
CSCI 4061: Processes and Environment

Chris Kauffman

Last Updated:
Thu Jan 31 10:35:58 CST 2019

1

Logistics

Reading
Stevens and Rago, Ch 7-8

Goals Today
▶ Finish Basics Overview
▶ Process Lifecycle
▶ Killing programs
▶ Process memory layout

Lab01: Makefiles /
Compilation
▶ Due Monday night
▶ Feedback?

Reminder: AGREEMENT
Download AGREEMENT.txt from
the schedule page, sign and
submit to Canvas

2

Process Life Cycle

Source: Saverio Perugini, lecture notes

3

http://academic.udayton.edu/saverioperugini/courses/cps346/lecture_notes/processes.html

ps and top show running process status
These shell commands show a STAT or S columns corresponding
loosely to process states.

STAT Meaning
Common

R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped, either by a job control signal or being traced.
Z defunct (”zombie”) process, terminated but not reaped by parent.

Less Common
D uninterruptible sleep (usually IO)
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)

Source: man page for ps

Will talk more about zombies and orphans later

4

Handy Commands

▶ top: interactively observe top running processes, usually
sorted by CPU usage

▶ ps: snapshot of running processes filtered on various criteria
▶ watch: repeatedly run a command showing its output on the

screen
Interactively observe all processes sorting by top CPU usage

> top

press q to quit
Watch processes with command name yes refreshing every 0.1
seconds showing u-ser relevant information on the processes

> watch -n 0.1 'ps u -C yes'

Press Ctrl-c to end the watch

5

Terminal: Foreground/Background Processes

▶ Type a program into the terminal, press enter
▶ Stars a process in the foreground of the terminal
▶ Input from user typing, output to terminal screen
▶ Suspend foreground process with Ctrl-z, gets prompt back
▶ Terminate foreground process (usually) with Ctrl-c
▶ Run a process in the background

▶ Start with & at end: ls &
▶ Move job 2 to bg: bg %2

▶ Move job 2 to foreground: fg %4
▶ Terminals running programs with jobs

6

Murdering Processes
Question: What command ends processes that are misbehaving?
Keystrokes to Remember

Ctrl-c Send the interrupt signal, kills most processes
Ctrl-z Send the stop signal, puts process to sleep

Easy to Kill
▶ yes spits output to the

screen continuously
▶ End it from the terminal its

started in
▶ Suspend it then, end it
▶ Kill it from a different

terminal

Harder to Kill
▶ Consider the program

no_interrupts.c
▶ Ignores some common

signals
▶ Need to use the big stick for

this one:
kill -9 1234 OR
pkill -9 a.out

7

Exercise: Basic Job Control
Give a sequence of commands / keystrokes to…
Misbehaving
▶ Compile no_interrupts.c to a program named invincible
▶ Run invicible
▶ Try to end the process by sending it the interrupt signal
▶ In a separate terminal, end the invicible program

Edit / Build Seq
▶ Edit Makefile with vi
▶ Suspend vi (don’t quit it)
▶ Run the Makefile
▶ Terminate before completing build
▶ Bring back vi to continue editing

8

States of a Living Process

▶ Note inclusion of
Kernel/OS here

▶ Interrupt and Sys
Calls start running
code in the operating
system

▶ Interrupt/Signal can
come from software
or hardware

▶ Context switch
starts running another
process, only happens
when one process is
safely tucked in and
put to sleep

Source: Design of the Unix Operating System by Maurice Bach

9

Recall: Program Memory

▶ What are the 4 memory areas to a C program we’ve discussed
OR that you know from previous courses?

▶ Give an example of how one creates variables/values in each
area of memory

10

Answers: Program Memory
▶ What are the 4 memory areas to a C program we’ve discussed

OR that you know from previous courses?
1. Stack: automatic, push/pop with function calls
2. Heap: malloc() and free()
3. Global: variables outside functions, static vars
4. Text: Assembly instructions

▶ Give an example of how one creates variables/values in each
area of memory

1 #include <stdlib.h>
2 int glob1 = 2; // global var
3 int func(int *a){ // param stack var
4 int b = 2 * (*a); // local stack var
5 return b; // de-allocate locals in func()
6 }
7 int main(){ // main entry point
8 int x = 5; // local stack var
9 int c = func(&x); // local stack var

10 int *p = malloc(sizeof(int)); // local stack var that points into heap
11 *p = 10; // modify heap memory
12 glob1 = func(p); // allocate func() locals and run code
13 free(p); // deallocate heap mem pointed to p
14 return 0; // deallocate locals in main()
15 }
16 // all executable code is in the .text memory area as assmebly instructions

11

More Detailed Process Memory

Source: Unix Systems Programming, Robbins & Robbins

12

Yet more detailed view (Link)
A detailed picture of the virtual memory image, by Wolf Holzman

main.o

file.o

crt0.o (startup routine)

