffa0997a002	2	0000564955aa1002
...		...
00007ffa0997afff	4095	0000564955aa1fff
------------------+-------------+------------------		
00007ffa0997b000	0	0000321e46937000
00007ffa0997b001	1	0000321e46937001
...		...
------------------+-------------+------------------		

6

Addresses Translation Hardware

▶ Translation must be
FAST so usually
involves hardware

▶ MMU (Memory
Manager Unit) is a
hardware element
specifically designed
for address translation

▶ Usually contains a
special cache, TLB
(Translation
Lookaside Buffer),
which stores recently
translated addresses

▶ OS Kernel interacts with MMU
▶ Provides location of the Page

Table, data structure relating
Virtual/Physical Addresses

▶ Page Fault : MMU couldn’t map
Virtual to Physical page, runs a
Kernel routine to handle the fault

7

Exercise: Translating Virtual Addresses

Nearby diagram illustrates relation
of Virtual Pages to Physical Pages
1. How many page tables are

there?
2. Where can a page table entry

refer to?
3. Count the number of Virtual

pages, compare to the number
of physical pages - which his
larger?

4. What happens if PID #123
accesses its Virtual Page #2

5. What happens if PID #456
accesses its Virtual Page #2

8

Translating Virtual Addresses 1/2

▶ On using a Virtual Memory
address, MMU will search TLB
for physical DRAM address,

▶ If found in TLB, Hit, use
physical DRAM address

▶ If not found, MMU will search
Page Table, if found and in
DRAM, cache in TLB

▶ Else Miss = Page fault, OS
decides..
1. Page is swapped to Disk,

move to DRAM,
potentially evicting
another page

2. Page not in page table =
Segmentation Fault

9

Translating Virtual Addresses 2/2

▶ Each process has its own page
table, OS maintains mapping
of Virtual to Physical addresses

▶ Processes “compete” for RAM
▶ OS gives each process

impression it owns all of RAM
▶ OS may not have enough

memory to back up all or even
1 process

▶ Disk used to supplement ram
as Swap Space

▶ Thrashing may occur when
too many processes want too
much RAM, “constantly
swapping”

10

Trade-offs of Address Translation
Wins of Virtual Memory
1. Avoids processes each

referencing the same address,
conflicting

2. Allows each Process (running
program) to believe it has entire
memory to itself

3. Gives OS tons of flexibility and
control over memory layout
▶ Present a continuous Virtual

chunk which is spread out in
Physical memory

▶ Use Disk Space as memory
▶ Check for out of bounds

memory references

Losses of Virtual Memory
1. Address translation is not

constant O(1), has an
impact on performance of
real algorithms*

2. Requires special hardware to
make translation fast
enough: MMU/TLB

3. Not needed if only a single
program is running on a
machine

Wins outweigh Losses in most
systems so Virtual Memory is
used widely, a great idea in CS

*See On a Model of Virtual Address Translation (2015) 11

https://dl.acm.org/citation.cfm?id=2656337

The Many Other Advantages of Virtual Memory

1. Caching: Seen that VirtMem can treat main memory as a
cache for larger memory

2. Security: Translation allows OS to check memory addresses
for validity, segfault on out-of bounds access

3. Debugging: Valgrind checks addresses for validity
4. Sharing Data: Processes can share data with one another;

request OS to map virtual addresses to same physical
addresses

5. Sharing Libraries: Can share same program text between
programs by mapping address space to same shared library

6. Convenient I/O: Map internal OS data structures for files to
virtual addresses to make working with files free of
read()/write()

12

Virtual Memory and mmap()

▶ Normally programs interact indirectly with Virtual Memory
system
▶ Stack/Heap/Globals/Text are mapped automatically to

regions in Virtual Memory System
▶ Maps are adjusted as Stack/Heap Grow/Shrink

▶ mmap() / munmap() directly manipulate page tables
▶ mmap() creates new entries in page table
▶ munmap() deletes entries in the page table
▶ Can map arbitrary or specific addresses into memory

▶ mmap() is used to initially set up Stack / Heap / Globals /
Text when a program is loaded by the program loader

▶ While a program is running can also use mmap() to interact
with virtual memory

▶ A convenient way to do File I/O via Memory Mapped Files

13

Exercise: Printing Contents of file
Examine the two programs below which print the contents of a file
▶ Identify differences between them
▶ Which has a higher memory requirement?

