CSCI 2041: Tail Recursion and Activation
Records

Chris Kauffman

Last Updated:
Fri Sep 21 14:31:59 CDT 2018

Logistics

Reading
» OCaml System Manual:
25.2 (Pervasives Modules)
» Practical OCaml: Ch 3, 9
» Wikipedia: Tail Call

Goals

» Activation Records
» Details of Recursion

» Tail Recursion Optimization

Assignment 1

» Due Wed 9/19
Menday-9/17

> Note a few updates
announced on Piazza /
Changelog

» Questions?

Next Week

» Mon: Review
» Wed: Exam 1
» Fri: Lecture

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
https://en.wikipedia.org/wiki/Tail_call

Function Calls and Activation Records

v

Will discuss part of how functions "work"
Requires notion of where name/bindings are stored

Activation Records: spots in memory where an executing
function stores its bindings, Frame is slang for activation
record
Often Frames are on the Function Call Stack: grows linearly
with each function call, last in, first out
» OCaml uses a function call stack whenever possible as machine
architecture is fast at executing stacks
» Some uses of scopes and functions require something more
complex than a function call stack which we may discuss later
Understanding the function call stack Will elucidate how
recursion works

Allows specification of tail call optimizations that may be
performed by the compiler

Demo of Function Calls 1

let dub_sqr x =
let sq = x*x in
2 * sq

)

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z =7 in
let w = 2 in

let mzw = mult_ds z w in

let dzw = dub_sqr z in

printf "z: %d w: %d\n" z w;

printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

5

main () ;;

Active Functions

| FRAME | SYMBOL | VALUE
|- F———- + -
| init | dub_sqr | <fun>
| 1line:22 | mult_ds | <fun>
| | main | <fun>
| - e
main() is called

execute some lines

| FRAME | SYMBOL | VALUE
| - fommm
| init | dub_sqr | <fun>
| 1line:22 | mult_ds | <fun>
| | main | <fun>
| - I p———————
| main | z | 7

| 1line:15 | w | 2

| | mzw | 7

| | dzw | ?

Demo of Function Calls 2

1 let dub_sqr x = main’s mzw defined by result from
2 let sq = x*x in mult_ds call: additional frame

3 2 * sq

MR | FRAME | SYMBOL | VALUE |

6 let mult_ ds xy = I_, X + + -l

7 let xx = dub_sqr x in | init | dub_sqr | <fun> |

8 let yy = dub_sqr y in | line:22 | mult_ds | <fun> |

9 XX * yy | | main | <fun> |

10 ;; |-==—————- Hommm - to—m———- |

11 | main | z | 7 |

12 let main () = | 1line:15 | w | 2 |

13 let z = 7 in | | mzw | ? | <-+
14 let w = 2 in] | | dzw | 2 | |
15 let mzw = mult_ds z w in N N

16 let dzw = dub_sqr z in - N N I

17 printf "z: %d w: %d\n" z w; | mult_ds | x 7 |-+
18 printf "mzw: %d\n" mzw; | line:7 | y | 2

19 printf "dzw: %d\n" dzw; | | xx | ?
20 53 | Il yy | 7 |
21 |- + -—

22 main ();;

Demo of Function Calls 3

let dub_sqr x =
let sq = x*x in
2 * sq

)

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z =7 in
let w = 2 in

let mzw = mult_ds z w in

let dzw = dub_sqr z in

printf "z: %d w: %d\n" z w;

printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

5

main () ;;

mult_ds’s xx defined by call to
dub_sqr: additional frame

| FRAME | SYMBOL | VALUE |

|- o= + -—=1

| init | dub_sqr | <fun> |

| 1line:22 | mult_ds | <fun> |

| | main | <fun> |

|- o= o |

| main | z | 7 |

| 1line:15 | w | 2 |

| | mzw | ? | <—+
| | dzw | ? [
|- + + |

| mult_ds | x | 7 |--+
| line:7 | y | 2 |

| | xx | 2 | <=+
| | yy | ? [
|- - e I
| dub_sq | x | 7 | ——+
| line:1 | sq | ? |

| + +

Demo of Function Calls 4

let dub_sqr x =
let sq = x*x in
2 * sq

)

