
CSCI 4061: Threads in a Nutshell

Chris Kauffman

Last Updated:
Tue Apr 23 15:18:08 CDT 2019

1

Logistics

Reading
▶ Stevens/Rago

Ch 11-12
▶ Robbins and Robbins

Ch 12-13

Goals
▶ Thread Basics
▶ Concurrency Issues
▶ Mutex Lock
▶ Condition Variable

Lab11: Worms
▶ How did it go?

Project 2
▶ Post today/tomorrow
▶ Due last day of classes

2

Demo of A2: ’blather’

▶ Try using the chat program you will write
▶ Kauffman starts the chat server, bl_server demo
▶ Everyone can then…

LOG ON to a cselabs machine
> ssh <USERNAME>@atlas.cselabs.umn.edu
kauffman@atlas.cselabs.umn.edu's password:
Last login: Tue Apr 16 09:18:26 2019 from 134.84.196.143

CHANGE to correct directory
csel-atlas [~]% cd ~kauffman/blather

RUN the chat client
csel-atlas [blather]% ./bl_client demo <USERNAME>

3

Threads of Control within the Same Process

▶ Parallel execution path within the same process
▶ Multiple threads execute different parts of the same code for

the program concurrently
▶ Concurrent: simultaneous or in an unspecified order

▶ Threads each have their own “private” function call stack
▶ CAN share stack values by passing pointers to them around
▶ Share the heap and global area of memory
▶ In Unix, Posix Threads (pthreads) is the most widely

available thread library

4

Threads vs IPC

Process in IPC Threads in pthreads
(Marginally) Longer startup (Marginally) Faster startup
Must share memory explicitly Memory shared by default
Good protection between processes Little protection between threads
fork() / waitpid() pthread_create() / _join()

Modern systems (Linux) can use semaphores / mutexes / shared memory /
message queues / condition variables to coordinate Processes or Threads

IPC Memory Model

Source

Thread Memory Model

Source
5

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
http://www.read.cs.ucla.edu/111/2006fall/notes/lec5

Process and Thread Functions

▶ Threads and process both represent “flows of control”
▶ Most ideas have analogs for both

Processes Threads Description
fork() pthread_create() create a new flow of control
waitpid() pthread_join() get exit status from flow of control
getpid() pthread_self() get “ID” for flow of control
exit() pthread_exit() exit (normally) from an existing flow

of control
abort() pthread_cancel() request abnormal termination of flow

of control
atexit() pthread_cleanup_push() register function to be called at exit

from flow of control

Stevens/Rago Figure 11.6: Comparison of process and thread primitives

6

Thread Creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

int pthread_join(pthread_t thread, void **retval);

▶ Start a thread running function start_routine
▶ attr may be NULL for default attributes
▶ Pass arguments arg to the function
▶ Wait for thread to finish, put return in retval

7

Minimal Example

Code
// Minimal example of starting a
// pthread, passing a parameter to the
// thread function, then waiting for it
// to finish
#include <pthread.h>
#include <stdio.h>

void *doit(void *param){
int p=(int) param;
p = p*2;
return (void *) p;

}

int main(){
pthread_t thread_1;
pthread_create(&thread_1, NULL,

doit, (void *) 42);
int xres;
pthread_join(thread_1, (void **) &xres);
printf("result is: %d\n",xres);
return 0;

}

Compilation
▶ Link thread library

-lpthreads
▶ Lots of warnings

> gcc pthreads_minimal_example.c -lpthread
pthreads_minimal_example.c: In function 'doit':
pthreads_minimal_example.c:7:9: warning:
cast from pointer to integer of different
size [-Wpointer-to-int-cast]

int p=(int) param;
^

pthreads_minimal_example.c:9:10: warning:
cast to pointer from integer of different
size [-Wint-to-pointer-cast]

return (void *) p;
^

> a.out
result is: 84

8

Exercise: Observe this about pthreads

1. Where does a thread start execution?
2. What does the parent thread do on creating a child thread?
3. How much compiler support do you get with pthreads?
4. How does one pass multiple arguments to a thread function?
5. If multiple children are spawned, which execute?

