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ABSTRACT

To reduce the development costs, IoT vendors tend to construct
IoT kernels by customizing the Linux kernel. Code pruning is com-
mon in this customization process. However, due to the intrinsic
complexity of the Linux kernel and the lack of long-term effective
maintenance, IoT vendors maymistakenly delete necessary security
operations in the pruning process, which leads to various bugs such
as memory leakage and NULL pointer dereference. Yet detecting
bugs caused by code pruning in IoT kernels is difficult. Specifically,
(1) a significant structural change makes precisely locating the
deleted security operations (𝐷𝑆𝑂) difficult, and (2) inferring the
security impact of a 𝐷𝑆𝑂 is not trivial since it requires complex
semantic understanding, including the developing logic and the
context of the corresponding IoT kernel.

In this paper, we present CPscan, a system for automatically
detecting bugs caused by code pruning in IoT kernels. First, using
a new graph-based approach that iteratively conducts a structure-
aware basic block matching, CPscan can precisely and efficiently
identify the 𝐷𝑆𝑂s in IoT kernels. Then, CPscan infers the security
impact of a 𝐷𝑆𝑂 by comparing the bounded use chains (where
and how a variable is used within potentially influenced code seg-
ments) of the security-critical variable associated with it. Specifi-
cally, CPscan reports the deletion of a security operation as vul-
nerable if the bounded use chain of the associated security-critical
variable remains the same before and after the deletion. This is
because the unchanged uses of a security-critical variable likely
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need the security operation, and removing it may have security
impacts. The experimental results on 28 IoT kernels from 10 popular
IoT vendors show that CPscan is able to identify 3,193 𝐷𝑆𝑂s and
detect 114 new bugs with a reasonably low false-positive rate. Many
such bugs tend to have a long latent period (up to 9 years and 5
months). We believe CPscan paves a way for eliminating the bugs
introduced by code pruning in IoT kernels. We will open-source
CPscan to facilitate further research.
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1 INTRODUCTION

As the core of IoT devices, IoT kernels play an important role in
ensuring the security, reliability, and stability of IoT devices. How-
ever, for tremendous device vendors, the development of a secure,
reliable, stable, and efficient kernel requires high expertise costs
and long development cycles. Therefore, massive downstream IoT
vendors, e.g., ASUSWRT [1] and NETGEAR [8], tend to adopt the
Linux kernel in billions of their commodity devices.

During the practical adoptions, nearly all IoT vendors customize
the Linux kernel for their own needs by removing/adding code seg-
ments or using non-standard building configurations [26]. In the
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Table 1: The third-party customization on Linux kernel.

ID

IoT

Vendor

IoT

Kernel

Customized

Files

Customized

Funcs

1 DD-WRT universal-3.5.7 2,254 13,779
2 DD-WRT universal-3.10.108 661 3,306
3 DD-WRT universal-3.18.140 764 3,871
4 DD-WRT universal-4.4.198 642 3,615
5 DD-WRT universal-4.14.151 700 3,123
6 ASUSWRT Asuswrt-rt-6.x.4708 742 808
7 ASUSWRT Asuswrt-rt-7.14.114.x 740 802
8 ASUSWRT Asuswrt-rt-7.x.main 740 807
9 TUYA tuya-3.10 352 2,648
10 TUYA tuya-4.9 177 556
11 TUYA hisi3518e_v300 177 766
12 TUYA tuya-4.1.0 309 356
13 NETGEAR A90-620025 706 1,508
14 NETGEAR VER_01.00.24 211 327
15 NETGEAR C6300BD_LxG1.0.10 118 634
16 NETGEAR R7450_AC2600 825 3,151
17 NETGEAR R6700v2_R6800 828 3,232
18 TPLink Archer-AX20 490 3,649
19 TPLink Archer-AX6000 425 2,391
20 TPLink Archer-AX11000 425 2,408
21 TPLink KC200 413 1,218
22 DLink DCS-T2132 1,017 1,018
23 DLink DAP-X2850 1,094 4,247
24 QNAP Qhora 1,264 5,213
25 QNAP Turbo 2,947 4,726
26 Arris DCX4220 315 1,574
27 Level One WAC-2003 289 611
28 Linksys E8450 1,540 4,198

Total 21,165 74,542

customization process, considering the limited hardware and sys-
tem resources of IoT devices, IoT vendors tend to delete “irrelevant”
code segments from the Linux kernel to save computation power.
Specifically, as shown in Table 1, thousands of source files are mod-
ified by directly deleting code lines. In general, most code pruning
(code line deletions) performed by IoT vendors is reasonable, which
satisfies the various needs of different downstream IoT kernels.
However, due to the intrinsic complexity of the Linux kernel and
the lack of long-term effective maintenance, some code pruning
becomes unreliable and insecure. Specifically, many necessary se-
curity operations, including security checks, variable initializations,
and resource-release operations, are mistakenly deleted, introduc-
ing various security bugs (memory leakage, denial of service, and
NULL pointer dereference) that can affect the security and reliabil-
ity of the whole IoT kernel. For instance, Figure 1 shows a concrete
example of mistakenly deleting a security check (lines 6 - 7) in the
kernel of an IoT router. This NULL pointer check ensures that𝑚𝑠𝑔

cannot be NULL when used in the subsequent code segment (lines
8 - 9). Without this check,𝑚𝑠𝑔 can reach an error state (being a
NULL pointer) and cause a NULL pointer dereference. The dele-
tion of security operations can make IoT kernels unreliable and
insecure. Moreover, the resulting bugs will affect a large number
of widespread IoT devices. Therefore, there is an urgent need for
a practical approach to detect the bugs caused by code pruning in
downstream IoT kernels.

To address this problem, it is intuitive to use state-of-the-art
detectors to discover bugs in IoT kernels. Indeed, researchers have
proposed many effective approaches to detect bugs in the Linux

1 / ∗ d r i v e r s / char / n_gsm . c ∗ /
2 s t a t i c vo id g sm_con t r o l _ r ep l y ( s t r u c t gsm_mux ∗ gsm , . . . ) {
3 s t r u c t gsm_msg ∗msg ;
4 msg = g sm_da t a _ a l l o c ( gsm , 0 , d l en + 2 , gsm−> f t y p e ) ;
5 / / The d e l e t e d NULL po i n t e r check
6 − i f ( msg == NULL )
7 − r e t u r n ;
8 msg−>da t a [ 0 ] = ( cmd & 0xFE ) << 1 | EA ;
9 msg−>da t a [ 1 ] = ( d l en << 1 ) | EA ;
10 }

Figure 1: A deleted security check in an IoT kernel found by

CPscan. The missed NULL pointer check against security-

critical variable𝑚𝑠𝑔 leads to a NULL pointer dereference.

kernel. Specifically, to detect 0-day bugs, UniSan [34], MemorySan-
itizer [46], Crix [33], PeX [58], Hector [42], and HFL [28] are pro-
posed to report security bugs caused by missing security checks,
missing variable initializations, and missing resource-release oper-
ations. However, these approaches are insufficient for our problem
because they can only find bugs under certain conditions [33, 34,
42, 56, 58] or lead to heavy performance overhead when applied to
complex IoT kernels [28, 46]. For instance, Crix [33] and PeX [58]
are insufficient to detect missing security-check bugs caused by
code pruning because they employ cross-checking, which has an
inherent limitation: they must find enough similar cases for cross-
checking. Hector [42] only targets the detection of error-handling
code. To pinpoint N-day bugs in IoT kernels, Gemini [54], Ge-
nius [22], and DeepBinDiff [19] perform code similarity detection
by referencing the known bugs. However, the bugs caused by code
pruning are mostly new bugs. In summary, detecting security bugs
caused by code pruning in IoT kernels remains an open problem.

By intuition, a proper way of solving this problem can be divid-
ing it into two concrete sub-problems—❶ precisely locating which
security operations are deleted in the downstream IoT kernels and
❷ analyzing whether each deleted security operation (𝐷𝑆𝑂) intro-
duces security risks. For instance, as shown in Figure 1, we need to
precisely and efficiently locate the 𝐷𝑆𝑂 (line 6) and then analyze
the security impact of it. For solving the first problem, state-of-the-
art approaches [6, 11, 19, 20, 22, 43, 54, 61] are inadequate. First,
existing approaches [19, 22, 43, 54, 61] are non-deterministic [47],
which only report a similarity score, but fail to report the exact
code deletions. Second, the deterministic methods [6, 11, 20] also
fail to precisely locate code pruning in IoT kernels because the
structure of code segments may have been significantly changed
during the customization process [26]. For instance, Unix-Diff [11]
mistakenly reports simple code segment movements as code ad-
ditions and deletions (as shown in §A.1). However, code segment
movements are quite common in the customization process. The
tree-based approach GumTree [20] uses abstract syntax trees (AST)
to detect the added and deleted lines. However, for complicated
code pruning, finding a correct AST match is difficult, which re-
sults in poor precision and recall. When comparing LLVM IR files,
LLVM Diff [6] is very sensitive to CFG changes. Therefore, a signif-
icant CFG change in IoT kernels can cause massive false positives
and false negatives. At present, precisely locating the 𝐷𝑆𝑂s in an
IoT kernel with significant structural changes is still a challenging
problem.
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For the second problem, the removal of a security operation may
not be a bug if it is indeed unnecessary. To determine if a 𝐷𝑆𝑂 is
still needed in an IoT kernel, we need to figure out whether the
relevant code that a security operation protects is still reachable
without the corresponding security operation. If so, the security-
critical variable associated with the 𝐷𝑆𝑂 may enter an erroneous
state and hence cause bugs. In summary, we need to answer the
following questions—in the Linux kernel, which security-critical
variable is validated, freed, or initialized by the corresponding secu-
rity operation? does this security-critical variable still exist in the
corresponding IoT kernel? how and where is this security-critical
variable used in the subsequent code segments? which potential
error state can this security-critical variable reach without the corre-
sponding security operations? However, it is hard to automatically
answer these questions because security operations, the associated
security-critical variable, and its uses are highly diverse in form. It
is difficult to analyze them without field expertise, not to mention
using universal rules/patterns to summarize them. Therefore, auto-
matically determining the security impact of a 𝐷𝑆𝑂 requires complex
semantic understanding, which is not trivial.