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z =7 in
let w = 2 in

let mzw = mult_ds z w in

let dzw = dub_sqr z in

printf "z: %d w: %d\n" z w;

printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

5

main () ;;

dub_sqr completes, returns value

up a frame to mult_ds

| FRAME | SYMBOL | VALUE |

|- o= + -—=1

| init | dub_sqr | <fun> |

| 1line:22 | mult_ds | <fun> |

| | main | <fun> |

|- o= o |

| main | z | 7 I

| 1line:15 | w | 2 |

| | mzw | ? | <—+
| | dzw | ? [
|- + + |

| mult_ds | x | 7 |--+
| line:7 | y | 2 |

| | xx | 2 | <=+
| | yy | ? [
|- t——— b | 198
| dub_sq | x | 7 | ——+
| line:3 | sq | 49 |

| + +

Exercise: Demo of Function Calls 5

1 1let dub_sqr x = after returning, frame for dub_sq
2 let sq = x*x in pops off function call stack,

Z 2 % 8q answer stored in xx

2 let mult_ds x y = | FRAME | SYMBOL | VALUE |

7 let xx = dub_sqgr x in I- + + I

8 let yy = dub_sqr y in | init | dub_sqr | <fun> |

9 XX * yy | line:22 | mult_ds | <fun> |

10 53 | | main | <fun> |

11 |- + + |

12 let main () = | main | z | 7 |

13 letz =T7in | line:15 | w | 2 |

14 let w = 2 in _ | | mzw | 7 | <-+
15 let mzw = mult_ds z w in | | dzw | 7 | |
16 let dzw = dub_sqr z in)

17 printf "z: %d w: %d\n" z w; |- o= Hommmm s I
18 printf "mzw: %d\n" mzw; | mult ds | x |7 |--+
19 printf "dzw: %d\n" dzw; | line:8 | y | 2 |

20 ;3 | | xx | 98 |

21 | | yy | 7 |

22 main ();; |- + + |

Show the call stack on next
reaching line 3 (in dub_sq)

Answers: Demo of Function Calls 6

let dub_sqr x =
let sq = x*x in
2 * sq

)

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z =7 in
let w = 2 in

let mzw = mult_ds z w in

let dzw = dub_sqr z in

printf "z: %d w: %d\n" z w;

printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

5

main () ;;

dub_sq: x param is 2 this time
return 8 to

frame above

| FRAME | SYMBOL | VALUE |

|- o= + -—=1

| init | dub_sqr | <fun> |

| 1line:22 | mult_ds | <fun> |

| | main | <fun> |

|- o= o |

| main | z | 7 |

| 1line:15 | w | 2 |

| | mzw | ? | <—+
| | dzw | ? [
|- + + |

| mult_ds | x | 7 |--+
| line:8 | y | 2 I

| | xx | 98 |

| | yy | 7 | <—+
|- t——— b | 18
| dub_sq | x | 2 | ——+
| line:3 | sq | 4 |

| + +

Demo of Function Calls 7

OO0 ~NOoO O WN -

10

12
13
14
15
16
17
18
19
20
21
22

let dub_sqr x =
let sq = x*x in
2 * sq

b

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z = 7 in
let w = 2 in
let mzw = mult_ds z w in
let dzw = dub_sqr z in
printf "z: %d w: %d\n" z w;
printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

b

main ();;

answers stored in mult_ds yy
mult_ds now ready to return

| FRAME | SYMBOL | VALUE |

|- + + -—=1

| init | dub_sqr | <fun> |

| 1line:22 | mult_ds | <fun> |

| | main | <fun> |
|-——————— Fommm - +o—m——= |

| main | z | 7 |

| line:15 | w | 2 |

| | mzw | 7 | <-+
| | dzw | 2 [
|- + + | 1784
| mult_ds | x | 7 |--+
| line:9 | y | 2 |

| | xx | 98 |

| | yy | 8 |

10

Exercise: Demo of Function Calls 8

1 let dub_sqr x = mult_ds frame pops off stack
2 let sq = x*x in

3 2xsq | FRAME | SYMBOL | VALUE |
é 22 |- + + |
6 let mult.ds x y = | igit | dub_sqr | <fun> |
7 let xx = dub_sqr x in | line:22 | mult_ds | <fun> |
8 let yy = dub_sqr y in | | main | <fun> |
9 XX * yy |- + +

10 ;; | main | =z | 7 |
11 | 1line:16 | w | 2 |
12 let main () = | | mzw | 784 |
13 let z = 7 in | | dzw | ?

14 let w = 2 in [———— e e
15 let mzw = mult_ds z w in

16 let dzw = dub_sqr z in

17 printf "z: %d w: %d\n" z w; What happens next?

18 printf "mzw: %d\n" mzw;

19 printf "dzw: %d\n" dzw; How does the value for dzw get
;‘1’ i determined?