9

Answers: Observe this about pthreads

1. Where does a thread start execution?
▶ Child thread starts running code in the function passed to

pthread_create(), function doit() in example
2. What does the parent thread do on creating a child thread?

▶ Continues immediately, much like fork() but child runs the
given function while parent continues as is

3. How much compiler support do you get with pthreads?
▶ Little: must do a lot of casting of arguments/returns

4. How does one pass multiple arguments to a thread function?
▶ Create a struct or array and pass in a pointer

5. If multiple children are spawned, which execute?
▶ Can’t say which order they will execute in, similar to fork()

and children

10

Model Problem: A Slice of Pi

▶ Calculate the value of π ≈ 3.14159
▶ Simple Monte Carlo algorithm to

do this
▶ Randomly generate positive (x,y)

coords
▶ Compute distance between (x,y)

and (0,0)
▶ If distance ≤ 1 increment “hits”
▶ Counting number of points in the

positive quarter circle
▶ After large number of hits, have

approximation

π ≈ 4 × total hits
total points

Algorithm generates dots, computes fraction
of red which indicates area of quarter circle
compared to square

11

Serial Code picalc.c and picalc_rand.c

▶ Examine source code for picalc_rand.c
▶ Note basic algorithm is simple and easily parallelizable
▶ Discuss trouble with the rand() function: non-reentrant
▶ Examine source code for picalc.c
▶ Contrast the rand_r() function: reentrant version

12

Exercise: pthreads_picalc.c

http://cs.umn.edu/~kauffman/4061/pthreads_picalc.c
▶ Examine source code for pthreads_picalc.c
▶ How many threads are created? Fixed or variable?
▶ How do the threads cooperate? Is there shared information?
▶ Do the threads use the same or different random number

sequences?
▶ Will this code actually produce good estimates of π?

13

http://cs.umn.edu/~kauffman/4061/pthreads_picalc.c

Answers: pthreads_picalc.c
http://cs.umn.edu/~kauffman/4061/pthreads_picalc.c
▶ Identical to pthreads_picalc_broken.c
▶ How many threads are created? Fixed or variable?

▶ Threads specified on command line
▶ How do the threads cooperate? Is there shared information?

▶ Shared global variable total_hits
▶ Do the threads use the same or different random number

sequences?
▶ Different, seed is based on thread number

▶ Will this code actually produce good estimates of π?
▶ Nope: not coordinating updates to total_hits so will likely

be wrong

> gcc -Wall pthreads_picalc_broken.c -lpthread
> a.out 10000000 4
npoints: 10000000
hits: 3134064
pi_est: 1.253626 # not a good estimate for 3.14159

14

http://cs.umn.edu/~kauffman/4061/pthreads_picalc.c

Why is pthreads_picalc_broken.c so wrong?
▶ The instructions total_hits++; is not atomic
▶ Translates to assembly

// total_hits stored at address #1024
30: load REG1 from #1024
31: increment REG1
32: store REG1 into #1024

▶ Interleaving of these instructions by several threads leads to
undercounting total_hits

Mem #1024 Thread 1 REG1 Thread 2 REG1
total_hits Instruction Value Instruction Value

100
30: load REG1 100
31: incr REG1 101

101 32: store REG1
30: load REG1 101
31: incr REG1 102

102 32: store REG1
30: load REG1 102
31: incr REG1 103

30: load REG1 102
31: incr REG1 103

103 32: store REG1
103 32: store REG1

15

Critical Regions and Mutex Locks

▶ Access to shared variables
must be coordinated among
threads

▶ A mutex allows mutual
exclusion

▶ Locking a mutex is an
atomic operation like
incrementing/decrementing
a semaphore

pthread_mutex_t lock;

int main(){
// initialize a lock
pthread_mutex_init(&lock, NULL);
...;
// release lock resources
pthread_mutex_destroy(&lock);

}

void *thread_work(void *arg){
...
// block until lock acquired
pthread_mutex_lock(&lock);

do critical;
stuff in here;

// unlock for others
pthread_mutex_unlock(&lock);
...