To address the above problems, in this paper, we present CPscan,
a system that overcomes the aforementioned two challenges with
multiple novel techniques. For problem ❶, we use the idea of graph
matching to perform precise code pruning identification because
graph comparison can capture not only structural information but
also semantic information [39]. However, the closely related graph
matching approaches such as McGregor [36] and Koch [29] are
unsuitable for our problem. Their limitations are twofold. First,
they can only map the exact same basic blocks. Second, they suffer
from a high computational complexity [39] Therefore, we need an
efficient and precise code differential analysis to locate the 𝐷𝑆𝑂s in
IoT kernels. To achieve this goal, we manually identify the 𝐷𝑆𝑂s
in two randomly selected IoT kernels to obtain heuristics. From
our empirical analysis, we observe that the security operations
contained in each basic block are distinguishable and hence can
be used to form a high-quality seed pool of the matched basic
blocks. In addition, two basic blocks are highly possible similar if
they point to or from the matched basic blocks in the seed pool.
According to these observations, we propose a new deterministic
graph matching approach. First, we represent the paired functions
in the Linux kernel and an IoT kernel, as attributed control flow
graphs (ACFG) [54]. Then CPscan performs an initial fast basic
block matching to form a seed pool of the matched basic blocks by
computing the similarity score between two basic blocks according
to the highly distinguishable attributes (security operations) within
each basic block. Finally, CPscan iteratively performs a structure-
aware basic block matching on top of the seed pool, during which
CPscan prioritizes the match of the neighbor nodes of the matched
basic blocks in the seed pool. In this way, CPscan achieves both
high precision and efficiency.

To solve problem ❷, CPscan employs inconsistency analysis
to infer the security impact of a 𝐷𝑆𝑂 . Specifically, we take a con-
servative approach by comparing the bounded use chains (where
and how a variable is used within the potentially influenced code
segments) of the security-critical variable associated with it. The
intuition is that in the potentially influenced code segments of a
security operation (e.g., the successor branches of a security check),

suppose the security-critical variable protected, freed, or initialized
by the security operation has the same uses as that in the original
Linux kernel. In that case, we expect that the security operation is
still necessary, and removing it will likely have a security impact.
For example, in Figure 1, the bounded use chain of𝑚𝑠𝑔 (lines 8 - 9)
remains the same in the IoT kernel. Therefore, the security check
(lines 6 - 7) is necessary, which prevents𝑚𝑠𝑔 from being used as a
NULL pointer and causing NULL pointer deference. With the above
techniques, we can automatically infer if a security operation’s
deletion brings in security risks.

We implement CPscan on top of LLVM [7] as multiple static-
analysis passes and evaluate it on 28 IoT kernels from 10 popular
vendors in about 9 hours. CPscan features high accuracy and effi-
ciency in locating 𝐷𝑆𝑂s in IoT kernel. Particularly, CPscan’s pre-
cision of locating 𝐷𝑆𝑂s is about 85%. Besides, CPscan’s efficiency
in locating 𝐷𝑆𝑂s is 400 times faster than state-of-the-art graph
matching approaches. In total, CPscan locates 3,193 𝐷𝑆𝑂s. After
automatically inferring their security impact, CPscan reports 359
potentially vulnerable deletions of security operations. By further
manual analysis, we confirm 114 new bugs, 10 of which have been
confirmed by the corresponding IoT developers. These bugs, which
have been in the IoT kernels for a long time (up to 9 years and 5
months), can lead to critical security risks, including NULL pointer
deference, memory leakage, and denial of service. The experimen-
tal results show that CPscan is accurate and effective in finding
bugs caused by code pruning in IoT kernels. Overall, we make the
following contributions:
• Deep understanding of the bugs caused by code prun-

ing in IoT kernels. We perform the first comprehensive
study on code pruning with a large corpus of real-world IoT
kernels. We find that various security operations, includ-
ing security checks, variable initializations, and resource-
release operations, are mistakenly deleted during the code
customization process by IoT vendors.
• New techniques. We propose a new deterministic graph
matching algorithm to precisely identify the 𝐷𝑆𝑂s in IoT
kernels by iteratively performing a structure-aware basic
block matching. Furthermore, we solve the problem of secu-
rity impact inference by comparing the bounded use chains
of the security-critical variable associated with a𝐷𝑆𝑂 before
and after the pruning.
• Comprehensive evaluation.We developCPscan1, the first
system to perform highly reliable bug detection introduced
by code pruning in IoT kernels. With CPscan, we find 114
new bugs in 28 IoT kernels from 10 popular IoT vendors,
which affect billions of devices. These bugs can lead to criti-
cal security issues such as NULL pointer deference, memory
leakage, and denial of service.

2 PROBLEM UNDERSTANDING

2.1 Code Pruning in IoT kernels

Downstream IoT vendors widely customize the Linux kernel, hence
code pruning is prevalent in IoT kernels to achieve better perfor-
mance and a lower resource consumption. To better reveal this fact,

1https://github.com/zjuArclab/CPscan.
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Table 2: The security impact of missing security operations.

Missing Security Operation Security Impact

Security Check Denial of service, NULL pointer dereference,
Out-of-bound access, System crashes

Variable Initialization Unintialized use
Resource Release Resource leakage, Denial of service

we conduct an evaluation of code customization on 28 Linux-based
IoT kernels from 10 popular IoT vendors. Specifically, we collect
the source code of each IoT kernel and the corresponding Linux
kernel. We then pair the functions in an IoT kernel and Linux kernel
according to their function name and filter out the function pairs
with no code changes by comparing their hash values. Finally, we
count the number of the source files and functions that IoT vendors
customized. As shown in Table 1, code customization is common in
the investigated IoT kernels. All the studied IoT vendors customize
the Linux kernel. Among them, DD-WRT [3] has performed the
most customization. In total, there exists code customization in over
70,000 functions, which belong to the key subsystems of an IoT
kernel, such as file systems, network software, and device drivers.
Considering that obtaining precise code deletions is known as a
complex task [20], we randomly select 500 customized functions
and manually check them. Our analysis shows that 429 (85.8%) of
them contain code pruning, which indicates that code pruning is
prevalent in IoT kernels. Next, we elaborate on the security impact
of the deleted code in these functions.

2.2 Security Impact of Code Pruning

The 𝐷𝑆𝑂s have a significant security impact on IoT kernels. In
this work, CPscan mainly investigates three kinds of security op-
erations that are particularly common (including security checks,
variable initializations, and resource-release operations, as sum-
marized in Table 2) and missing them can cause great security
risks [48, 51]. Specifically, missing security checks can lead to inse-
cure and unreliable running states of an OS, which further results
in denial of service, NULL pointer deference, out-of-bound access,
and so on. Uninitialized memory can store arbitrary values that
are previously stored in it. Thus, missing initialization results in
uninitialized use. If an uninitialized variable is used to control the
execution flow of a program, e.g., the use of an uninitialized func-
tion pointer, the control flow of this program can potentially be
hijacked. Resource-release operations in error handling code are
usually used to recover a system from an error state. Deleting a
needed resource-release operation may cause resource leakage, de-
nial of service, and so on. More details about the security impact of
the bugs found by CPscan is described in Table 13 in Appendix A.

2.3 Problem Scope

Our evaluation demonstrates the prevalence of code pruning in
downstream IoT kernels. Considering its severe potential security
risks, in this work, we focus on detecting the security bugs caused
by code pruning in IoT kernels. Particularly, CPscan is designed
only to identify the 𝐷𝑆𝑂s rather than all the deleted lines of code
in IoT kernels. In this research, we have the following assumptions.
First, the downstream IoT vendors are not intentionally malicious
but may mistakenly remove some security operations in IoT kernels.

Second, the customers of CPscan include vendors, the providers
of security services, or the users of downstream IoT kernels. Third,
the source code of an IoT kernel is available for CPscan, which is
reasonable, as vendors should release their source code according
to the license of Linux.

3 DESIGN OF CPSCAN

3.1 Workflow of CPscan

To detect bugs caused by code pruning in IoT kernels, CPscan
first locates the 𝐷𝑆𝑂s via a structure-aware graph matching. Then,
it performs security impact inference by comparing the bounded
use chains of the security-critical variable associated with a 𝐷𝑆𝑂 .
We develop CPscan as an easy-to-use system, whose workflow is
shown in Figure 2. CPscan consists of three phases: (1) preprocess-
ing phase, which prepares the required graph input of our graph
matching method; (2) code pruning locating phase, which utilizes
the graphs generated in phase one to perform a structure-aware
graph matching, obtains the maximum common subgraph (MCS),
and locates the𝐷𝑆𝑂s; and (3) security impact inferring phase, which
performs inconsistency analysis to infer the security impact of the
𝐷𝑆𝑂s obtained in phase two. In the following, we elaborate on the
design of each phase.