22 main O;;

Answers: Demo of Function Calls 9

OO0 ~NOoO O WN -

I I e e e el e e e
N OOWONOUdWNRO

let dub_sqr x =
let sq = x*x in
2 * sq

b

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z = 7 in
let w = 2 in
let mzw = mult_ds z w in
let dzw = dub_sqr z in
printf "z: %d w: %d\n" z w;
printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

b

main ();;

dub_sq called with param 7
returns 98 to frame above

| FRAME | SYMBOL | VALUE |

|- + + -—=1

| init | dub_sqr | <fun> |

| 1line:22 | mult_ds | <fun> |

| | main | <fun> |

|- + + -—=1

| main | z | 7 |

| line:16 | w | 2 |

| | mzw | 784 |

| | dzw | ? | <—+
|- + + | 198
| dub_sq | x | 7 |-+
| line:3 | sq | 49 |

|- +-——= + -—=1

12

Demo of Function Calls 10

let dub_sqr x =
let sq = x*x in
2 * sq

)

let mult_ds x y =
let xx = dub_sqr x in
let yy = dub_sqr y in
XX * yy

3

let main () =
let z =7 in
let w = 2 in

let mzw = mult_ds z w in

let dzw = dub_sqr z in

printf "z: %d w: %d\n" z w;

printf "mzw: %d\n" mzw;
printf "dzw: %d\n" dzw;

5

main () ;;

dub_sq frame pops off
main proceeds with printing

| FRAME | SYMBOL | VALUE |
|- o= o |
init	dub_sqr	<fun>
1line:22	mult_ds	<fun>
	main	<fun>
- o= o		
main	z	7
1line:16	w	2
	mzw	784
	dzw	98
- + +		
printf	format	"z:.."
line:??	?7	7
	77	2

|- + + |

printf is like any other function:
gets parameters pushed onto stack,
eventually returns unit 13

Call Stack Wrap

All sensible programming languages implement function
calls/activation records, mostly like what is shown

Demo shows a model of how to understand function
calls/activation records

All models are wrong. Some models are useful.
— George Box

The model is definitely wrong

» details of control transfer / return values are squiggy

» haven't specified where values are actually stored

» real CPU’'s don't track line #'s,

» haven't dealt with anything except int values
The model is useful because it is accurate: predicts the
behavior of the program without needing above details

14

Recursive Functions and Activation Records

» Recursive functions work identically to normal functions

» Calling a recursive function creates a frame with local bindings
» Recursing creates another frame, potentially different bindings
» Hitting a base case returns a value, pops a frame off the stack

15

Recursive Calls Demo 1

1 let rec fact n =

2 if n=1 || n=0 then

3 1

4 else

5 let fml = fact (n-1) in
6 n*xfml

T ;s

8

9 1let ans = fact 5 in

10 printf "%d\n" ans;;

(B) Recursive case: another frame

| FRAME | SYMBOL | VALUE |
| + + |
| init | fact | <fun> |
| line: | ans | 77 | <+
| + + (.
| fact | n | 5 |-—+
| line: | fml | 77 |<-+
| + + I
| fact | n | 4 |-—+
| line: | fmil | 77 |
| + + |

(A) Initial

call to fact

|
|
|<-+
[
|-+

FRAME | SYMBOL | VALUE |
init | fact | <fun>
line:9 | ans | 77
fact | n | 5
line:1 | fml | 2?7

(C) Stacked

recursive calls, reached base case

|

|

|<-+
[
| --+
| <+
I
|——+
| <-+
[
|——+
| <—+
Il
| --+
| <-+
11
|-+

FRAME | SYMBOL | VALUE |
init | fact | <fun>
line:9 | ans | 77
fact | n | 5
line:5 | fml | 77
fact | n | 4
line:5 | fml | 27
fact | n | 3
line:5 | fml | 77
fact | n | 2
line:5 | fml | 77
fact | n |1
line:3 | fml | 77

| 16

Recursive Calls Demo 2

1 let rec fact n =

2 if n=1 || n=0 then

3 1

4 else

5 let fml = fact (n-1) in
6 n*xfml

T ;s

8

9 1let ans = fact 5 in

10 printf "%d\n" ans;;