}

16

Exercise: Protect critical region of picalc
▶ Insert calls to pthread_mutex_lock() and

pthread_mutex_unlock()
▶ Protect the critical region
▶ Predict effects on code
1 int total_hits=0;
2 int points_per_thread = ...;
3 pthread_mutex_t lock; // initialized in main()
4
5 void *compute_pi(void *arg){
6 long thread_id = (long) arg;
7 unsigned int rstate = 123456789 * thread_id;
8 for (int i = 0; i < points_per_thread; i++) {
9 double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);

10 double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
11 if (x*x + y*y <= 1.0){
12 total_hits++; // update
13 }
14 }
15 return NULL;
16 }

17

Answers: Protect critical region of picalc

▶ Naive approach
if (x*x + y*y <= 1.0){
pthread_mutex_lock(&lock); // lock global variable
total_hits++; // update
pthread_mutex_unlock(&lock); // unlock global variable

}
▶ Ensures correct answers but…
▶ Severe effects on performance

18

Speedup?
▶ Dividing work among workers should decrease wall (real) time
▶ Shooting for linear speedup

Parallel Time = Serial Time
Number of Workers

> gcc -Wall picalc.c -lpthread
> time a.out 100000000 > /dev/null # SERIAL version
real 0m1.553s # 1.55 s wall time
user 0m1.550s
sys 0m0.000s
> gcc -Wall pthreads_picalc_mutex.c -lpthread
> time a.out 100000000 1 > /dev/null # PARALLEL 1 thread
real 0m2.442s # 2.44s wall time ?
user 0m2.439s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # PARALLEL 2 threads
real 0m7.948s # 7.95s wall time??
user 0m12.640s
sys 0m3.184s
> time a.out 100000000 4 > /dev/null # PARALLEL 4 threads
real 0m9.780s # 9.78s wall time???
user 0m18.593s # wait, something is
sys 0m18.357s # terribly wrong...

19

Alternative Approach: Local count then merge
▶ Contention for locks creates tremendous overhead
▶ Classic divide/conquer or map/reduce or split/join paradigm

works here
▶ Each thread counts its own local hits, combine only at the

end with single lock/unlock
void *compute_pi(void *arg){

long thread_id = (long) arg;
int my_hits = 0; // private count for this thread
unsigned int rstate = 123456789 * thread_id;
for (int i = 0; i < points_per_thread; i++) {
double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

my_hits++; // update local
}

}
pthread_mutex_lock(&lock); // lock global variable
total_hits += my_hits; // update global hits
pthread_mutex_unlock(&lock); // unlock global variable
return NULL;

}

20

Speedup!
▶ This problem is almost embarassingly parallel: very little

communication/coordination required
▶ Solid speedup gained but note that the user time increases as

threads increases due to overhead
8-processor desktop
> gcc -Wall pthreads_picalc_mutex_nocontention.c -lpthread
> time a.out 100000000 1 > /dev/null # 1 thread
real 0m1.523s # 1.52s, similar to serial
user 0m1.520s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # 2 threads
real 0m0.797s # 0.80s, about 50% time
user 0m1.584s
sys 0m0.000s
> time a.out 100000000 4 > /dev/null # 4 threads
real 0m0.412s # 0.41s, about 25% time
user 0m1.628s
sys 0m0.003s
> time a.out 100000000 8 > /dev/null # 8 threads
real 0m0.238s # 0.24, about 12.5% time
user 0m1.823s
sys 0m0.003s