3.2 Preprocessing

Given the source code of kernels, CPscan aims to generate suitable
graphs for the following structure-aware graph matching. Inspired
by Gemini [54] and Genius [22], CPscan utilizes an attributed con-
trol flow graph (ACFG), a widely used representation in program
analysis, to perform graph matching. In a traditional ACFG, the
graph structure is the same as the control flow graph (CFG), and
the vertexes are the basic blocks within a function. Each vertex is
labeled with a set of attributes. However, the traditional ACFG has
two limitations when used to precisely locate the 𝐷𝑆𝑂s. On the one
hand, the attributes used in a traditional ACFG are coarse-grained.
For instance, the attributes employed by Gemini [54] include the
number of instructions and the number of function calls. It is diffi-
cult to match basic blocks with these unrepresentative attributes.
On the other hand, a traditional ACFG directly uses a CFG as the
graph structure, in which a function is split into basic blocks in a
coarse-grained manner, and hence may cause a high false-positive
and false-negative ratewhen locating the𝐷𝑆𝑂s. For instance, Figure
3(a) and Figure 3(b) show part of two CFGs of a function, in which
basic block 0 is matched with basic block 0′ with high similarity
since they contain many identical attributes. Therefore, the security
check in Figure 3(a) (basic block 1), which should be matched with
that in Figure 3(b) (lines 11 - 13 in basic block 0′), will be mistakenly
reported as a 𝐷𝑆𝑂 (a false positive), because there is no basic block
can be matched with it. To address this problem, according to our
empirical analysis on two randomly chosen IoT kernels, CPscan
employs more fine-grained and representative attributes within
a basic block. Additionally, CPscan further splits a raw CFG in
a fine-grained manner. Next, we introduce the attributes used in
CPscan and how CPscan splits a raw CFG.

Attributes extraction. Basic-block attributes are used to eval-
uate the similarity of two basic blocks. Considering the problem
we solve and prior insightful knowledge in this field [22, 54], the
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%12 = load i32, i32* %__size
%cmp10 = icmp ne i32 %12, 2
br i1 %cmp10, label %if.then3, label %if.end4

1   %useraddr.addr = alloca i8*
2   %__cu_len = alloca i32
3   %retval = alloca i32
4   store i32 8, i32* %__cu_len
5   %1 = load i32, i32* %__cu_len
6   store i32 %1, i32* %__size
7   store i8* %useraddr, i8** %useraddr.addr
8   ...
9   %10 = load i8*, i8** %useraddr.addr
10 %add.ptr = getelementptr i8, i8* %10, i32 8

11 %11 = load i32, i32* %add.ptr
12 %tobool8 = icmp eq i32 %11, 0
13 br i1 %tobool8, label %if.then1, label %if.end2

1   %useraddr.addr = alloca i8*
2   %__cu_len = alloca i32
3   %retval = alloca i32
4   store i32 8, i32* %__cu_len
5   %1 = load i32, i32* %__cu_len
6   store i32 %1, i32* %__size
7   store i8* %useraddr, i8** %useraddr.addr
8   ...
9   %11 = load i8*, i8** %useraddr.addr
10 %add.ptr = getelementptr i8, i8* %11, i32 8

11 %12 = load i32, i32* %__size
12 %cmp11 = icmp ne i32 %12, 2
13 br i1 %cmp11, label %if.then1, label %if.end2

store i32 -22, i32* %retval
br label %return store i32 -14, i32* %retval

br label %return

store i32 -14, i32* %retval
br label %return

Splitting 
points

Match

basic block 0 basic block 0'

basic block 1

(a) Linux kernel (b) IoT kernel

Figure 3: (a) and (b) are part of 𝑒𝑡ℎ𝑡𝑜𝑜𝑙_𝑠𝑒𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 definition

in Linux kernel and IoT kernel, respectively.CPscan divides

one basic block into two at the splitting points.

Table 3: Basic-block attributes used in CPscan.

Type Feature Name

Statistical Attribute

Constant Value
Instruction Sequence
Function Call Sequence
Security Operation
Instruction Distribution

Structural Attribute Neighbor Nodes in MCS

basic-block attributes used in CPscan are obtained according to
our empirical program analysis together with the metrics used in
existing approaches [22, 54]. In this work, CPscan uses two types
of attributes to characterize a basic block: (1) statistical attributes
which describe the local representative characteristics within a
basic block, and (2) structural attributes which show the position
characteristics of a basic block in the whole ACFG. In total, we ex-
tract five types of statistical attributes and one structural attribute as
listed in Table 3. For a basic block, constant value refers to constant
strings, numbers, or other data structures. 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and
𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 call sequence record the order of instructions and func-
tion calls within a basic block, respectively. CPscan identifies three
kinds of 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: security checks, variable initializa-
tions, and resource-release operations. When identifying 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , security checks are identified by locating conditional
statements that sanitize erroneous states. Variable initializations

are recognized by locating operations that zeroing/rewriting the
allocated memory. Resource-release operations are identified by
tracing the empirically determined function calls that free com-
puting resources. 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 records the number of
different types of instructions. 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑀𝐶𝑆 stores the
neighbor nodes that are contained in the𝑀𝐶𝑆 . It is worth noting
that 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑀𝐶𝑆 are dynamically updated during the
matching process. By contrast, other basic-block attributes can be
obtained in the preprocessing phase.

CFG split. Based on the aforementioned analysis on the in-
accurate basic block matching caused by the coarse-grained CFG
splitting, we observe the root cause is that in a CFG, the basic
block that contains a conditional statement may also contain many
other instructions that are not related to this conditional statement.
However, these instructions will influence the match of this con-
ditional statement. Thus, we propose to split them apart with a
fine-grained splitting method. Namely, when generating the CFG
of a function in IR, except for the original branch jumps in a control
flow, CPscan adds a new unconditional jump at the nearest split-
ting point (where the variables in an 𝑖 𝑓 condition are assigned) to
an 𝑖 𝑓 condition. Specifically, the process of CFG split is as follows.
(1) CPscan locates the conditional statement in a basic block. (2)
CPscan identifies the “splitting point”. (3) CPscan splits a basic
block into two basic blocks at the “splitting point”. For instance,
we add new jumps between lines 10 and 11 in both Figure 3(a) and
Figure 3(b). Such fine-grained splitting allows the security check in
basic block 1 in Figure 3(a) to have the opportunity to be matched
with lines 11 - 13 in Figure 3(b). Thus, CPscan can perform a pre-
cise basic block matching. It is worth noting that theoretically, CFG
split can be used in any CFG-based deterministic code differential
analysis regardless of the specific code representation.

3.3 Code Pruning Identification

After obtaining the ACFGs of a function pair,CPscan next performs
a precise graph matching, obtains the𝑀𝐶𝑆 of the paired function,
and finally identifies the 𝐷𝑆𝑂s in IoT kernels. It is worth noting
that code customization in IoT kernels often results in a significant
CFG change, which may divide an original basic block into many
basic blocks. Only performing the one-to-one match (the match of
one basic block to one basic block) may miss many basic block pairs,
causing a high false-positive and false-negative rate. Therefore, to
ensure a precise graph matching, we consider the one-to-one match
and the one-to-many match (the match of one basic block to many
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basic blocks). Particularly, the one-to-many match is bidirectional
in an IoT kernel and Linux kernel.

Inspired by the way developers manually match ACFGs, we
design an efficient and precise graph matching algorithm. For the
one-to-one match, the main idea is that when 𝑀𝐶𝑆 is empty, we
use the basic blocks that contain security operations as seed basic
blocks to guide an initial fast basic block matching. The reason is
that the basic blocks that contain the same security operations are
more likely to be matched. After updating𝑀𝐶𝑆 with the matched
basic block pairs, we utilize𝑀𝐶𝑆 to guide the match of the neighbor
nodes of the already matched basic block pairs. The intuition is
that two basic blocks are highly possible similar if they point to
or from the same matched basic blocks. In this way, most one-to-
one matches in a paired function can be precisely and efficiently
identified. In a one-to-many match, for a basic block that is similar
to N basic blocks, we first carefully construct a new basic block
by linking the N similar basic blocks according to their CFG order

Algorithm 1: The algorithm of locating 𝐷𝑆𝑂s
Input: Two attributed control flow graphs 𝐴𝐶𝐹𝐺𝐿 and

𝐴𝐶𝐹𝐺𝐼 ; Two sets of basic blocks 𝑆𝐵𝐵𝐿 and 𝑆𝐵𝐵𝐼
that contain security operations in 𝐴𝐶𝐹𝐺𝐿 and
𝐴𝐶𝐹𝐺𝐼 , respectively; Two sets of basic blocks 𝐶𝐵𝐵𝐿 ,
𝐶𝐵𝐵𝐼 that do not contain any security operations in
𝐴𝐶𝐹𝐺𝐿 and 𝐴𝐶𝐹𝐺𝐼 , respectively

Output: The𝑀𝐶𝑆 of 𝐴𝐶𝐹𝐺𝐿 and 𝐴𝐶𝐹𝐺𝐼 ; The deleted
security operations 𝐷𝑆𝑂 in 𝐴𝐶𝐹𝐺𝐼

1 CalDSO:

while (!𝑀𝐶𝑆 .Isempty()) do
2 (𝑏𝑏𝐿, 𝑏𝑏𝐼 ) ← 𝑀𝐶𝑆.𝑝𝑜𝑝 ();
3 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿 ← 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑏𝑏𝐿);
4 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐼 ← 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑏𝑏𝐼 );
5 𝑁𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠 =𝑀𝑎𝑡𝑐ℎ(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐿 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐼 );

