
CSCI 4061: Signals and Signal Handlers

Chris Kauffman

Last Updated:
Thu Mar 14 09:45:55 CDT 2019

1

Logistics

Reading
▶ Stevens/Rago

Ch 10
▶ OR Robbins and Robbins

Ch 8.1-8.7, 9.1-2

Goals
▶ Sending Signals in C
▶ Signal Handlers
▶ select(): Multiplexing I/O

Lab07: pmap / signals intro
How did it go?

Project 2
▶ Under development
▶ Will discuss on Thu

2

Exercise: Lab07 Signals

1. What is a signal?
2. What system call is used to send a process a signal? How is it

invoked?

3

Answers: Lab07 Signals
1. What is a signal?

▶ Notification from somewhere, limited information, special
effects

2. What system call is used to send a process a signal? How is it
invoked?
▶ kill(pid, SIGSOMTHING);

What kind of signals are there?
▶ Signals are an old system of communication to convey a

limited amount of info to a process
▶ ”Delivered” by the OS to a running process to inform of it of

an event
▶ Process responds in one of several ways according to its

disposition
▶ Asynchronous: could delivered to a process at any time

4

Process Signal Disposition
> man 7 signal
...
Signal dispositions

Each signal has a current disposition, which determines how the
process behaves when it is delivered the signal.

The entries in the "Action" column of the tables below specify the
default disposition for each signal, as follows:

Term Default action is to terminate the process.

Ign Default action is to ignore the signal.

Core Default action is to terminate the process and dump core (see
core(5)).

Stop Default action is to stop the process.

Cont Default action is to continue the process if it is currently
stopped.

Can be adjust signal disposition with various system calls to
establish signal handlers for the process.

5

Standard Types of Signals
> man 7 signal
Standard Signals

x86 Default
Signal Value Action Comment

SIGHUP 1 Term Hangup detected on controlling terminal or death of controlling process
SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace/breakpoint trap
SIGABRT 6 Core Abort signal from abort(3)
SIGBUS 7 Core Bus error (bad memory access)
SIGFPE 8 Core Floating-point exception (CK: actually integer divide by 0)
SIGKILL 9 Term Kill signal
SIGUSR1 10 Term User-defined signal 1
SIGSEGV 11 Core Invalid memory reference
SIGUSR2 12 Term User-defined signal 2
SIGPIPE 13 Term Broken pipe: write to pipe with no readers; see pipe(7)
SIGALRM 14 Term Timer signal from alarm(2)
SIGTERM 15 Term Termination signal
SIGSTKFLT 16 Term Stack fault on coprocessor (unused)
SIGCHLD 17 Ign Child stopped or terminated
SIGCONT 18 Cont Continue if stopped
SIGSTOP 19 Stop Stop process
SIGTSTP 20 Stop Stop typed at terminal
...
SIGUNUSED 31 Core Synonymous with SIGSYS

Note: Different CPU architectures may have different values for some signals
and support other signals not listed
(Ex: MIPS CPUs use SIGCONT=25 with a synonym for SIGCHLD=19) 6

Basic Signal Handlers via signal()
Pressing Ctrl-c in a terminal sends SIGINT to a running program
which normally Terminates the program. The below template
establishes a signal handler for SIGINT.
#include <signal.h>
void handle_SIGINT(int sig_num) {

...
}

int main () {
// Set handling functions for programs
signal(SIGINT, handle_SIGINT);
...

}

▶ When SIGINT arrives at program, control jumps to function
handle_SIGINT() with argument sig_num == SIGINT

▶ When handle_SIGINT() completes, control returns to
wherever the program left off

Examine: no_interruptions_signal.c
7

History Note: Resetting Signal Handlers

void handle_SIGINT(int sig_num) {
signal(SIGINT, handle_SIGINT);
// Reset handler to catch SIGINT next time
// Not needed in modern systems
printf("\nNo SIGINT-erruptions allowed.\n");
fflush(stdout);

}
int main () {

signal(SIGINT, handle_SIGINT);
...