21

Exercise: Mutex Busy wait or not?
▶ Consider given program
▶ Threads acquire a mutex,

sleep 1s, release
▶ Predict user and real/wall

times if
1. Mutex uses busy waiting

(polling)
2. Mutex uses interrupt

driven waiting
(sleep/wakup when ready)

▶ Can verify by compiling and
running
time a.out

1 int glob = 1;
2 pthread_mutex_t glob_lock;
3
4 void *doit(void *param){
5 pthread_mutex_lock(&glob_lock);
6 glob = glob*2;
7 sleep(1);
8 pthread_mutex_unlock(&glob_lock);
9 return NULL;

10 }
11
12 int main(){
13 printf("BEFORE glob: %d\n",glob);
14
15 pthread_mutex_init(&glob_lock, NULL);
16 pthread_t thread_1;
17 pthread_create(&thread_1, NULL, doit, NULL);
18 pthread_t thread_2;
19 pthread_create(&thread_2, NULL, doit, NULL);
20
21 pthread_join(thread_1, (void **) NULL);
22 pthread_join(thread_2, (void **) NULL);
23
24 printf("AFTER glob: %d\n",glob);
25 pthread_mutex_destroy(&glob_lock);
26
27 return 0;
28 }

22

Answers: Mutex Busy wait or not? NOT
▶ Locking is Not a busy wait
▶ Either get the lock and

proceed OR
▶ Block and get woken up

when the lock is available
▶ Timing is

▶ real: 2.000s
▶ user: 0.001s

▶ If it were busy should be
roughly
▶ real: 2.000s
▶ user: 1.001s

▶ pthread_spinlock_* like
mutex locks but more likely
to busily wait

1 int glob = 1;
2 pthread_mutex_t glob_lock;
3
4 void *doit(void *param){
5 pthread_mutex_lock(&glob_lock);
6 glob = glob*2;
7 sleep(1);
8 pthread_mutex_unlock(&glob_lock);
9 return NULL;

10 }
11
12 int main(){
13 printf("BEFORE glob: %d\n",glob);
14
15 pthread_mutex_init(&glob_lock, NULL);
16 pthread_t thread_1;
17 pthread_create(&thread_1, NULL, doit, NULL);
18 pthread_t thread_2;
19 pthread_create(&thread_2, NULL, doit, NULL);
20
21 pthread_join(thread_1, (void **) NULL);
22 pthread_join(thread_2, (void **) NULL);
23
24 printf("AFTER glob: %d\n",glob);
25 pthread_mutex_destroy(&glob_lock);
26
27 return 0;
28 }

23

Mutex Gotchas
▶ Managing multiple mutex locks is fraught with danger
▶ Must choose protocol carefully: similar to discussion of Dining

Philosophers with semaphores
▶ Same thread locking same mutex twice can cause deadlock

depending on options associated with mutex
▶ Interactions between threads with different scheduling priority

are also tough to understand
▶ Robbins/Robbins 13.8 discusses some problems with the Mars

Pathfinder probe resulting from threads/mutex locks
▶ Used multiple threads with differing priorities to manage

limited hardware
▶ Shortly after landing, started rebooting like crazy due to odd

thread interactions
▶ Short-lived, low-priority thread got a mutex, pre-empted by

long-running medium priority thread, system freaked out
because others could not use resource associated with mutex

24

Mutex vs Semaphore

Similarities
▶ Both used to protect critical

regions of code from other
processes/threads

▶ Both use non-busy waiting
▶ process/thread blocks if

locked by another
▶ unlocking wakes up a blocked

process/thread
▶ Both can be process private or

shared between processes
▶ Shared mutex requires shared

memory
▶ Private semaphore with

option pshared==0

Differences
▶ Semaphores default to

Inter-process coordination,
Mutexes to Thread coordination

▶ Semaphores can be arbitrary
natural number, usually
0=locked, 1,2,3,..=available