6 𝑀𝐶𝑆 ← 𝑀𝐶𝑆 ∪ 𝑁𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠;

7 foreach 𝑠𝑏𝑏𝐿 in 𝑆𝐵𝐵𝐿 do

8 foreach 𝑠𝑏𝑏𝐼 in 𝑆𝐵𝐵𝐼 do

9 if GetSimilarity(𝑠𝑏𝑏𝐿 , 𝑠𝑏𝑏𝐼 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

10 𝑀𝐶𝑆 ← 𝑀𝐶𝑆 ∪ (𝑠𝑏𝑏𝐿, 𝑠𝑏𝑏𝐼 );
11 𝐷𝑆𝑂 ← 𝐷𝑆𝑂 ∪𝐺𝑒𝑡𝐷𝑆𝑂 (𝑠𝑏𝑏𝐿, 𝑠𝑏𝑏𝐼 );
12 goto CalDSO;

13 foreach 𝑐𝑏𝑏𝐼 in 𝐶𝐵𝐵𝐼 do

14 if GetSimilarity(𝑠𝑏𝑏𝐿 , 𝑐𝑏𝑏𝐼 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

15 𝑀𝐶𝑆 ← 𝑀𝐶𝑆 ∪ (𝑠𝑏𝑏𝐿, 𝑐𝑏𝑏𝐼 );
16 𝐷𝑆𝑂 ← 𝐷𝑆𝑂 ∪𝐺𝑒𝑡𝐷𝑆𝑂 (𝑠𝑏𝑏𝐿, 𝑐𝑏𝑏𝐼 );
17 goto CalDSO;

18 𝑅𝐵𝐵𝐿 ← 𝐴𝐶𝐹𝐺𝐿 −𝑀𝐶𝑆 ;

19 𝑅𝐵𝐵𝐼 ← 𝐴𝐶𝐹𝐺𝐼 −𝑀𝐶𝑆 ;

20 (𝐿1𝐼𝑁 , 𝐿𝑁 𝐼1) ← 𝑂𝑛𝑒𝑇𝑜𝑀𝑎𝑛𝑦 (𝑅𝐵𝐵𝐿, 𝑅𝐵𝐵𝐼 );
21 (𝑏𝑏𝐿, 𝑁𝑏𝑏𝐼 ) ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑂𝑛𝑒𝑇𝑜𝑂𝑛𝑒 (𝐿1𝐼𝑁 );
22 (𝑁𝑏𝑏𝐿, 𝑏𝑏𝐼 ) ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑂𝑛𝑒𝑇𝑜𝑂𝑛𝑒 (𝐿𝑁 𝐼1);
23 𝑀𝐶𝑆 ← 𝑀𝐶𝑆 ∪ (𝑏𝑏𝐿, 𝑁𝑏𝑏𝐼 ) ∪ (𝑁𝑏𝑏𝐿, 𝑏𝑏𝐼 ) ;
24 𝐷𝑆𝑂 ← 𝐷𝑆𝑂 ∪𝐺𝑒𝑡𝐷𝑆𝑂 (𝑏𝑏𝐿, 𝑁𝑏𝑏𝐼 ) ∪𝐺𝑒𝑡𝐷𝑆𝑂 (𝑁𝑏𝑏𝐿, 𝑏𝑏𝐼 );

and then perform a one-to-one match for the newly constructed
basic block to confirm the correctness of this one-to-many match. If
the similarity of the one-to-one match is lower than the threshold
we define, CPscan reorders the N similar basic blocks and links
them to a new basic block again to repeat the one-to-one match. If
the one-to-one match fails for all the permutations of the N basic
blocks, this match is discarded.

Algorithm 1 shows how we perform the graph matching and
then obtain the𝑀𝐶𝑆 and 𝐷𝑆𝑂 of a function pair. In the beginning,
CPscan divides the basic blocks within an ACFG into two groups:
(1) the sensitive basic blocks (𝑆𝐵𝐵), which contain the basic blocks
that have security operations and serve as the seed set of basic
blocks to be matched in the initial round of match, and (2) the com-
mon basic blocks (𝐶𝐵𝐵) which include the remaining basic blocks
in an ACFG. CPscan first prepares 𝑆𝐵𝐵𝐿 and 𝑆𝐵𝐵𝐼 for a paired
function in the Linux kernel and IoT kennel, respectively. Then,
CPscan transverses each basic block pair (𝑠𝑏𝑏𝐿 , 𝑠𝑏𝑏𝐼 ) in 𝑆𝐵𝐵𝐿 and
𝑆𝐵𝐵𝐼 to perform a fast basic block matching by comparing their
similarity with a threshold 𝜃0, which is set to a high value to ensure
the quality of this initial basic blockmatching. In particular,CPscan
obtains the similarity of two basic blocks by averaging all the sim-
ilarity scores of the attributes within the basic block pair. If the
similarity between 𝑠𝑏𝑏𝐿 and 𝑠𝑏𝑏𝐼 is larger than 𝜃0, CPscan inserts
this basic block pair into𝑀𝐶𝑆 (line 10), compares the instruction
sequences in 𝑠𝑏𝑏𝐿 and 𝑠𝑏𝑏𝐼 to obtain the 𝐷𝑆𝑂s by 𝐺𝑒𝑡𝐷𝑆𝑂 (line
11), and jumps to label𝐶𝑎𝑙𝐷𝑆𝑂 to further match the neighbor basic
blocks of a matched basic block pair (lines 2 - 6). However, if 𝑠𝑏𝑏𝐿
cannot be matched with any node in 𝑆𝐵𝐵𝐼 , CPscan continues to
match it with the basic blocks in 𝐶𝐵𝐵𝐼 (lines 13 - 17).

For the remaining basic blocks that are not matched in the one-
to-one match, CPscan performs a one-to-many match (lines 18 -
22). Specifically, for each node 𝑟𝑏𝑏𝐿 in 𝑅𝐵𝐵𝐿 (the remaining un-
matched basic blocks in𝐴𝐶𝐹𝐺𝐿), the function𝑂𝑛𝑒𝑇𝑜𝑀𝑎𝑛𝑦 (line 20)
collects the basic blocks, whose similarity with 𝑟𝑏𝑏𝐿 is higher than
𝜃1, in 𝑅𝐵𝐵𝐼 . 𝜃1 is defined to be relatively lower than 𝜃0, indicating
that when the similarity of a basic block pair is higher than 𝜃1
and lower than 𝜃0, these two basic blocks are relatively similar,
but CPscan cannot match them in a one-to-one manner. After bi-
directly conducting the above collections for each node in 𝑅𝐵𝐵𝐿 and
𝑅𝐵𝐵𝐼 , the function 𝑂𝑛𝑒𝑇𝑜𝑀𝑎𝑛𝑦 (line 20) returns 𝐿1𝐼𝑁 (the basic
block pairs that match one basic block in the Linux kernel with N
basic blocks in the IoT kernel) and 𝐿𝑁 𝐼1 (the basic block pairs that
match N basic blocks in the Linux kernel with one basic block in
the IoT kernel). Then, by the function 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑂𝑛𝑒𝑇𝑜𝑂𝑛𝑒 (line
21), CPscan constructs a new basic block by linking the N basic
blocks according to their CFG order and performs the one-to-one
match for the newly generated basic block. If the similarity of the
one-to-one match is higher than 𝜃0, function𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑂𝑛𝑒𝑇𝑜𝑂𝑛𝑒
(line 21) returns a newly matched pair. Consequently, CPscan can
obtain the resulting𝑀𝐶𝑆 and 𝐷𝑆𝑂 (lines 23 - 24).

3.4 Security Impact Inference

After obtaining the 𝑀𝐶𝑆 and 𝐷𝑆𝑂s of a function pair in an IoT
kernel and Linux kernel, CPscan should perform security impact
inference for all the 𝐷𝑆𝑂s. However, the removal of a security
operation may not introduce security bugs because the security
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Figure 4: (1) Identify the security-critical variable 𝑎. (2) Ob-

tain the use chain of 𝑎. (3) check which use is contained in

the maximum common subgraph; (4) Find the correspond-

ing paired basic block 3′ in IoT kernel. (5) Locate the identi-

cal use 𝑢𝑠𝑒 ′2. (6) Identify the corresponding security-critical

variable 𝑎′ in IoT kernel.

operation may no longer be needed or have been changed in the IoT
kernel. Therefore, to improve the accuracy of CPscan and decrease
potential false positives, it is unnecessary for CPscan to further
consider those reasonable DSOs. Based on our observation, those
reasonable DSOs are mainly caused by three factors: legitimate
program patch, code encapsulation (syntactically similar code that is
moved to a new function), and code re-implementation (syntactically
dissimilar code segments which implement the same functionality).
Therefore, CPscan first filters out the 𝐷𝑆𝑂s caused by the first two
factors mentioned above to decrease false positives. For the third
factor, we point out that code re-implementation is out of the scope
of this work, which is known as a difficult task that needs further
investigation [43]. Therefore, CPscan currently cannot filter out
the 𝐷𝑆𝑂s caused by code re-implementation. Then, CPscan needs
to infer the security impact of the remaining 𝐷𝑆𝑂s. In this step, if
the security-critical variable has the same uses as that in the original
Linux kernel, we expect that the security operation is still necessary,
and removing it will likely have a security impact. Therefore, we
conservatively determine the impact of a 𝐷𝑆𝑂 by comparing the
bounded use chains of the security-critical variable associated with
it. Next, we elaborate on how we recognize program patch and code
encapsulation, find the security-critical variable, and compare the
bounded use chains of the security-critical variable.