1 // print_file.c
2 int main(int argc, char *argv[]){
3 FILE *fin = fopen(argv[1], "r");
4 char inbuf[256];
5 while(1){
6 int nread =
7 fread(inbuf, sizeof(char),
8 256, fin);
9 if(nread == 0){
10 break;
11 }
12 fwrite(inbuf,sizeof(char),
13 nread,stdout);
14 }
15
16 fclose(fin);
17 return 0;
18 }

1 // mmap_print_file.c
2 int main(int argc, char *argv[]){
3 int fd = open(argv[1], O_RDONLY);
4
5 struct stat stat_buf;
6 fstat(fd, &stat_buf);
7 int size = stat_buf.st_size;
8
9 char *file_chars =
10 mmap(NULL, size,
11 PROT_READ, MAP_SHARED,
12 fd, 0);
13
14 for(int i=0; i<size; i++){
15 printf("%c",file_chars[i]);
16 }
17 printf("\n");
18
19 munmap(file_chars, size);
20 close(fd);
21 return 0;
22 } 14

Answers: Printing Contents of file

1. Write a simple program to print all characters in a file. What
are key features of this program?
▶ Open file
▶ Read up to 256 characters into memory using

fread()/fscanf()
▶ Print those characters with printf()
▶ Read more characters and print
▶ Stop when end of file is reached
▶ Close file

2. Examine mmap_print_file.c: does it contain all of these
key features? Which ones are missing?
▶ Missing the fread()/fscanf() portion
▶ Uses mmap() to get direct access to the bytes of the file
▶ Treat bytes as an array of characters and print them directly

15

mmap(): Mapping Addresses is Amazing

▶ ptr = mmap(NULL, size,...,fd,0) arranges backing
entity of fd to be mapped to be mapped to ptr

▶ fd often a file opened with open() system call
int fd = open("gettysburg.txt", O_RDONLY);
// open file to get file descriptor

char *file_chars = mmap(NULL, size, PROT_READ, MAP_SHARED,
fd, 0);

// call mmap to get a direct pointer to the bytes in file associated
// with fd; NULL indicates don't care what address is returned;
// specify file size, read only, allow sharing, offset 0

printf("%c",file_chars[0]); // print 0th file char
printf("%c",file_chars[5]); // print 5th file char

16

OS usually Caches Files in RAM

▶ For efficiency, part of files are stored in RAM by the OS
▶ OS manages internal data structures to track which parts of a

file are in RAM, whether they need to be written to disk
▶ mmap() alters a process Page Table to translate addresses to

the cached file page
▶ OS tracks whether page is changed, either by file write or

mmap() manipulation
▶ Automatically writes back to disk when needed
▶ Changes by one process to cached file page will be seen by

other processes
▶ See diagram on next slide

17

Diagram of Kernel Structures for mmap()

18

Changing Files

▶ mmap() exposes several capabilities from the OS
char *file_chars =
mmap(NULL, size,

PROT_READ | PROT_WRITE, // map allowing read + write
MAP_SHARED, // share changes with original file
fd, 0); // file to map + offset from start

▶ Assign new value to memory, OS writes changes into the file
▶ Example: mmap_tr.c to transform one character to another

19

Mapping things that aren’t characters
mmap() just gives a pointer: can assert type of what it points at
▶ Example int *: treat file as array of binary ints
▶ Notice changing array will write to file

// mmap_increment.c: demonstrate working with mmap()'d binary data

int fd = open("binary_nums.dat", O_RDWR);
// open file descriptor, like a FILE *

int *file_ints = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
// get pointer to file bytes through mmap,
// treat as array of binary ints

int len = size / sizeof(int);
// how many ints in file

for(int i=0; i<len; i++){
printf("%d\n",file_ints[i]); // print all ints

}

for(int i=0; i<len; i++){
file_ints[i] += 1; // increment each file int, writes back to disk

}

20

mmap() Compared to Traditional fread()/fwrite() I/O
Advantages of mmap()
▶ Avoid following cycle

▶ fread()/fscanf() file contents into memory
▶ Analyze/Change data
▶ fwrite()/fscanf() write memory back into file

▶ Saves memory and time
▶ Many Linux mechanisms backed by mmap() like processes

sharing memory

Drawbacks of mmap()
▶ Always maps pages of memory: multiple of 4096b (4K)
▶ For small maps, lots of wasted space
▶ Cannot change size of files with mmap(): must used

fwrite() to extend or other calls to shrink
▶ No bounds checking, just like everything else in C

21

Page Table Size

▶ Page tables map a virtual page to
physical location

▶ Page tables maintained by
operating system in Kernel Memory

▶ A direct page table has one entry
per virtual page

▶ Each page is 4K = 212 bytes, so 12
bits for offset of address into a
page

▶ Virtual Address Space is 248 bytes
▶ So, 236 virtual pages mapped in

the page table…
▶ 68,719,476,736 pages
▶ At 8 bytes per page entry…
▶ 1 Terabyte for a page table

How big does the page table
mapping virtual to physical
pages need to be?

22

Page “Tables” are Multi-Level Sparse Trees

“What Every Programmer Should Know About Memory” by Ulrich Drepper, Red Hat, Inc.