▶ Mutexes are either
locked/unlocked

▶ Mutexes have a busy locking
variant:
▶ pthread_spinlock_t
▶ pthread_spin_lock()
▶ pthread_spin_unlock()

25

get_thread_id()???
As noted in other answers, pthreads does not define a
platform-independent way to retrieve an integral thread
ID. This answer1 gives a non-portable way which works on
many BSD-based platforms.
– Bleater on Stack Overflow

// Standard opaque object, non-printable
pthread_t opaque = pthread_self();

// Linux only
pid_t tid = gettid(); // system call
printf("Thread %d reporting for duty\n",tid);

// Non-portable, non-linux
pthread_id_np_t tid = pthread_getthreadid_np();

1http://stackoverflow.com/a/21206357/316487
26

http://stackoverflow.com/questions/21091000/how-to-get-thread-id-of-a-pthread-in-linux-c-program
http://stackoverflow.com/a/21206357/316487

Thread ID work-arounds
▶ In many cases pid_t is just a unsigned long

file /usr/include/bits/pthreadtypes.h:
typedef unsigned long int pthread_t;

▶ Allows simple printf printing as in
void *doit(void *param){
pthread_t tid = pthread_self();
printf("doit: I am thread %ld\n",tid);
...;

▶ Thread ids are often LARGE numbers (like PIDs)
▶ See pthread_ids.c for full example
▶ Use this technique for debugging, remove for production and

NOT for algorithms
▶ Establish own logical thread IDs if required by passing

parameters to thread worker function

27

Exercise: Odd-Even workers
int count = 0; // global variable all threads are modifiying
pthread_mutex_t count_mutex; // mutex to check/alter count

void *even_work(void *t) {
// Run by TWO even child threads
// increment count only if it is EVEN 5 times in a loop

}
void *odd_work(void *t) {

// Run by TWO odd child threads
// increment count only if it is ODD 5 times in a loop

}
int main(){

int tids[] = {0, 1, 2, 3}; pthread_t threads[4];
pthread_create(&threads[0], NULL, even_work, &(tids[0]));
pthread_create(&threads[1], NULL, odd_work, &(tids[1]));
pthread_create(&threads[2], NULL, even_work, &(tids[2]));
pthread_create(&threads[3], NULL, odd_work, &(tids[3]));
// join threads, WANT: count = 20

}

▶ Propose code which uses a mutex to lock count
▶ Even/Odd threads update only if it is appropriate
▶ What kind of control structure must be used?
▶ What consequences does this have for performance?

28

Answers: Odd-Even workers odds_even_busy.c

Need a loop that
▶ Acquires a lock
▶ Checks count,

proceeds if odd/even
▶ Otherwise release and

try again
Results in busy waiting:
can repeatedly get lock
despite condition of
odd/even not changing

1 int count = 0;
2 pthread_mutex_t count_mutex;
3
4 void *even_work(void *t){
5 int iter = 0;
6 while(iter < 5){
7 pthread_mutex_lock(&count_mutex);
8 if(count % 2 == 0){ // check if even
9 count++; // yup: incr
10 iter++; // progress
11 }
12 pthread_mutex_unlock(&count_mutex);
13 }
14 return NULL;
15 }

29

Condition Variables

▶ Major limitation for locks: can only lock/unlock (duh?)
▶ Frequently want to check shared resource, take action only

under specific conditions associated with resource
▶ Some work is available
▶ Two utensils are immediately available
▶ It is this threads ’turn’ to go

▶ Mutex on its own is ill-suited for this problem:
“Poll” in a loop
▶ Lock variables indicating condition
▶ Check condition
▶ Break from loop if condition is true
▶ Unlock and try again if not true

▶ This “loop-lock” creates unneeded contention for locks
▶ For this, condition variables or monitors are often used

30

Condition Variable Operations
▶ Condition variables would be more appropriately named

notification queue
▶ Always operate in conjunction with a mutex
▶ Threads acquire mutex, check condition, block if condition is

unfavorable, get notified of changes, automatically relock
mutex on wakeup

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t attr);
int pthread_cond_destroy(pthread_cond_t *cond);
// Inititalize and destroy