Program patch and code encapsulation recognition. As
discussed before, the 𝐷𝑆𝑂s caused by legitimate program patch
and code encapsulation are reasonable and do not need further
security analysis. Therefore, to filter out reasonable 𝐷𝑆𝑂s caused
by program patch, CPscan first obtains the patch information of
the corresponding function from the git commit information of
the Linux kernel [4]. Then, CPscan confirms whether a 𝐷𝑆𝑂 is
contained in a patch through a text-based comparison method.
Specifically, CPscan searches each code line in a patch to check if
the 𝐷𝑆𝑂 is included in this patch. If so, CPscan ceases to analyze
this𝐷𝑆𝑂 . Then, CPscan recognizes code encapsulation by compar-
ing the deleted code sequence to the code sequence implemented
in the corresponding new function. If the edit distance [41] of these
two code sequences is small (no larger than 𝜃𝑒𝑑 , which indicates

1 / ∗ d r i v e r s / mtd / sp i −nor / h i s i − s f c . c ∗ /
2 s t a t i c i n t h i s i _ s p i _ n o r _ p r o b e ( s t r u c t p l a t f o rm_d e v i c e ∗ pdev ) {
3 + s t r u c t h i s i _ fmc ∗ fmc = dev_ge t _d rvda t a ( dev−>pa r en t ) ;
4 + host −> r egba s e = fmc−> regba s e ;
5 − host −> regba s e = devm_ioremap_resource ( dev , r e s ) ;
6 − i f ( IS_ERR ( host −> r egba s e ) )
7 − r e t u r n PTR_ERR ( host −> r egba s e ) ;
8 }

Figure 5: A deleted security check in an IoT kernel, in which

the source of security-critical variableℎ𝑜𝑠𝑡->𝑟𝑒𝑔𝑏𝑎𝑠𝑒 has been

changed from the return value of a function call to a mem-

ber of 𝑓𝑚𝑐.

these two code sequences are syntactically similar) and the original
𝐷𝑆𝑂 remains in the new function, this 𝐷𝑆𝑂 also does not need
further analysis.

Security-critical variable determination. This step aims to
find the paired security-critical variables associated with a 𝐷𝑆𝑂
in an IoT kernel and Linux kernel. However, the security-critical
variable, which is initialized, freed, or validated by a security opera-
tion, appears in diverse forms in IR. For instance, a security-critical
variable can be the parameter or return value of a function call, a
global variable, or a Macro. Therefore, we first manually identify
several paired security-critical variables for the𝐷𝑆𝑂s to summarize
a suitable pattern to determine them. From our empirical analy-
sis on two randomly selected IoT kernels, CPscan can identify a
security-critical variable according to the following two insights:
(1) a security-critical variable is closely associated with a 𝐷𝑆𝑂 and
is usually the parameter or the return value of this 𝐷𝑆𝑂 or the
propagation of them; and (2) the security-critical variable should
also have subsequent uses in the function, which can be utilized to
determine the security impact of the corresponding 𝐷𝑆𝑂 .

CPscan first collects the security-critical variable for a 𝐷𝑆𝑂 in
the Linux kernel. Next, CPscan needs to find the corresponding
security-critical variable in the IoT kernel. Unfortunately, the secu-
rity operation has been deleted in the IoT kernel. We do not know
which variable in the IoT kernel should be matched with that in
the Linux kernel. To address this problem, CPscan utilizes the pre-
viously obtained 𝑀𝐶𝑆 to infer the corresponding security-critical
variable in the IoT kernel. Specifically, as shown in Figure 4, 𝑖𝑐𝑚𝑝 𝑒𝑞

𝑎, 0 is a 𝐷𝑆𝑂 in IoT kernel. 𝑎 is the security-critical variable in the
Linux kernel. CPscan first obtains the use chain of 𝑎. Then CPscan
transverses the𝑀𝐶𝑆 and finds that basic block 3 in the Linux kernel
is matched with basic block 3′ in the IoT kernel. Through basic
block 3′, CPscan gets the identical use of 𝑎 in basic block 3′ and
finally obtains the corresponding security-critical variable 𝑎′ in the
IoT kernel. After obtaining the matched security-critical variables,
we need to confirm that their sources (where a critical variable
propagates from) are identical. Otherwise, the IoT kernel may not
need the 𝐷𝑆𝑂 . For instance, as shown in Figure 5, a NULL pointer
check (lines 6 - 7) is deleted in ℎ𝑖𝑠𝑖_𝑠𝑝𝑖_𝑛𝑜𝑟_𝑝𝑟𝑜𝑏𝑒 , which is rea-
sonable and does not need further analysis since the source of the
security-critical variable ℎ𝑜𝑠𝑡->𝑟𝑒𝑔𝑏𝑎𝑠𝑒 has been changed from the
return value of a function call to a member of another variable.
Further manual analysis shows that the newly added function call
𝑑𝑒𝑣_𝑔𝑒𝑡_𝑑𝑟𝑣𝑑𝑎𝑡𝑎 has performed this NULL pointer check. Now, for
each 𝐷𝑆𝑂 , CPscan maintains a mapping, which stores the paired
security-critical variables in an IoT kernel and Linux kernel.
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Bounded use chain generation and comparison. After ob-
taining the paired security-critical variables of a 𝐷𝑆𝑂 , a straightfor-
ward method of security impact inference is performing inconsis-
tency analysis on all the uses of a security-critical variable. However,
significant code customization in an IoT kernel is highly likely to
change the use chain of a variable. Therefore, comparing all the uses
of a security-critical variable might result in a high false-negative
rate for bug detection because many irrelevant use changes are also
compared. To address this problem, we also conduct an empirical
study to infer the security impact of a 𝐷𝑆𝑂 by manually analyzing
the uses of a security-critical variable. Our empirical research indi-
cates that (1) each security operation has its own influence scope,
e.g., a security check protects a checked variable from being used
under erroneous states within its successor branches, and (2) only
the uses in the influenced code segments are security-critical. There-
fore, CPscan infers the security impact of a 𝐷𝑆𝑂 by comparing the
bounded use chains (where and how a variable is used in the poten-
tially influenced code segments). Specifically, CPscan first obtains
all the uses of a security-critical variable. Then, it determines the
use boundary for a 𝐷𝑆𝑂 . For a security check, CPscan considers
all the uses in the successors of the check condition; for variable
initializations and resource-release operations, all the subsequent
uses of the security-critical variable are considered. Only if all of
these bounded use chains remain the same, can CPscan report that
this security operation deletion brings in a new security risk.

4 IMPLEMENTATION

We implement CPscan on top of LLVM (of version 10.0.0) with
multiple passes [7], which are based on LLVMdata-flow and control-
flow analysis. In total, CPscan contains about 6.5K lines of C++
code.

4.1 Preprocessing

The preprocessing phase provides the required graph inputs for the
following analysis, consisting of a source-code filter, IR generation
and normalization, and ACFG generation.

Source-code filter. The source-code filter reports all the paired
functions that IoT vendors customize. First, CPscan pairs func-
tions in an IoT kernel and the corresponding Linux kernel by their
function name. Then, CPscan recognizes function customization
by comparing their hash values, which is obtained by hashing the
string concatenating all the normalized instructions in a function.
Specifically, we generate the hash value for a function by the fol-
lowing two steps: (1) obtaining a new string by concatenating all
the normalized instruction sequences in the function, and (2) gen-
erating the hash value for this string by the MD5 message-digest
algorithm [10] and using this hash value to represent this function.
If their hash values are different, CPscan performs further analysis
as described in the following sections.

IR generation and normalization. CPscan invokes LLVM to
compile the source files into LLVM IR files. Specifically, we compile
an IoT kernel under the architecture on which an IoT vendor has
performed the most code customization. Moreover, to obtain as
many IR files as possible, similar to existing static analysis [32],
we use allyesconfig in the kernels during the compiling process.
Then, we compile the corresponding Linux kernel by using as many

of the same building configurations as possible in the IoT kernel
to exclude the IR differences caused by different building config-
urations. Additionally, we use a compiler option "-g" to generate
debugging information, which is helpful for manual analysis. Gener-
ally, compiling kernels into LLVM IR often has compatibility issues.
For source files that cannot be compiled successfully, we choose
to discard them. After obtaining the IR files, CPscan performs IR
normalization to exclude unnecessary IR changes. First, CPscan
removes minor debug information, including metadata and prefetch
instructions. Second, due to the static single assignment form [9]
of LLVM, memory behavior in IR (loading or storing a variable)
changes variable names, which causes massive false positives in
basic block matching. Therefore, CPscan uniforms the name of
a numeric operand as a constant string “Var” concatenated with
the position of this operand as the suffix. For instance, in Figure 3,
CPscan normalizes %1 in store i32 %1, i32* %__size (line 6) to 𝑉𝑎𝑟0.