(E) Another frame pops, return answer up

| FRAME | SYMBOL | VALUE |

| + + |

| init | fact | <fun> |

| line: | ans | 277 | <-+
| + + (.
| fact | n | 5 |-+
| line: | fml | 77 | <+
| + + (.
| fact | n | 4 |-+
| line: | fm1 | 77 | <+
| + + | 16
| fact | n | 3 |--+
| line: | fm1 | 2 |

| + +

(D) Popped lowest frame off, up one level

|

|

|
|<—+
(|
|-+
|<-+
[
|-+
| <—+
[
|-+
|<-+
I 12
|-+
|

|

final answer returning

| FRAME | SYMBOL | VALUE
| + +

| init | fact | <fun>
| 1line:9 | ams | 77

| + +

| fact | n | 5

| line:5 | fml | 27

| ; ;

| fact | n | 4

| line:5 | fml | 77

| + +

| fact | n | 3

| line:5 | fml | 77

| + +

| fact | n | 2

| line:5 | fmil | 1

| + +

(F) Stack "unwound",

| FRAME | SYMBOL | VALUE
I + +

| init | fact | <fun>
| 1line:9 | ans | 7?7

| + +

| fact | n | 5

| line:5 | fml | 24

| + +

17

Exercise: Two Formulations of Summation

» Consider two recursive summing functions shown

» Both use recursion to sum numbers in a given range

» Naive compilers will build stack frames in both cases

» However, a major difference between these formulations (?)

-—+

let rec sum_em_NT i stop = let rec sum_em_TR i stop sum =
if i=stop then if i=stop then
stop stop+sum
else else

let rest = sum_em_NT (i+1) stop in sum_em_TR (i+1) stop (i+sum)

itrest HH
let sum4 = sum_em_NT 1 4 in ... let sum4 = sum_em_TR 1 4 0 in ...
| FRAME | SYMBOL | VALUE | | FRAME | SYMBOL | VALUE | ~
| + + | | + + [
| sum_em_NT | i | 1 | | sum_em_TR | i | 1 [
| line:5 | stop | 4 | | line:5 | stop | 4 [
| | rest | ?7 | <-+ | | sum | 0 (I
| + I | + + [
| sum_em_NT | i | 2 |——+ | sum_em_TR | i | 2 [
| line:5 | stop | 4 | | line:5 | stop | 4 | -
| | rest | 7?7 | <=+ | | sum |1 [
| [| + + (I
| sum_em_NT | i | 3 | ——+ | sum_em_TR | i | 3 [
| line:5 | stop | 4 | | line:5 | stop | 4 -
| | rest | 77 |<-+ | | sum | 3 [
| + + | + + (I

Answers: Two Formulations of Summation

» sum_NT recurses, then adds to compute final answer

» Frames above get answers from frames below, add and return
» sum_TR adds, then recurses (no downward dependence)

» Frames above add, then return answer from frame below

| sum | 3

let rec sum_em_NT i stop = let rec sum_em_TR i stop sum =
if i=stop then if i=stop then
stop stop+sum
else else

let rest = sum_em_ET (i+1) stop in sum_em_TR (i+1) stop (i+sum)

i+rest HY
let sum4 = sum_em_NT 1 4 in ... let sum4 = sum_em_TR 1 4 0 in ...
| FRAME | SYMBOL | VALUE | | FRAME | SYMBOL | VALUE | ~
| + + | | + + I
| sum_em_NT | i | 1 | | sum_em_TR | i | 1 [
| line:5 | stop | 4 | | line:5 | stop | 4 [
| | rest | ?7 | <-+ | | sum | 0 [
| + + (| | + + I
| sum_em_NT | i | 2 | ==+ | sum_em_TR | i | 2 [
| line:5 | stop | 4 | | line:5 | stop | 4 [
| | rest | 77 | <—+ | | sum |1 [
| + + (| | + + [
| sum_em_NT | i | 3 |-+ | sum_em_TR | i | 3 [
| line:5 | stop | 4 | | line:5 | stop | 4 -
| | rest | ?7 | <+ | [
| | |

-+

Tail Call Optimization

» Tail Call: Return the value of produced by a function call
without modification, often the case in recursive functions

» A semi-sophisticated compiler will recognize lack of downward
dependence and implement a tail call optimization

P Re-use existing Frame for the final function call
STANDARD IMPLEMENTATION: linear stack growth

| FRAME | syYM | v | | FRAME | sYM | v | | FRAME | syYM | V|
| + + [+ + (| + + |
| sum_em_TR | i | 1] | sum_em_TR | i | 1] | sum_em_TR | i |11
line:5	stop	4		line:5	stop	4		line:5	stop	4
	sum	O			sum	O			sum	O
+ ===	+ ===	+ +===								
sum_em_TR	i	2		sum_em_TR	i	21				
line:5	stop	4		line:5	stop	4				
	sum	1]		sum	1					
+ ===	+ +===									
sum_em_TR	i	31								
line:5	stop	4								
	sum	3								
+										