▶ Fix this absurdity with multi-level page tables: a sparse tree
▶ Virtual address divided into sections which indicate which

PTE to access at different table levels
▶ 3-4 level page table is common in modern architectures
▶ Programs typically use only small amounts of virtual memory:

most entries in different levels are NULL (not mapped) leading
to much smaller page tables than a direct (array) map

23

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Direct Page Table vs Sparse Tree Page Table

24

Textbook Example: Two-level Page Table
Space savings gained via NULL portions of the page table/tree

Source: Bryant/O’Hallaron, CSAPP 3rd Ed
25

Pages and Mapping
▶ Memory is segmented into hunks called pages, 4Kb is

common (use page-size.c to see your system’s page size)
▶ OS maintains tables of which pages of memory exist in RAM,

which are on disk
▶ OS maintains tables per process that translate process virtual

addresses to physical pages
▶ Shared Memory can be arranged by mapping virtual

addresses for two processes to the same memory page

26

Shared Libraries: *.so Files

▶ Code for
libraries can be
shared

▶ libc.so:
shared library
with
malloc(),
printf() etc
in it

▶ OS puts into
one page,
maps all linked
procs to it

Source: John T. Bell Operating Systems Course Notes

27

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

pmap: show virtual address space of running process
> ./memory_parts
0x5575555a71e9 : main()
0x5575555aa0c0 : global_arr
0x557555b482a0 : heap_arr
0x600000000000 : mmap'd block1
0x600000001000 : mmap'd block2
0x7f2244dc4000 : mmap'd file
0x7ffff0133b70 : stack_arr
my pid is 496605
press any key to continue

▶ Determine process id
of running program

▶ pmap reports its virtual
address space

▶ More details of pmap
output in this article
from Andreas Fester

▶ His diagram is awesome

> pmap 496605
496605: ./memory_parts
00005575555a6000 4K r---- memory_parts
00005575555a7000 4K r-x-- memory_parts TEXT
00005575555a8000 4K r---- memory_parts
00005575555a9000 4K r---- memory_parts
00005575555aa000 4K rw--- memory_parts GLOBALS
00005575555ab000 4K rw--- [anon]
0000557555b48000 132K rw--- [anon] HEAP
0000600000000000 8K rw--- [anon]
00007f2244bca000 8K rw--- [anon]
00007f2244bcc000 152K r---- libc-2.32.so
00007f2244bf2000 1332K r-x-- libc-2.32.so
00007f2244d3f000 304K r---- libc-2.32.so
00007f2244d8e000 12K rw--- libc-2.32.so
00007f2244d91000 24K rw--- [anon]
00007f2244dc4000 4K r---- gettysburg.txt
00007f2244dc5000 8K r---- ld-2.32.so
00007f2244dc7000 132K r-x-- ld-2.32.so
00007f2244de8000 36K r---- ld-2.32.so
00007f2244df2000 8K rw--- ld-2.32.so
00007ffff0114000 132K rw--- [stack] STACK
00007ffff014d000 12K r---- [anon]
total 2352K

28

http://www.software-architect.net/blog/article/date/2015/07/03/cheat-sheet-understanding-the-pmap1-output.html
http://www.software-architect.net/blog/article/date/2015/07/03/cheat-sheet-understanding-the-pmap1-output.html
http://www.software-architect.net/fileadmin/user_upload/blog/pmap.png

Memory Protection

▶ Output of pmap indicates another feature of virtual memory:
protection

▶ OS marks pages of memory with Read/Write/Execute/Share
permissions like files

▶ Attempt to violate these and get segmentation violations
(segfault)

▶ Ex: Executable page (instructions) usually marked as r-x: no
write permission.

▶ Ensures program don’t accidentally write over their
instructions and change them

▶ Ex: By default, pages are not shared (no 's' permission) but
can make it so with the right calls

29

Exercise: Quick Review

1. While running a program, memory address #1024 always
refers to a physical location in DRAM (True/False: why?)

2. Two programs which both use the address #1024 cannot be
simultaneously run (True/False: why?)

3. What do MMU and TLB stand for and what do they do?
4. What is a memory page? How big is it usually?
5. What is a Page Table and what is it good for?

30

Answers: Quick Review
1. While running a program, memory address #1024 always refers to a physical

location in DRAM (True/False: why?)
▶ False: #1024 is usually a virtual address which is translated

by the OS/Hardware to a physical location which may be in
DRAM but may instead be paged out to disk

2. Two programs which both use the address #1024 cannot be simultaneously run
(True/False: why?)
▶ False: The OS/Hardware will likely translate these identical

virtual addresses to different physical locations so that the
programs doe not clobber each other’s data

3. What do MMU and TLB stand for and what do they do?
▶ Memory Management Unit: a piece of hardware involved in

translating Virtual Addresses to Physical Addresses/Locations
▶ Translation Lookaside Buffer: a special cache used by the

MMU to make address translation fast
4. What is a memory page? How big is it usually?

▶ A discrete hunk of memory usually 4Kb (4096 bytes) big
5. What is a Page Table and what is it good for?

▶ A table maintained by the operating system that is used to
map Virtual Addresses to Physical addresses for each page

31

Additional Review Questions

▶ What OS data structure facilitates the Virtual Memory
system? What kind of data structure is it?

▶ What does pmap do?
▶ What does the mmap() system call do that enables easier

I/O? How does this look in a C program?
▶ Describe at least 3 benefits a Virtual Memory system provides

to a computing system

32