ACFG generation. In this step, CPscan generates ACFGs for
a precise graph matching. First, when constructing a CFG, to avoid
the path explosion problem, we unroll the loops by treating 𝑓 𝑜𝑟

and𝑤ℎ𝑖𝑙𝑒 statements as 𝑖 𝑓 statements according to [52, 53]. Then,
based on the standard control-flow analysis, CPscan identifies the
“splitting point” in IR, i.e., the positions where the variables in an
𝑖 𝑓 condition are assigned. In brief, CPscan first identifies the 𝑖 𝑓
condition in IR by LLVM 𝑔𝑒𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 API. Then CPscan obtains
the variables in this condition. For each variable, CPscan iteratively
performs backward analysis to get its source until meeting a local
variable or global variable. CPscan returns the nearest variable
source position to the 𝑖 𝑓 condition as a “splitting point” to exclude
extra code segments in the newly generated basic block. In this way,
CPscan obtains a fine-grained CFG. Then,CPscan transverses each
basic block to obtain the attributes (as described in Table 3). Specifi-
cally, in LLVM, a constant value can be identified by its instruction
type. Then, CPscan identifies the three kinds of security operations
described in Table 2. For security checks, CPscan obtains a list of
conditional statements with at least one normal branch and one
error handling branch through existing work [32]. For variable ini-
tialization, CPscan searches the store instructions that assign zero
to a variable and the call instructions that are employed to initialize
a variable, including𝑚𝑒𝑚𝑠𝑒𝑡 and𝑚𝑒𝑚𝑐𝑝𝑦. For resource-release op-
erations,CPscan traces the empirically identified function calls that
free resources such as 𝑑𝑒𝑣_𝑘 𝑓 𝑟𝑒𝑒_𝑠𝑘𝑏, 𝑢𝑠𝑏_𝑓 𝑟𝑒𝑒_𝑢𝑟𝑏, and 𝑘 𝑓 𝑟𝑒𝑒 .

4.2 Code Pruning Identification

After obtaining the ACFGs of a function pair in an IoT kernel and
Linux kernel,CPscan performs a precise graphmatching to identify
the 𝐷𝑆𝑂s in the IoT kernel. During the matching process, CPscan
calculates the similarity between two basic blocks by averaging
all the similarity scores of the attributes described in Table 3. Par-
ticularly, CPscan calculates the similarity score of each type of
attribute using the known classic algorithms [2, 5, 41]. For constant
value and neighbor nodes in𝑀𝐶𝑆 ,CPscan calculates their similarity
score by Jaccard index [5]. For instruction sequence and function
call sequence, CPscan calculates their similarity score by the lev-
enshtein metric [41]. The similarity score of a pair of instruction
distribution (a vector, in which each element is the count of a type
of instruction) is obtained by calculating their cosine distance [2].
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Moreover, we perform a set of principled parameter evaluations on
two randomly selected IoT kernels (whose IDs are 2 and 3 in Table 1)
to obtain a set of suitable thresholds. We set 𝜃0 and 𝜃1 to be 0.95
and 0.6 respectively, to achieve the highest graph matching preci-
sion. The graph matching results showed in Table 4 demonstrate
that CPscan can also achieve high accuracy when performing 𝐷𝑆𝑂
identification on unseen IoT kernels, which indicates the adopted
thresholds are suitable and generic.

4.3 Security Impact Inference

This section elaborates on the implementation details in security
impact inference. First, we propose to find a security-critical vari-
able according to the two rules described in §3.4. Particularly, when
CPscan fails to find the subsequent uses for an associated variable,
it iteratively performs backward analysis to check a new associ-
ated variable, i.e., the parameters or return values of the previously
checked variable until CPscan finds a variable that satisfies the
previously described two rules. CPscan chooses not to use the alias
analysis [24] through the “AliasAnalysis” class in LLVM to trace a
use chain due to its poor accuracy. Instead, CPscan obtains the use
chain of a security-critical variable by checking the use-def chain
defined in LLVM. Then CPscan extends the use chain with the
propagated use chains of the security-critical variable’s propaga-
tion. CPscan can achieve a relatively precise data flow analysis in
identifying the security-critical variable’s propagation. Specifically,
when performing pointer analysis, CPscan traces and analyzes a
set of LLVM instructions that can propagate a variable to other
variables, such as 𝐺𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑃𝑡𝑟𝐼𝑛𝑠𝑡 , 𝐵𝑖𝑡𝐶𝑎𝑠𝑡𝐼𝑛𝑠𝑡 , and so on.

5 EVALUATION

In this section, we first describe the experimental setup (§5.1). Then,
we evaluate the accuracy and efficiency of CPscan in code pruning
identification (§5.2) and security impact inference (§5.3). Finally,
we present the results of bug detection (§5.4) and elaborate on the
causes of false positives and false negatives (§5.5).

5.1 Experimental Setup

All the experiments are conducted on a machine with 64GB RAM
and an Intel CPU (Xeon R CPU E5-2680, 20 core), running Ubuntu
16.04.10 LST with LLVM version 10.0.0 installed.

Datasets. We evaluate CPscan on two datasets. (1) A real
dataset consists of 28 IoT kernels from 10 popular IoT vendors,
which is used for evaluating the security state of the real-world
IoT kernels (as shown in Table 1). (2) A synthetic dataset consists
of 4 manually modified kernels obtained by deleting some code
segments in the randomly chosen Linux kernels. This dataset con-
tains as many various and complex 𝐷𝑆𝑂s as possible and is used
for a straightforward comparison of 𝐷𝑆𝑂 identification and false-
negative evaluation (as shown in Table 9 in Appendix A). While
the real dataset is pragmatic, the synthetic is comprehensive, cov-
ering representative cases. Particularly, the synthetic dataset is
constructed by following the deletions performed by real-world
IoT developers, namely containing as various 𝐷𝑆𝑂s as possible.
Compared to the original Linux kernels, 700 security operations
are deleted in the synthetic dataset, including 261 security checks,
214 variable initializations, and 225 resource-release operations.

5.2 Code Pruning Identification

As described in §3.3, we propose a structure-aware graph matching
approach to locate the 𝐷𝑆𝑂s, which is an important technique in
CPscan. In this section, we evaluate the accuracy and efficiency of
this approach by comparing it with the state-of-the-art approaches.

To the best of our knowledge, there is no dedicated tool that
can be used to identify the 𝐷𝑆𝑂s in IoT kernels. Thus, we compare
CPscan with the most related state-of-the-art code differential
analysis tools that can report deterministic code pruning, includ-
ing GumTree [20], LLVM-Diff [6], and LLVM-Diff-N (an enhanced
LLVM-Diff implemented by us via normalizing LLVM IR before
adopting LLVM-Diff to reduce the false positives caused by memory
behavior and debug information in IR). However, as discussed in
§2.3, the design goals of CPscan and the baseline approaches are
different. Specifically, CPscan aims to locate the 𝐷𝑆𝑂s, while the
baselines aim to find all the deleted code lines. For these baselines,
directly evaluating their precision on the task of locating 𝐷𝑆𝑂s
might be unfair for them since the reported 𝐷𝑆𝑂s are a small part
of all the reported code deletions, which results in very low preci-
sion for them. Therefore, for a fair comparison, we first evaluate
the precision and recall of CPscan and the baselines on their own
task with the synthetic dataset. Furthermore, the deleted code lines
reported by the baselines may also contain 𝐷𝑆𝑂s. Thus, we also
compare the recall (how many manually labeled 𝐷𝑆𝑂s can be lo-
cated) of CPscan and the baselines for locating the 𝐷𝑆𝑂s with the
real dataset. In this way, we can fairly compare the accuracy of
CPscan and the baseline approaches.

Accuracy on the synthetic dataset. We evaluate the precision
and recall of CPscan and state-of-the-art approaches for locating
the 𝐷𝑆𝑂s and the deleted code lines, respectively. The results are
shown in Table 10 and Table 11 (deferred to Appendix A). From
the experimental results, the precision and recall of the baseline
approaches are low. For instance, the precision and recall of LLVM-
Diff are 46.0% and 25.5%, respectively, which indicates that this tool
mistakenly reports wrong deletions, and at the same time misses
many real deletions because LLVM-Diff is very sensitive to control
flow changes. Besides, the precision of LLVM-Diff-N is about one
time higher than that of LLVM-Diff, demonstrating that LLVM
memory behavior indeed causes massive false positives. Thus, IR
normalization in code differential analysis is necessary. ForCPscan,
its average identification precision of locating the deleted security
checks, variable initializations, and resource releases is 96.0%, 98.0%,
and 99.0%, respectively, which shows that the accuracy of CPscan
is high in locating different kinds of 𝐷𝑆𝑂s, which benefits from our
structure-aware graph matching approach.

Accuracy on the real dataset. As discussed before, we fur-
ther compare the recall of CPscan and the baselines for locating
the 𝐷𝑆𝑂s in the real-world IoT kernels. Specifically, we manually
labeled all the 811 𝐷𝑆𝑂s in 8 randomly chosen IoT kernels. Then,
we use CPscan and the baselines to locate them. The experimental
results are shown in Table 4. The average recall of GumTree, LLVM-
Diff, and LLVM-Diff-N is 66.0%, 11.0%, and 11.0%, respectively. The
experimental results show that the structural change in code cus-
tomization is significant in the real-world IoT kernels, which leads
to poor code differential analysis performance for the baselines.
Particularly, LLVM-Diff and LLVM-Diff-N are barely usable with
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Table 4: Performance of locating 𝐷𝑆𝑂s on the real dataset.

ID
GumTree [20] LLVM-Diff [6] LLVM-Diff-N CPscan

TP Re. TP Re. TP Re. TP Pre. Re.

2 70 54% 43 33% 42 32% 127 83% 97%

3 151 49% 62 20% 61 20% 290 86% 94%

6 46 64% 3 4% 5 7% 68 89% 94%

7 48 65% 5 7% 4 5% 70 90% 94%

10 56 73% 1 1% 1 1% 75 89% 97%

11 56 73% 1 1% 1 1% 74 89% 96%

12 24 83% 3 10% 3 10% 27 75% 93%

22 31 69% 5 11% 5 11% 42 81% 92%

Average 61 66.0% 15 11.0% 15 11.0% 97 85.4% 94.9%

Table 5: The average analyzing time (per file) of CPscan and

baseline tools.