"...%d..."

global variables

Heap
(malloc arena)

System

argv
argc

auto variables for
main()

auto variables for
func()

func(72,73)

ST
A

C
K

SH
A

R
E

D

M
E

M
O

R
Y

D
A

T
A

T
E

X
T

co
m

pi
le

d
co

de
 (

a.
ou

t)

uninitialized data (bss)

initialized data

stack pointer

mfp − frame pointer (for main)

Low memory

High memory
func(72,73) called from main(),
assuming func defined by:
 func(int x, int y) {
 int a;

(grows downward if func()
 calls another function)

 int b[3];
 /* no other auto variables */

size 4 and assumes stack at high

ra
mfp
garbage
garbage
garbage
garbage

main()
auto
variables

Offset from current
frame pointer (for
func())

+12
 +8
 +4
 0
 −4
 −8
−12
−16

frame pointer
points here

stack pointer
(top of stack)
points here

y
x

a

b[1]

Contents

Stack illustrated after the call

library functions if
dynamically linked
(usual case)

brk point

ra (return address)

b[2]

b[0]

Expanded view of the stack

address and descending down.

All auto variables and parameters
are referenced via offsets from the
frame pointer.

The frame pointer and stack pointer
are in registers (for fast access).

When funct returns, the return value
is stored in a register. The stack pointer
is move to the y location, the code
is jumped to the return address (ra),
and the frame pointer is set to mfp
(the stored value of the caller’s frame
pointer). The caller moves the return
value to the right place.

Stack

caller’s frame pointer

Assumes int = long = char * of

env

library functions if
statically linked
(not usual case)

malloc.o (lib*.so)

malloc.o (lib*.a)

printf.o (lib*.a)

printf.o (lib*.so)

available for
heap growth

available for
stack growth

Memory Layout (Virtual address space of a C process)

return address

73
72

13

http://www-users.cs.umn.edu/~kauffman/4061/wolf-holzmann-memlayout.pdf
http://www.cs.uleth.ca/~holzmann/C/system/
http://www.cs.uleth.ca/~holzmann/

Unix Processes In Memory

Source: Tutorials Point

▶ Separate Memory Image for
Each Process

▶ OS + Hardware keeps
processes inside their own
address space

▶ This is a gross simplification
but will suffice until later
when we discuss virtual
memory vs physical memory

This picture should bother you
▶ Consequence for program dynamic memory allocation?
▶ Problems with running system calls?

14

http://www.tutorialspoint.com/operating_system/os_memory_management.htm

Exercise: Memory Problems in C Programs
What you’re up against

▶ Stack problems: References to stack variables that go away
▶ Segmentation Faults: Access memory out of bounds for whole program,

via heap or via stack
▶ Null pointers dereference: Often results in a segfault as NULL translates to

0x0000 which is off limits
▶ Use of uninitialized: variables don’t have values by default, assign or get

something random
▶ Memory Leaks: malloc() memory that is not used but never free()’d,

program gobbles more and more memory
▶ Examine results of running overflow.c, EXPLAIN OUTPUT

Solutions
▶ Don’t program in C
▶ Use a tool to help identify and fix problems
▶ Memory Tools on Windows: Discussion here. Synposis → $$$
▶ Memory Tools on Linux/Mac: Valgrind → FREE 15

http://stackoverflow.com/questions/413477/is-there-a-good-valgrind-substitute-for-windows

Valgrind: Memory Tool on Linux/Mac

Valgrind1 has Memcheck
▶ Catches most memory errors2

▶ Use of uninitialized memory
▶ Reading/writing memory after it has been free’d
▶ Reading/writing off the end of malloc’d blocks
▶ Memory leaks

▶ Source line of problem happened (but not cause)
▶ Super easy to use, installed on lab machines
▶ Slows execution of program way down

1http://valgrind.org/
2http://en.wikipedia.org/wiki/Valgrind

16

http://valgrind.org/
http://en.wikipedia.org/wiki/Valgrind

Valgrind in Action

See some common problems in badmemory.c

17

Debuggers

▶ There comes a day when printf just isn’t enough
▶ On that day you will start compiling with -g to turn on the

debugger
▶ Then you will run gdb myprog, set some breakpoints, and get

to the root of the problem
▶ More on debugger later in a lecture/lab

18

Communicating Information to Programs

▶ Often programs need info from the outside world to affect
behavior
▶ What file to read/write, # of iterations to run, verbose/quiet

output, report immediately, shutdown gracefully etc.
▶ A variety of mechanisms exist to convey such info to a

program
1. Command Line Arguments
2. Environment Variables
3. Signals
4. I/O libraries

▶ Will now discuss 1 & 2 which are often used at program
startup

▶ Later discuss other communication mechanisms

19

Exercise: Command Line Arguments
int main(int argc, char *argv[])

2-arg version of main() will be set up to have number of
arguments and array of strings in it by whatever started it

> cat print13.c
#include <stdio.h>
int main(int argc, char *argv[]){
printf("%s\n",argv[1]);
printf("%s\n",argv[3]);

}
> gcc print13.c
> ./a.out -c 10 2.0
-c
2.0 argc is 4 in this case

Print Args
Write a quick C program which prints all of its argv elements as
strings. There will be argc elements in this array.