TAIL CALL OPTIMIZATION: constant stack space
| FRAME | SsYM | V| | FRAME | SYM | V| | FRAME | syMm | v |
| + + (. + + [+ + |
| sum_em_TR | i | 1] | sum_em_TR | i | 21 | sum_em_TR | i | 31
line:5	stop	4		line:5	stop	4		line:5	stop	4
(sum	3							

| | sum | O

| | sum | 1

Helpers and Tail Recursion

W ~NOo O WN -

e el el
U WN R O ©

» Tail recursion often requires extra "auxiliary" parameters

» To avoid extra params in public-facing interfaces, internal
tail-recursive helper functions are often used

(* Typical implementation of a
summing function; main interface
takes start and stop; internal
recursive helper function tracks
index i, has parameter for sum
to allow it to be tail
recursive *)

let sum_em start stop =

let rec helper i sum =
if i=stop then
stop+sum
else
helper (i+1) (i+sum)
in
helper start O

b

W N O WN -

©

10

12
13
14

(* Factorial implementation with
internal tail-recursive helper
function; avoids the need to
pass extra params to main
function. *)

let factorial n =

let rec fact i prod =
if i > n then
prod
else
fact (i+1) (i*prod)
in
fact 1 1

3

21

Exercise: Recognizing Tail-Recursive Functions

» Consider the following 3
recursive definitions of a list
min operation A, B, C

» All throw exceptions on
empty lists

» Which are tail recursive?

let list_min_A list =
let rec helper curmin lst =
if 1st=[] then
curmin
else
let head = List.hd 1lst in
let tail = List.tl 1lst in
let tmin = helper curmin tail in
if head<tmin then
head
else
tmin
in
helper (List.hd list) (List.tl list)

55

16
17
18
19
20
21
22
23
24
25
26
27
28
29

let list_min_B list =
let rec helper curmin lst =
if 1st=[] then
curmin
else
let head = List.hd 1st in
let tail = List.tl 1st in
let newmin =
if head<curmin then
head
else
curmin
in
helper newmin tail
in
helper (List.hd list) (List.tl list)

35

let rec list_min_C list =
let head = List.hd list in
let tail = List.tl list in
if tail=[] then
head
else
let tmin = list_min_C tail in
if head<tmin then
head
else
tmin

Answers:: Recognizing Tail-Recursive Functions

16 let list_min_B list =

. . . 17 let rec helper curmin lst =
» Only B is tail recursive: call 18 if 1st=[] then
is done as final step of 19 curmin
20 else
recursive case 21 let head = List.hd 1st in
22 let tail = List.tl 1st in
» A,C do selection after 23 let newmin =
. 24 if head<curmin then
recursion 25 head
26 else
1 let list_min_A list = 2 cumin .
. _ 28 in (* recurse last *,
2 let rec helper curmin lst = 29 hel . i1 (% 1S i1- %)
3 if 1st=[] then) elper newmin tai ta1‘
4 . 30 in (* recursive *)
curmin
5 else 31 helper (List.hd list) (List.tl list)
6 let head = List.hd lst in §§ 3
7 let tail = List.tl 1lst in 34 1 1i in C 1 _
8 let tmin = helper curmin tail in et rec list_min C list =

35 let head = List.hd list in

9 if head<tmin then (* select after x*) X X X N
36 let tail = List.tl list in

10 head (* recursion *) . ol
11 else (* NOT tail- ») O if tail=[] then
. . 38 head
12 tmin (* recursive *)
. 39 else (* recurse *)
18 in 40 1 in = list_min_C tail i
14 helper (List.hd list) (List.tl list) tet tmin = list_min C tall in
15 ;- 41 if head<tmin then (* then select *)
? 42 head (* answer *)
43 else (* NOT tail- *)
44 tmin (* recursive *)
45

23

Tail Call Wrap

» Tail Call: return a value generated by calling a function
without modification

» Tail Call Optimization: Re-use existing stack frame for the
next function call

» Can often be done with recursive calls, sometimes in other
situations

» Enabled in source code but ultimately done by the compiler

» Not all PL/Env support tail call optimizations

PL/Env TC Opt? Notes

OCaml Yes Cause it rules

SML/NJ Yes Most ML dialects support tail call opt
Scheme Yes Required by Scheme spec

Common Lisp Maybe Some implementations support it

C / gcc Maybe Compiler options may do it

Java No JVM generally preserves stack frames

Python No Not supported

24