Tool GumTree [20] LLVM-Diff [6] LLVM-Diff-N CPscan

Time (s) 3.06 0.93 0.99 4.05

such a low recall. By contrast, by utilizing a precise graph matching,
the recall of CPscan is 94.9%, which is 44% - 763% higher than the
baselines. Additionally, CPscan is specifically designed for locating
the 𝐷𝑆𝑂s. Therefore, we also evaluate its precision (85.4%). Though
the identification precision of CPscan decreases a little on the real
dataset, compared to the state-of-the-art approaches, CPscan still
can precisely locate most 𝐷𝑆𝑂s. The experimental results demon-
strate that our structure-aware graph matching approach enables
CPscan to effectively identify the 𝐷𝑆𝑂s in the real-world IoT ker-
nels.

Efficiency on the real dataset. Efficiency is also important
for locating code pruning because there are abundant customized
functions in IoT kernels. We evaluate GumTree, LLVM-Diff, LLVM-
Diff-N, and CPscan on over a half of the IoT kernels in the real
dataset (whose IDs are from 1 to 17 in Table 1) to compare their
efficiency. As shown in Table 5, the baseline approaches have high
efficiency, which takes few seconds to analyze one file on aver-
age. Among them, LLVM-Diff performs the best (0.93 seconds per
file). Compared to the baseline tools, CPscan takes more time to
locate the 𝐷𝑆𝑂s (4.05 seconds per file, which is acceptable in prac-
tical settings). This result is reasonable because CPscan utilizes a
graph-based approach, which is inherently more accurate but more
time-consuming than the text-based or AST-based approaches used
by the baselines. Furthermore, we compare the efficiency ofCPscan
with McGregor [36], the most closely related MCS algorithm. On av-
erage, the efficiency of the graph matching in CPscan (4.05 seconds
per file) is about 400 times faster than McGregor.

5.3 Security Impact inference

As described in §3.4, after obtaining the 𝐷𝑆𝑂s in an IoT ker-
nel, CPscan performs security impact inference to detect potential
bugs caused by code pruning. Specifically, (1) CPscan filters out
the reasonable 𝐷𝑆𝑂s caused by legitimate program patch and code
encapsulation. (2) For the remaining 𝐷𝑆𝑂s, CPscan automatically
identifies the security-critical variables associated with them. (3)
CPscan compares the bounded use chains of the security-critical
variables to confirm whether the remaining 𝐷𝑆𝑂s are vulnerable.

Table 6: Performance of security impact inference.

ID
𝐷𝑆𝑂 Filter

Security-critical

Variable Identification Bug Detection

TP Pre. Re. TP Pre. Re. TP Pre. Re.

1* N/A N/A N/A 127 77% 76% 96 45% 61%
3* N/A N/A N/A 143 81% 79% 122 48% 68%
6 47 97% 77% 24 85% 85% 2 40% 67%
10 33 94% 82% 39 79% 79% 3 33% 100%
12 13 86% 81% 17 80% 77% 1 15% 50%
22 20 83% 80% 23 82% 74% 5 50% 63%

Average 28.3 90.5% 80.2% 62.2 81.2% 78.7% 38.2 38.0% 67.9%

1 / ∗ arch / mips /mm/ i n i t . c ∗ /
2 vo id copy_f rom_user_page ( s t r u c t vm_a r e a_ s t r u c t ∗vma , . . . ) {
3 − i f ( c p u _h a s _ d c _ a l i a s e s )
4 − Se tPageDcacheDi r ty ( page ) ;
5 . . .
6 }

Figure 6: The variable compared in the conditional state-

ment is not the real security-critical variable for the 𝐷𝑆𝑂 .

According to the above three procedures, as shown in Table 6, we
evaluate the precision and recall of each step on 4 randomly chosen
real-world IoT kernels (whose IDs are 6, 10, 12, and 22 in Table 1)
and 2 randomly selected synthetic kernels (whose IDs are 1* and
3* in Table 9 in Appendix A). Particularly, the synthetic dataset is
constructed by manually deleting the security operations in the
Linux kernel. Thus, there is no 𝐷𝑆𝑂 that needs to be filtered out.

For step one, we manually identify the reasonable 𝐷𝑆𝑂s that
need to be filtered out in the evaluated real-world IoT kernels.
Then, we evaluate how many reasonable 𝐷𝑆𝑂s CPscan can iden-
tify. From Table 6, the average precision and recall of 𝐷𝑆𝑂 filter
are 90.5% and 80.2%, respectively, which demonstrates that CPscan
is effective when filtering out the reasonable 𝐷𝑆𝑂s. The false pos-
itives and false negatives are mainly caused by inaccurate graph
matching, which will be further discussed in §5.5. For step two,
we confirm whether the reported security-critical variable is the
one protected, initialized, or freed by the corresponding security
operation. As shown in Table 6, the precision and recall of security-
critical variable identification are 81.2% and 78.7%, respectively.
This experiment demonstrates that the rules used to identify the
security-critical variable in CPscan can correctly identify most
security-critical variables. The false positives and false negatives
mainly happen when identifying the security-critical variables as-
sociated with the deletion of permission checks. For instance, as
shown in Figure 6, the checked variable is 𝑐𝑝𝑢_ℎ𝑎𝑠_𝑑𝑐_𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (line
3), which is a Macro used to determine whether the OS allows the
alias of CPU cache, while the actually protected variable is 𝑝𝑎𝑔𝑒 .
For the final step, the precision and recall of bug confirmation
are 38.0% and 67.9%, respectively. The accuracy is consistent with
the state-of-the-art approach [33]. Most false positives and false
negatives are caused by the code re-implementation in the 𝐷𝑆𝑂
filter and inaccurate graph matching, which can be easily identified
with limited manual efforts and will be further discussed in §5.5.
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Table 7: The detected security bugs caused by code pruning.

ID

# of

DSC

# of

DI

# of

DRR

# of

DSO

# of

reported bugs

# of

confirmed bugs

1 267 148 55 470 15 2
2 69 17 1 87 13 4
3 119 21 15 155 22 8
4 78 11 1 90 10 4
5 90 33 3 126 16 5
6 25 10 3 38 5 2
7 26 10 3 39 5 2
8 27 8 3 38 5 2
9 175 78 20 273 17 3
10 41 15 11 67 9 3
11 41 15 11 67 9 3
12 23 9 11 43 7 1
13 51 7 13 71 16 10
14 21 4 6 31 0 0
15 22 6 1 29 1 0
16 40 13 3 56 15 5
17 41 12 3 56 15 5
18 37 33 0 70 10 2
19 26 24 0 50 7 2
20 26 25 0 51 6 2
21 32 16 1 49 8 2
22 33 19 1 53 8 5
23 120 27 7 154 22 5
24 140 43 7 190 21 5
25 152 51 19 222 24 4
26 121 13 15 149 29 16
27 19 9 0 28 4 1
28 210 190 41 441 40 11

Total 2,072 867 254 3,193 359 114

5.4 Bug Detection

By running CPscan over all the 28 IoT kernels in the real dataset,
CPscan analyzes 74,542 customized functions in total. CPscan
finishes this analysis in about 9 hours and reports 359 potential
bugs caused by code pruning. This section elaborates on the results
of bug detection and the comparison to other bug detectors.

New bugs. As shown in Table 7, CPscan identifies 3,193 𝐷𝑆𝑂s
in the real dataset, including 2,072 deleted security checks, 867
deleted variable initializations, and 254 deleted resource-release
operations. The experimental results demonstrate that the deletion
of security operations is pervasive in IoT kernels. Moreover,CPscan
automatically reports 359 potential bugs caused by code pruning. To
manually confirm all these reported bugs, three researchers spend
about 38 person-hours on analyzing their developing logic and root
causes. The manual efforts are mainly spent on confirming the
security impact of the 𝐷𝑆𝑂s, including (1) the use analysis of the
security-critical variable that can potentially bring in security risks
and (2) the reachability analysis of a bug by tracing the call chain
between the attacker-controllable functions to the function that
contains the 𝐷𝑆𝑂s. Finally, we confirm 114 new bugs, consisting of
76 missing security-check bugs, 22 missing variable initialization
bugs, and 16 missing resource-release bugs. We have submitted
these bugs to the corresponding IoT developers, 10 of which have
been accepted, and the remaining of them are under review.We also
evaluate the distribution of the discovered 𝐷𝑆𝑂s, which is deferred
to §A.3 (as shown in Figure 10).

The existence time of bugs. We find that compared to the
Linux kernel, IoT kernels are updated slowly because of compatibil-
ity issues. In this paper, the newest kernel version of the tested IoT

Table 8: The comparison of the performance of detecting

missing security-check bugs.

ID
Crix [33] PeX [58] CPscan

TP Pre. Re. TP Pre. Re. TP Pre. Re.

1* 3 100% N/A 0 0% N/A 34 64% 59%
3* 3 20% N/A 0 0% N/A 34 42% 46%
6 21 35% N/A 35 43% N/A 2 40% 66%
10 19 37% N/A 4 40% N/A 1 13% 100%
22 0 0% N/A 8 89% N/A 3 50% 60%

Average 9 38.5% N/A 10 34.4% N/A 13 41.7% 66.2%

devices is 4.9.198. Overall, the existence time of the bugs is long.
Specifically, we compute the latent period of the reported bugs and
find that the longest time between the first release of the IoT kernel
that contains bugs and our detection is 3,435 days (approximately
nine years and five months).

