
CSCI 4061: Making Processes

Chris Kauffman

Last Updated:
Tue Feb 5 09:34:59 CST 2019

1

Logistics

Reading
▶ Stevens and Rago, Ch 8
▶ OR Robbins and Robbins,

Ch 3

Goals
▶ Assignment 1: Commando
▶ Creating Child Processes
▶ Waiting for them
▶ Running other programs

Lab02: fork(), wait(), exec()
All things you’ll need in first
project

Project 1
▶ Spec will go up later today
▶ Due in about 2.5 weeks
▶ Groups of 1 or 2

2

Processes

▶ Hardware just executes a stream of instructions
▶ The OS creates the notion of a process: instructions

comprising a running program
▶ Processes can be executed for a while, then paused while

another process executes
▶ To accomplish this, OS must have several features for

processes
1. Bookkeeping info for processes
2. Ability to interrupt a running process to allow OS to take

action
3. Scheduler that decides which process runs and for how long

▶ Will discuss all of these things from a systems programming
perspective

3

Overview of Process Creation/Coordination

getpid() / getppid()

▶ Get process ID of the
currently running process

▶ Get parent process ID

fork()
▶ Create a child process
▶ Identical to parent EXCEPT

for return value of fork() call
▶ Determines child/parent

wait() / waitpid()

▶ Wait for any child to finish
(wait)

▶ Wait for a specific child to
finish (waitpid)

▶ Get return status of child

exec() family
▶ Replace currently running

process with a different
image

▶ Process becomes something
else losing previous code

▶ Focus on execvp()
4

Overview of Process Creation/Coordination

getpid() / getppid()

pid_t my_pid = getpid();
printf("I'm proces %d\n",my_pid);
pid_t par_pid = getppid();
printf("My parent is %d\n",par_pid);

fork()

pid_t child_pid = fork();
if(child_pid == 0){
printf("Child!\n");

}
else{
printf("Parent!\n");

}

wait() / waitpid()

int status;
waitpid(child_pid, &status, 0);
printf("Child %d done, status %d\n",

child_pid, status);

exec() family

char *new_argv[] = {"ls","-l",NULL};
char *command = "ls";
printf("Goodbye old code, hello LS!\n");
execvp(command, new_argv);

5

Exercise: Standard Use: Get Child to Do Something

Child Labor
▶ Examine the file child_labor.c and discuss
▶ Makes use of getpid(), getppid(), fork(), execvp()

Child Waiting
▶ child_labor.c has concurrency issues: parent/child output

mixed
▶ Modify with a call to wait() to ensure parent output comes

AFTER child output

6

Answers: Standard Use: Get Child to Do Something

1 // child_labor.c: demonstrate the basics of fork/exec to launch a
2 // child process to do "labor"; e.g. run a another program via exec.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int main(int argc, char* argv){
9

10 char *child_argv[] = {"ls","-l","-ah",NULL}; // argument array to child, must end with NULL
11 char *child_cmd = "ls"; // actual command to run, must be on path
12
13 printf("I'm %d, and I really don't feel like '%s'ing\n",
14 getpid(),child_cmd); // use of getpid() to get current PID
15 printf("I have a solution\n");
16
17 pid_t child_pid = fork(); // clone a child
18
19 if(child_pid == 0){ // child will have a 0 here
20 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
21 getpid(), getppid(), child_cmd); // use of getpid() and getppid()
22
23 execvp(child_cmd, child_argv); // replace running image with child_cmd
24
25 printf(" I don't feel like myself anymore...\n"); // unreachable statement
26 }
27 else{ // parent will see nonzero in child_pid
28 printf("Great, junior %d is taking care of that\n",
29 child_pid);
30 }
31 return 0;
32 }

7

Answers: Standard Use: Get Child to Do Something
1 // child_wait.c: fork/exec plus parent waits for child to
2 // complete printing after each time.
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv){

10
11 char *child_argv[] = {"ls","-l","-ah",NULL}; // argument array to child, must end with NULL
12 char *child_cmd = "ls"; // actual command to run, must be on path
13
14 // char *child_argv[] = {"./complain",NULL}; // alternative commands
15 // char *child_cmd = "complain";
16
17 printf("I'm %d, and I really don't feel like '%s'ing\n",
18 getpid(),child_cmd);
19 printf("I have a solution\n");
20
21 pid_t child_pid = fork();
22
23 if(child_pid == 0){
24 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
25 getpid(), getppid(), child_cmd);
26 execvp(child_cmd, child_argv);
27 printf(" I don't feel like myself anymore...\n"); // unreachable
28 }
29 else{
30 int status;
31 wait(&status); // wait for child to finish, collect status
32 printf("Great, junior %d is done with that '%s'ing\n",
33 child_pid, child_cmd);
34 }
35 return 0;
36 }