▶ Old sources describe the need to reset handles while running
▶ Why is this subtly awful?
▶ Not needed on most modern Unix systems

8

Historical Notes
▶ Signals were an early concept but were initially ”unreliable”:

might get lost and so were not as useful as their modern
incarnation

▶ Historically, required to reset signal handlers after they were
called. First line of handler was always
signal(this_signal, this_hanlder);
though this was still buggy.

▶ Historically, some system calls could be interrupted by signals.
Robbins & Robbins go on and on about this.

On FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8, when
signal handlers are installed with the signal function, inter-
rupted system calls will be restarted. The default on Solaris
10, however, is to return an error (EINTR) instead when
system calls are interrupted by signal handlers installed
with the signal function.
– Stevens and Rago, 10.5

9

Portability Notes on signal()

> man 2 signal
...
The behavior of signal() varies across UNIX versions, and has also
varied historically across different versions of Linux.
AVOID ITS USE: use sigaction(2) instead.

PORTABILITY
The semantics when using signal() to establish a signal handler vary
across systems (and POSIX.1 explicitly permits this variation); *do not
use it for this purpose.*

▶ signal() part of the C standard but is old with different
behaviors across different systems

▶ POSIX defined new functions which were designed to break
from its tradition and fix problems associated with it

▶ Requires introduction of signal sets, data type for a set of
signals along with associated functions

10

Portable Signal Handlers via sigaction()

▶ The sigaction() function is more portable than signal()
to register signal handlers.

▶ Makes use of struct sigaction which specifies properties
of signal handler registrations, most importantly the field
sa_handler

int main(){ // SAMPLE HANDLER SETUP USING sigaction()
struct sigaction my_sa = {}; // portable signal handling setup with sigaction()
my_sa.sa_handler = handle_signals; // run function handle_signals
sigemptyset(&my_sa.sa_mask); // don't block any other signals during handling
my_sa.sa_flags = SA_RESTART; // restart system calls on signals if possible
sigaction(SIGTERM, &my_sa, NULL); // register SIGTERM with given action
sigaction(SIGINT, &my_sa, NULL); // register SIGINT with given action
...;

}

See no_interruptions_sigaction.c

11

Ignoring Signals, Restoring Defaults

▶ Setting the signal handler to SIG_IGN will cause signals to be
silently ignored.

▶ Setting the signal handler to SIG_DFL will restore default
disposition.

Demo no_interruptions_ignore.c

12

Sleeping, Pausing, and Stopping
Sleeping/Pausing: wait for a signal
▶ sleep(5) suspends process execution until a signal is

delivered or for 5 seconds elapses
▶ pause() suspends process execution until a signal is delivered;
▶ sleep(0) is equivalent to pause()

Note sleep behavior of various no_interruptions programs

Signals that Affect Execution
▶ SIGSTOP will causes process to stop, will not resume until…
▶ SIGCONT causes a stopped process to resume, otherwise

ignored by default
▶ All signals are delivered while a process is stopped BUT it is

not resumed until receiving SIGCONT
Examine: start_stop.c with circle_of_life.c

13

You want the Signal? You Can’t Handle the Signal!

▶ SIGKILL and SIGSTOP cannot be handled differently from
default
▶ SIGKILL always terminates a process
▶ SIGSTOP always stops a process execution

▶ In that sense they are a little different than the other signals
but use the same OS delivery mechanism and kill()
semantics

▶ Calls to sigaction() or signal() for these two will fail
▶ See cant_handle_kill.c

14

Exercise: What Can you do with signals?

▶ Now have basics of signals and handlers in play
▶ Natural question: what are they good for?
▶ Identify some uses for signals that we have seen so far:

▶ Standard uses for signals that have been demonstrated
▶ How to use signals in this way

▶ Propose some uses for signals and handlers that are new and
different from our examples so far

▶ Cards for creativity

15

Other Parts of struct sigaction

Type Field Purpose
void(*) (int) sa_handler Pointer to a signal-catching function

or one of the macros SIG_IGN or SIG_DFL.
sigset_t sa_mask Additional set of signals to be blocked

during execution of signal-catching function.
int sa_flags Special flags to affect behavior of signal.