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
// atomically release mutex and block/sleep until notified that
// given condition has changed

int pthread_cond_signal(pthread_cond_t *cond);
// wake up a single thread waiting on the given condition
// woken up thread automatically locks the mutex specified
// in pthread_cond_wait()

int pthread_cond_broadcast(pthread_cond_t *cond);
// wake up all threads waiting on the given condition
// woken up threads automatically lock the mutex specified
// when it is their "turn"

31

Odds/Evens with Condition Variables
▶ odds_evens_condvar.c
▶ Worker loop now uses

pthread_cond_wait()
▶ Blocks and gets notification

of changes to count
▶ Threads call

pthread_cond_broadcast()
to wake up other threads
when count changes: no
busy lock/unlock while
waiting

▶ Question: Why would using
pthread_cond_signal()
to wake up a single thread
not work in this program?

1 int count = 0;
2 pthread_mutex_t count_mutex;
3 pthread_cond_t count_condv;
4
5 void *even_work(void *t) {
6 int tid = *((int *) t);
7 for(int i=0; i<THREAD_ITERS; i++){
8 pthread_mutex_lock(&count_mutex);
9 while(count % 2 != 0){

10 pthread_cond_wait(&count_condv,
11 &count_mutex);
12 }
13 count++;
14 pthread_mutex_unlock(&count_mutex);
15 pthread_cond_broadcast(&count_condv);
16 }
17 return NULL;
18 }

32

Bounded Buffer: Classic Model Problem

Source: Producer Consumer Problem C Program, by
Tushar Soni, Coding Alpha

▶ Shared, fixed sized buffer of
items

▶ Multiple threads/processes
acting on buffer

▶ Producers add items to buffer
if space available

▶ Consumers remove from buffer
if items present

▶ Lock buffer to check/alter it
▶ Lock-only solution involves

repeated lock/discard
Producer A locks, no space, unlocks
Producer B locks, no space, unlocks
Producer A locks, no space, unlocks
Producer B locks, no space, unlocks
...

▶ CondVars add efficiency
through notification changes
Producer A locks, no space, sleeps
Producer B locks, no space, sleeps
...
Consumer C locks, removes, signals
Producer A locks, adds, unlocks
... 33

http://www.codingalpha.com/producer-consumer-problem-c-program/
http://www.codingalpha.com/producer-consumer-problem-c-program/

Exercise: Lab 12 Spell Checker

1. Describe how Lab 12 was a producer/consumer problem:
what was producing and what was consuming?

2. How were producers/consumers coordinated in lab 12?
3. In the efficient solution, how many condition variables were

there and what did they signify?

34

Answers: Lab 12 Spell Checker
1. Describe how Lab 12 was a producer/consumer problem:

what was producing and what was consuming?
One thread was “producing” words to check by reading from
standard input. Another thread was “consuming” by checking
the spelling of those words.

2. How were producers/consumers coordinated in lab 12?
All words were placed in an array with queue-like semantics. If
the array was full, the reading thread would block. If the array
was empty, the spell checking thread could not do any work
and might “spin”.

3. In the efficient solution, how many condition variables were
there and what did they signify?
The condition variable version used 2 condition variables. One
CV indicated that the array was NOT Full and the other
indicated the array was NOT Empty.

35

Exercise: Reentrant?

▶ Recall the meaning of reentrant
▶ Describe dangerous place to call non-reentrant functions
▶ What are some notable non-reentrant functions?
▶ Does this have play in our current discussion of threads?