8

Exercise: Child Exit Status
▶ A successful call to wait() sets a

status variable giving info about
child
int status;
wait(&status);

▶ Several macros are used to parse
out this variable
// determine if child actually exited
// other things like signals can cause
// wait to return
if(WIFEXITED(status)){

// get the return value of program
int retval = WEXITSTATUS(status);

}

▶ Modify child_labor.c so that
parent checks child exit status

▶ Convention: 0 normal, nonzero
error, print something if non-zero

program that returns non-zero
> gcc -o complain complain.c

EDIT FILE TO HAVE CHILD RUN 'complain'
> gcc child_labor_wait_returnval.c
> ./a.out
I'm 2239, and I really don't feel
like 'complain'ing
I have a solution

I'm 2240 My pa '2239' wants me to 'complain'.
This sucks.

COMPLAIN: God this sucks. On a scale of 0 to 10
I hate pa ...

Great, junior 2240 did that and told me '10'
That little punk gave me a non-zero return.
I'm glad he's dead
>

9

Answers: Child Exit Status
1 // child_wait_returnval.c: fork/exec plus parent waits for child and
2 // checks their status using macors. If nonzero, parent reports.
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv){

10 char *child_argv[] = {"./complain",NULL}; // program returns non-zero
11 char *child_cmd = "complain";
12
13 printf("I'm %d, and I really don't feel like '%s'ing\n",
14 getpid(),child_cmd);
15 printf("I have a solution\n");
16
17 pid_t child_pid = fork();
18
19 if(child_pid == 0){
20 printf(" I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
21 getpid(), getppid(), child_cmd);
22 execvp(child_cmd, child_argv);
23 printf(" I don't feel like myself anymore...\n"); // unreachable
24 }
25 else{
26 int status;
27 wait(&status); // wait for child to finish, collect status
28 if(WIFEXITED(status)){
29 int retval = WEXITSTATUS(status); // decode status to 0-255
30 printf("Great, junior %d did that and told me '%d'\n",
31 child_pid, retval);
32 if(retval != 0){ // nonzero exit codes usually indicate failure
33 printf("That little punk gave me a non-zero return. I'm glad he's dead\n");
34 }
35 }
36 }
37 return 0;
38 }

10

Return Value for wait() family
▶ Return value for wait() and waitpid() is the PID of the

child that finished
▶ Makes a lot of sense for wait() as multiple children can be

started and wait() reports which finished
▶ One wait() per child process is typical
▶ See faster_child.c

// parent waits for each child
for(int i=0; i<3; i++){

int status;
int child_pid = wait(&status);
if(WIFEXITED(status)){

int retval = WEXITSTATUS(status);
printf("PARENT: Finished child proc %d, retval: %d\n",

child_pid, retval);
}

}

11

Blocking vs. Nonblocking Activities
Blocking
▶ A call to wait() and waitpid() may cause calling process to

block (hang, stall, pause, suspend, so many names…)
▶ Blocking is associated with other activities as well

▶ I/O, obtain a lock, get a signal, etc.
▶ Generally creates synchronous situations: waiting for

something to finish means the next action always happens..
next
// BLOCKING VERSION
int pid = waitpid(child_pid, &status, 0);

Non-blocking
▶ Contrast with non-blocking (asynchronous) activities: calling

process goes ahead even if something isn’t finished yet
▶ wait() is always blocking
▶ waitpid() can be blocking or non-blocking 12

Non-Blocking waitpid()
▶ Use the WNOHANG option
▶ Returns immediately regardless of the child’s status

int child_pid = fork();
int status;

// NON-BLOCKING
int pid = waitpid(child_pid, &status, WNOHANG); // specific child
OR |||||||
int pid = waitpid(-1, &status, WNOHANG); // any child

Returned pid is

Returned Means
child_pid status of child has changed (exit)
0 there is no status change for child
-1 an error

Examine impatient_parent.c
13

impatient_parent.c
1 // impatient_parent.c: demonstrate non-blocking waitpid(),
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int main(int argc, char* argv){
9