Typically SA_RESTART is used to restart
system calls automatically

… sa_sigaction More complex handler used when sa_flags has
SA_SIGINFO set; passes additional info to
handler like PID of signaling process.

Standard setup for sigaction() call is

struct sigaction my_sa = {};
sigemptyset(&my_sa.sa_mask); // don't block any other signals during handling
my_sa.sa_flags = SA_RESTART; // always restart system calls on signals possible
my_sa.sa_handler = handle_SIGTERM; // run function handle_SIGTERM
sigaction(SIGTERM, &my_sa, NULL); // register SIGTERM with given action

16

Dangers in Signal Handlers

▶ General advice: do as little as possible in a signal handler
▶ Make use of only reentrant functions

… reentrant if it can be interrupted in the middle of its
execution, and then be safely called again (”re-entered”)
before its previous invocations complete execution.
– Wikipedia: Reentrancy

▶ Notably not reentrant
printf() family, malloc(), free()

▶ Reentrant functions pertinent to thread-based programming
as well (later)

▶ Demo non-reentrant.c

17

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Exercise: Non-Reentrant Function Example

▶ Program calls non-reentrant
function f() in two
locations
▶ main()
▶ handle_signal() (!)

▶ With no signals, expect to
see 7 printed

▶ With interrupts see 19,7
printed in either order

▶ Show a control flow
involving signals that prints
19 twice

▶ Why is f() not reentrant?

1 int z;
2 int f(int x, int y){
3 int tmp = x + y;
4 z = tmp * 2 + 1;
5 return z;
6 }
7
8 void handle_signal(int sig){
9 int t = f(4,5);
10 printf("%d\n",t);
11 return;
12 }
13
14 int main(){
15 signal(SIGINT,handle_signal);
16 int v = f(1,2);
17 printf("%d\n",v);
18 }

18

Answer: Non-Reentrant Function Example
▶ Program below calls non-reentrant function f() in main()

and handle_signal()
▶ With no interrupts, would expect to see 7 printed, with

interrupts see 19 and 7
▶ Right hand shows one possible flow through the code which

produces 19 then 19 again
1 int z;
2 int f(int x, int y){
3 int tmp = x + y;
4 z = tmp * 2 + 1;
5 return z;
6 }
7
8 void handle_signal(int sig){
9 int t = f(4,5);
10 printf("%d\n",t);
11 return;
12 }
13
14 int main(){
15 signal(SIGINT,handle_signal);
16 int v = f(1,2);
17 printf("%d\n",v);
18 }

EXECUTION STARTS IN main()
15: signal(SIGINT,handle_signal);
16: int v = f(1,2); // main(), Expect: (1+2)*2+1 = 7
3: tmp = x + y; // f(1,2): tmp = 1+2 = 3
4: z = tmp*2 + 1; // z is 7
SIGINT delivered, run handler

9: int t = f(4,5); // handle_signal(2)
3: tmp = x + y; // f(4,5): tmp = 4+5 = 9
4: z = tmp*2 + 1; // z is now 19
5: return z; // back to handle_signal()
9: int t = f(4,5); // finished, t is 19

10: printf("%d\n",t); // PRINT 19
11: return; // back to normal control

5: return z; // back to main(), but z is 19
16: int v = f(1,2); // v is actually 19
17: printf("%d\n",v); // PRINT 19

// 7 Expected

19

Leading Example

▶ Examine crypt_not_reentrant.c
▶ Makes use of library call to crypt() which is used to generate

encrypted versions of passwords
▶ crypt() called in both…

▶ main() during a while() loop
▶ in a signal handler

▶ crypt() is non-reentrant: why?
▶ Observe what happens during runs of program

Note: alarm(secs)
▶ Request to OS to send SIGALRM to program later on
▶ Alerts program that a certain amount of time has passed