20

Answers: Command Line Arguments

File: 03-process-basics-code/print_args.c
1 // Print all the arguments in the argv array
2
3 #include <stdio.h>
4
5 int main(int argc, char *argv[]){
6 printf("%d args received\n",argc);
7 for(int i=0; i<argc; i++){
8 printf("%d: %s\n",i,argv[i]);
9 }

10 return 0;
11 }

21

Environment Variables

All programs can access environment variables, name/value pairs
used to communicate and alter behavior.

Shell show/set variables
Done with echo $VARNAME

> echo $PAGER
less
> PAGER=cat
> echo $PAGER
cat
> echo $PS1
>
> PS1='wicked$ '
wicked$

Shell env
Show all environment

> env
JAVA8_HOME=/usr/lib/jvm/java-8-openjdk
PAGER=less
PWD=/home/kauffman/4061-F2017/lectures/03-process-basics-code
HOME=/home/kauffman
BROWSER=chromium
COLUMNS=79
MAIL=/var/spool/mail/kauffman
MANPATH=:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man:/home/kauffman/local/man:/home/kauffman/local/usr/share/man::/man
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/lib/jvm/default/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.:/home/kauffman/bin:/home/kauffman/Dropbox/bin:/home/kauffman/code/bin:/home/kauffman/code/utils:.
PS1=>
...

22

C Programs and Environment Vars

▶ Global variable char **environ provides array of
environment variables in form VARNAME=VALUE, null
terminated

▶ Easier to use the library functions to check/change
environment

23

C Library for Environment Vars
The C Library Provides standard library functions for manipulating
environment variables.
#include <stdlib.h>

char *getenv(const char *name);
// returns pointer to value associated with name, NULL if not found

int setenv(const char *name, const char *value, int rewrite);
// sets name to value. If name already exists in the environment, then
// (a) if rewrite is nonzero, the existing definition for name is
// first removed; or (b) if rewrite is 0, an existing definition for
// name is not removed, name is not set to the new value,and no error
// occurs. return: 0 if OK, -1 on error

int unsetenv(const char *name);
// removes any definition of name. It is not an error if such a
// definition does not exist. return: 0 if OK, -1 on error

int putenv(char *str);
// str is of form NAME=VALUE, alters environment accordingly. If name
// already exists, its old definition is first removed. Don't use with
// stack strings. Returns: 0 if OK, nonzero on error.

24

Exercise: Manipulate Environment Vars
Write a short C program which
behaves as indicated in the demo
▶ Prints ROCK and VOLUME

environment variables
▶ If ROCK is set to anything,

change VOLUME to ”11”

Use these functions
char *getenv(const char *name);
// NULL if name not sot
// otherwise pointer to value

int setenv(const char *name,
const char *value,
int rewrite);

// Change name value pair,
// if rewrite is 1,
// overwrite previous definitions

Note the use of export to ensure child
processes see the environment variables

> unset ROCK
> unset VOLUME
> gcc environment_vars.c
> a.out
ROCK not set
VOLUME is not set
> export VOLUME=7
> a.out
ROCK not set
VOLUME is 7
> export ROCK=yes
> a.out
ROCK is yes
Turning VOLUME to 11
VOLUME is 11
> echo $VOLUME
7

Note also that the program does not
change the shell’s values for ROCK: no child
can change a parent’s values (or mind)

25

Answers: Manipulate Environment Vars
See 03-process-basics-code/environment_vars.c
1 // environment_vars.c: solution to in-class exercise showing how to
2 // check and set environment variables via the standard getenv() and
3 // setenv() functions.
4 #include <stdlib.h>
5 #include <stdio.h>
6
7 int main(int argc, char *argv[]){
8
9 char *verbosity = getenv("ROCK");

10 if(verbosity == NULL){
11 printf("ROCK not set\n");
12 }
13 else{
14 printf("ROCK is %s\n",verbosity);
15 printf("Turning VOLUME to 11\n");
16 int fail = setenv("VOLUME","11",1);
17 if(fail){
18 printf("Couldn't change VOLUME\n");
19 }
20 }
21 char *volume = getenv("VOLUME");
22 if(volume == NULL){
23 volume = "not set";
24 }
25 printf("VOLUME is %s\n",volume);
26 return 0;
27 }

26