10 char *child_argv[] = {"./complain",NULL};
11 char *child_cmd = "complain";
12
13 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
14 child_cmd);
15
16 pid_t child_pid = fork();
17
18 // CHILD CODE
19 if(child_pid == 0){
20 printf("CHILD: I'm %d and I'm about to '%s'\n",
21 getpid(), child_cmd);
22 execvp(child_cmd, child_argv);
23 }
24
25 // PARENT CODE
26 int status;
27 int pid = waitpid(child_pid,&status,WNOHANG); // Check if child done, but don't actually wait
28 if(pid == child_pid && WIFEXITED(status)){ // Child did finish
29 printf("PARENT: Good job junior. You told me %d\n",WEXITSTATUS(status));
30 }
31 else{ // Child not done yet
32 printf("PARENT: %d? The kid's not done yet. I'm bored\n",pid);
33 }
34 return 0;
35 }

14

Runs of impatient_parent.c

> gcc impatient_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1863 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1865 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

15

Exercise: Helicopter Parent
▶ Modify impatient_parent.c to

helicopter_parent.c
▶ Checks continuously on child

process
▶ Will need a loop for this…

> gcc helicopter_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
CHILD: I'm 21789 and I'm about to 'complain'
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
PARENT: Good job junior. I only checked on you 226 times.

16

Answers: Helicopter Parent
1 // demonstrate non-blocking waitpid() in excess
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 int main(int argc, char* argv){
8
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11
12 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
13 child_cmd);
14
15 pid_t child_pid = fork();
16
17 // CHILD CODE
18 if(child_pid == 0){
19 printf("CHILD: I'm %d and I'm about to '%s'\n",
20 getpid(), child_cmd);
21 execvp(child_cmd, child_argv);
22 }
23
24 // PARENT CODE
25 int status;
26 int checked = 0;
27 while(1){
28 int cpid = waitpid(child_pid,&status,WNOHANG); // Check if child done, but don't actually wait
29 if(cpid == child_pid){ // Child did finish
30 break;
31 }
32 printf("Oh, junior's taking so long. Is he among the 50%% of people that are below average?\n");
33 checked++;
34 }
35 printf("PARENT: Good job junior. I only checked on you %d times.\n",checked);
36 return 0;
37 }

17

Polling vs Interrupts

▶ helicopter_parent.c is an example of polling: checking on
something repeatedly until it achieves a ready state

▶ Easy to program, generally inefficient
▶ Alternative: interrupt style is closer to wait() and

waitpid() without WNOHANG: rest until notified of a change
▶ Usually requires cooperation with OS/hardware which must

wake up process when stuff is ready
▶ Both polling-style and interrupt-style programming have uses

18

Zombies…
▶ Parent creates a child
▶ Child completes
▶ Child becomes a zombie (!!!)
▶ Parent waits for child
▶ Child eliminated

Didn’t see that coming next, did you?

Zombie Process
A process that has finished, but has not been wait()’ed for by its
parent yet so cannot be eliminated from the system. OS can
reclaim child resources like memory once parent wait()’s.
Demonstrate
Requires a process monitoring with top/ps but can see zombies
created using spawn_undead.c

19

Tree of Processes
> pstree
systemd-+-NetworkManager---2*[{NetworkManager}]

|-accounts-daemon---2*[{accounts-daemon}]
|-colord---2*[{colord}]
|-csd-printer---2*[{csd-printer}]
|-cupsd
|-dbus-daemon
|-drjava---java-+-java---27*[{java}]
| `-37*[{java}]
|-dropbox---106*[{dropbox}]
|-emacs-+-aspell
| |-bash---pstree
| |-evince---4*[{evince}]
| |-idn
| `-3*[{emacs}]
|-gdm-+-gdm-session-wor-+-gdm-wayland-ses-+-gnome-session-b-+-gnome-shell-+-Xwayland---14*[{Xwayland}]
... ...
| |-gnome-terminal--+-bash-+-chromium-+-chrome-sandbox---chromium---chromium-+-8*[chromium---12*[{chromium}]]
| | | | | |-chromium---11*[{chromium}]
| | | | | |-chromium---14*[{chromium}]
| | | | | |-chromium---15*[{chromium}]
| | | | | `-chromium---18*[{chromium}]
| | | | |-chromium---9*[{chromium}]
| | | | `-42*[{chromium}]
| | | `-cinnamon---21*[{cinnamon}]
| | |-bash---ssh
| | `-3*[{gnome-terminal-}]

▶ Processes exist in a tree: see with shell command pstree
▶ Children can be orphaned by parents: parent exits without

wait()’ing for child
▶ Orphans are adopted by the root process

▶ init traditionally
▶ systemd in many modern systems

▶ Root process occasionally wait()’s to ”reap” zombies 20