20

Signal Sets
▶ A set of signals, likely implemented as a bit vector
▶ Functions allow addition, removal, clearing of set and tests for

membership
#include <signal.h>

int sigemptyset(sigset_t *set);
// empty out the set

int sigfillset(sigset_t *set);
// fill the entire set with all signals

int sigaddset(sigset_t *set, int signo);
// add given signal to the set

int sigdelset(sigset_t *set, int signo);
// remove given signal to the set

// All of the above return 0 on succes, -1 on error

int sigismember(const sigset_t *set, int signo);
// return 1 if signal is a member of set, 0 if not

Examine sigsets_demo.c
21

Blocking (Disabling) Signals
▶ Processes can block signals, disable receiving them
▶ Signal is still there, just awaiting delivery
▶ Blocking is different from Ignoring a signal

▶ Ignored signals are received and discarded
▶ Blocked signals will be delivered after unblocking

▶ Can protect Critical Sections of code with by blocking if
signals would screw it up

Process Signal Mask
Example: block all signals that can be blocked
sigset_t block_all, defaults;
sigfillset(&block_all); // contains all
sigprocmask(SIG_SETMASK, &block_all, &defaults); // block all signals

// save defaults

Examine no_interruptions_block.c

22

Exercise: Protect Non-Reentrant Call

Examine the code for crypt_not_reeentrant.c and modify it to
use signal blocking to protect the critical region associated with
calls to crypt().
▶ Create a mask for all signals
▶ Block all signals prior to function call
▶ Unblock after returning
▶ Use code like below

sigset_t block_all, defaults;
sigfillset(&block_all); // contains all
sigprocmask(SIG_SETMASK, &block_all, &defaults); // block all signals

// save defaults

Note: Be very careful where you unblock signal handling in
main() to avoid errors: protect the Critical Section

23

Hardware Analogs to Signals
▶ Unix Signals are a software mechanism: happens via OS

mechanisms in code
▶ Similar hardware mechanisms exist and deserve mention as

some are related to software signals

Example: Division by 0
▶ Processor ALU performs division
▶ Div by 0 generates an exceptional condition which transfers

control to a hardware exception handler
▶ Similar to signals

▶ Typical CPU response is to jump to OS code
▶ OS sends a software signal to running program as SIGFPE

See div0.c and explain the output…

Example: Alarms
Hardware timer expires → hardware signal → software signal

24

Hardware Exceptions, Interrupts, Traps
Hardware features electrical signals that can cause control jumps.
Definitions vary somewhat but two general types are common.
Trap
▶ Generated by specific assembly instructions
▶ Div by 0 is a trap due to use of idivX instruction
▶ Jumps to handler indicated by CPU table
▶ Generated and handled synchronously

Interrupt
▶ Generated by hardware devices like a disk drive often to

indicate completion of operation
▶ Jumps CPU to interrupt handler so OS can react, move

process waiting for file load from blocked to unblocked
▶ Major parts of OS kernel handle hardware via asynchronous

interrupts
25

Just to Muddy the Waters further…

▶ Modern system calls are made via sysenter (32-bit) and
syscall (64-bit), BUT…

▶ In old-school 32-bit x86 assembly, making a system call was
done via the interrupt instruction
int 0x80 # trigger interrupt 128, handled by OS kernel

▶ Referred to as ”trapping to the OS”
▶ Is this a…

1. Trap?
2. Interrupt?
3. Another example of computer jargon that makes you want to

change majors?

26

Signal Take-Home

▶ Signals provide a simple way for programs to perform limited
communications

▶ Can send signals via command line kill and system call
kill()

▶ Programs respond to signals in a default manner (”signal
disposition”) that can be changed and customized via handlers

▶ Can sleep() or pause() a program until a signal is received
▶ Can block signals if needed
▶ First example of an asynchronous events in programs which

introduces dangers associated with non-reentrant functions
▶ Signals not good for general purpose communication but are

useful to convey simple events like ”wake up already”

27