36

Reentrant and Thread-Safe
▶ A variety of VERY useful functions are non-reentrant, notably

malloc() / free()
▶ Use some global state manipulate the heap
▶ Dangerous to call these during a signal handler as they are

not async-signal-safe
▶ However, many of these are thread-safe: can be called from

multiple threads safely (MT-Safe for Muti-Thread Safe)
▶ This is good as it means multiple threads can allocate/free

memory safely which would be close to crippling if not allowed
▶ Check manual pages for library/system calls you plan to use
▶ Q: Prof Kauffman: how can something be thread-safe but not

re-entrant?
▶ A: I’ll give 5 cards to someone who can put up a good Piazza

post explaining this by next class. There’s a lot of
StackOverflow to read and I’ve got a project to get ready for
you.

37

Mixing Processes and Threads
▶ You can mix IPC and Threads if you hate yourself enough.

Dealing with signals can be complicated even with a
process-based paradigm. Introducing threads into the pic-
ture makes things even more complicated.
– Stevens/Rago Ch 12.8

▶ Strongly suggest you examine Stevens and Rago 12.8-12.10 to
find out the following pitfalls:

▶ Threads have individual signal masks but share signal
disposition (!?)

▶ Calling fork() from a thread creates a new process with all
the locks/mutexes of the parent but only one thread (!?)

▶ Usually implement a pthread_atfork() handler for this
▶ Multiple threads should use pread() / pwrite() to

read/write from specific offsets; ensure that they do not step
on each other’s I/O calls

38

https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them

Are they really so different?
▶ Unix standards strongly distinguish between threads and

processes: different system calls, sharing, etc.
▶ Due to their similarities, you should be skeptical of this

distinction as smart+lazy OS implementers can exploit it:
Linux uses a 1-1 threading model, with (to the kernel) no
distinction between processes and threads – everything is
simply a runnable task.
On Linux, the system call clone() clones a task, with a
configurable level of sharing…
▶ fork() calls clone(least sharing) and
▶ pthread_create() calls clone(most sharing)

– Ryan Emerle, SO:“Threads vs Processes in Linux”

The “1-1” model is widely used (Linux, BSD, Windows(?)) but
conventions vary between OSs: check your implementation for
details

39

https://stackoverflow.com/questions/807506/threads-vs-processes-in-linux

Lightweight Threads of Various Colors
▶ Pthreads are (almost) guaranteed to interact with the OS
▶ On Linux, a Pthread is a “schedulable” entity which is

automatically given time on the CPU by the scheduler
▶ Other kinds of threads exist with different properties with

various names, notably lightweight / green threads
Green threads are threads that are scheduled by a runtime
library or virtual machine (VM) instead of natively by the
underlying operating system (OS).
– Wikip: Green Threads

▶ Lightweight/Green thread library usually means OS only sees
a single process

▶ Process itself must manage its internal threads with its own
scheduler / yield semantics
▶ Advantage: Fast startup :-D
▶ Drawback: No parallelism :-(

40

https://en.wikipedia.org/wiki/Green_threads

Exercise: Processes vs Threads

Processes when…
Identify some obvious signs your application should you use
processes vs…

Threads when…
Identify some obvious signs your application should you use threads
instead

41

Answers: Processes vs Threads

Processes when…
▶ Limited amount of sharing needed, file or single block of

memory
▶ Want ability to monitor/manage/kill distinct tasks with

standard OS tools
▶ Plan to make use of signals in any appreciable way

Threads when…
▶ Tasks must share a lot of data
▶ Likely that won’t need to individually monitor tasks
▶ Absolutely need fastest possible startup of subtasks

42

End Message: Threads are not a first choice

▶ Managing concurrency is hard
▶ Separate processes provide one means to do so, often a good

start as defaults to nothing shared
▶ Performance benefits of threads come with MANY

disadvantages and pitfalls
▶ If forced to use threads, consider design carefully
▶ If possible, use a higher-level thread manager like OpenMP,

well-suited for parallelizing loops for worker threads
▶ Avoid mixing threads/IPC if possible
▶ Prepare for a tough slog…

43

https://en.wikipedia.org/wiki/OpenMP