1 / ∗ ne t / b r i d g e / b r _mu l t i c a s t . c ∗ /
2 s t a t i c i n t b r _ i p 4 _mu l t i c a s t _ i gmp3 _ r e p o r t ( s t r u c t s k _ bu f f ∗ skb , . . . )
3 {
4 s t r u c t i gmpv3_repor t ∗ i h ;
5 − i f ( ! pskb_may_pul l ( skb , s i z e o f ( ∗ i h ) ) )
6 − r e t u r n −EINVAL ;
7 b r _ v l a n _ g e t _ t a g ( skb , &v id ) ;
8 }

Figure 7: A bug caused by code pruning in an IoT kernel.

Case study. Figure 7 shows a concrete example of mistakenly
deleting a security check (lines 5 - 6) in the kernel of an IoT router.
𝑝𝑠𝑘𝑏_𝑚𝑎𝑦_𝑝𝑢𝑙𝑙 ensures that the length of the data stored in the
memory space pointed by 𝑠𝑘𝑏->𝑑𝑎𝑡𝑎 is at least as long as the IP
header since each IP packet must include a complete IP header. Now
that the length of the data will not be checked, the following uses
of IP packets may cause failures in parsing an IP packet, denial of
service, and so on. Particularly, Crix [33], which aims to detect
missing security-check bugs, fails to report this bug due to the lack
of sufficient reference slices to enable cross-checking. More details
about the confirmed bugs are listed in Table 13, in Appendix A.

Comparison to the related bug detection methods. We
compare our system to Crix [33] and PeX [58] (two state-of-the-art
detectors used to discover bugs in the Linux kernel) to further un-
derstand the usefulness of CPscan. Specifically, we use these tools
to detect the missing security-check bugs in three randomly chosen
real-world IoT kernels (whose IDs are 6, 10, and 22 in Table 1) and
2 randomly selected synthetic kernels (whose IDs are 1* and 3*
in Table 9). Particularly, Crix and CPscan can finish the analysis
of each kernel in Table 8 within an hour. By contrast, Pex cannot
finish the same detection within four days. Thus, for PeX, we only
analyze the bugs reported within four days.

As shown in Table 8, Crix’s false-positive rate is 61.5%, which is
similar to that (65%) reported in the original paper [33]. However,
Crix detects 6 and 0 missing security-check bugs discovered by
CPscan in the synthetic dataset and the real dataset, respectively.
The average recall of Crix on the synthetic dataset is only 4.7%
because the synthetic dataset mainly contains the bugs caused by
code pruning rather than the missing security-check bugs that may
have sufficient reference paths. Thus, we report the recall of Crix to
be N/A. The average precision of PeX is 34.4%. However, it can find
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none out of the 74 missing security-check bugs found by CPscan
in the evaluated kernels. Similar to the evaluation of Crix, we also
report the recall of PeX to be N/A because it mainly focuses on the
detection of missing permission checks. The evaluation of baselines
demonstrates that the state-of-the-art approaches are insufficient
to detect bugs caused by code pruning. By contrast, CPscan detects
74 missing security-check bugs caused by code pruning. The false-
positive rate of CPscan is 58.3%, which is similar to that of the
state-of-the-art static method Crix. Moreover, the false positives
can be easily identified with limited manual efforts (less than 1
minute per FP), which will be further discussed in §5.5.

From the experimental results, we observe that the distribution
of the bugs targeted by these three detectors is very different, which
indicates that these detectors actually complement each other. PeX
and Crix aim to detect bugs such as missing permission checks
and API misuses. Thus, they are insufficient to detect bugs found
by CPscan. By contrast, CPscan is a complementary system that
completes this missing task. In summary, existing state-of-the-art
approaches are insufficient to solve the problem studied in this
paper—detecting bugs caused by code pruning.

5.5 Accuracy of Bug Detection

False positives. As shown in Table 7, CPscan analyzes 3,193
𝐷𝑆𝑂s. Though 245 out of 359 bugs (68%) reported by CPscan are
false positives, CPscan can correctly analyze the remaining 2,834
(89%) 𝐷𝑆𝑂s. Next, we investigate the detailed causes of the false
positives on the real dataset. (1) Code re-implementation (36%). Cur-
rently, CPscan can successfully identify 3,193 𝐷𝑆𝑂s, in which only
89 (2.7%)𝐷𝑆𝑂s are false positives caused by code re-implementation.
These 89 false positives happen in 𝐷𝑆𝑂 identification. For instance,
in Figure 11 (deferred to §A.4), CPscan reports the initialization
of ℎ𝑒𝑎𝑑𝑒𝑟 is deleted, which is a false positive because ℎ𝑒𝑎𝑑𝑒𝑟 is
initialized by𝑚𝑒𝑚𝑠𝑒𝑡 . Fortunately, these false positives can be iden-
tified with limited manual efforts. One can realize that the deleted
variable initialization in Figure 11 within a few seconds. Thus,
code re-implementation can hardly influence the effectiveness of
CPscan.(2) Inaccurate graphmatching (51%). Precisely locating code
additions and deletions is known as a complex task [20]. Though
CPscan has achieved high accuracy on graph matching (as shown
in §5.2, both the identification precision and recall of CPscan on
identifying the DSOs in the synthetic dataset are over 96%. The
precision and recall ofCPscan on the real dataset are about 85% and
95%), there still exists incorrect basic block matching as illustrated
in §A.4. We believe if a more accurate code differential analysis is
proposed, these false positives can be consequently removed. The
discussion of other false positives (13%) is deferred to §A.4.

False negatives. We evaluate the recall (67%) of CPscan on
the 8 randomly selected IoT kernels in the real dataset (as shown
in Table 4). However, the bugs contained in these IoT kernels are
limited. Thus, we leverage the synthetic dataset, which contains
diverse bugs caused by 𝐷𝑆𝑂s to evaluate the false negatives of
CPscan. Recall that we insert 700 bugs into the synthetic dataset
by deleting various security operations. CPscan reports 424 bugs
while missing the remaining 276 bugs (the recall is about 60%). We
investigate these false negatives and summarize their causes as
below.

1 / ∗ d r i v e r s / ne t / e t h e r n e t / s tm i c r o / stmmac / s tmmac_pla t form . c ∗ /
2 s t a t i c i n t s tmmac_probe_con f ig_d t ( . . . ) {
3 s t r u c t dev i c e_node ∗ np = pdev −>dev . o f_node ;
4 − i f ( ! np )
5 − r e t u r n −ENODEV ;
6 − ∗mac = o f_ge t _mac_add r e s s ( np ) ;
7 p l a t −> i n t e r f a c e = of_get_phy_mode ( np ) ;
8 + o f _p r ope r t y_ r e ad_u32 ( np , . . . ) ;
9 }

Figure 8: An example of a changed bounded use chain in an

IoT kernel.

(1) Unrecognized security checks (7%). CPscan utilizes cheQ [32]
to locate security checks in both Linux kernels and IoT kernels and
then perform graphmatching to identify𝐷𝑆𝑂s. However, cheQ [32]
misses some security checks when no error code is returned in
the corresponding error handling branch [32]. (2) Inaccurate graph
matching (39%). As discussed before, currently, there are some cases
that CPscan fails to accurately perform graph matching. Therefore,
part of the 𝐷𝑆𝑂s are wrongly matched and will not be further ana-
lyzed by CPscan. (3) Missing security-critical variables (14%). Part
of security-critical variables associated with the 𝐷𝑆𝑂s are Macros
or global variables, which do not have any uses in the subsequent
code segments. Consequently, CPscan cannot infer the security im-
pact of these 𝐷𝑆𝑂s. (4) The change of the bounded use chains (40%).
For some bugs, the bounded use chains are unnecessary to be the
same. For instance, as shown in Figure 8, the deletion of the NULL
pointer check (lines 4 -5) results in a NULL pointer dereference
(line 7). Thus, such deletion of NULL pointer check is vulnerable,
even though the use chain of the security-critical variable (𝑛𝑝) has
changed in the IoT kernel (line 6).

6 DISCUSSION AND LIMITATIONS

6.1 Limitations

Source code coverage. Currently, we use the 𝑎𝑙𝑙𝑦𝑒𝑠𝑐𝑜𝑛𝑓 𝑖𝑔 con-
figuration that allows us to obtain most customized files, through
which the current dataset covers about 45% of the customized source
files and 60% of the customized functions, including various 𝐷𝑆𝑂s.
We cannot obtain all the customized files because (1) we need to
specify the architecture during the compiling process. For example,
if we compile IR files under MIPS, we will ignore the modified files
under ARM. In our experiments, we choose the compilation archi-
tecture with the most customized files; (2) config conflicting issues
and files that are not compilable under LLVM will further decrease
the generated IR files. Considering the proposed system is used to
identify and analyze 𝐷𝑆𝑂s, with this dataset (74,542 customized
functions), to some extent, we can perform a high-qualified and fair
evaluation of CPscan. Moreover, code coverage can be increased
by using different compilation configurations. For instance, we
compile the IoT kernel whose ID is 1 in Table 1 under a different
architecture. The source file coverage increases from 39.7% to 47.5%.

Graphmatching. Graph matching is an NP hard problem. The
current implementation of the graph matching in CPscan is based
on basic block matching according to the similarity score of basic-
block attributes. If the attributes of two basic blocks are similar and
the similarity score is higher than a threshold, CPscan will match
them. Even though CPscan has achieved high precision of graph
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matching, as shown in §5.2, part of code customization significantly
changes function CFGs and brings in several inaccurate graph
matching scenarios.

Security impact inference. In this step, if CPscan cannot find
the paired security-critical variables or the bounded use chains in
Linux kernels and IoT kernels, respectively, the security impact
of this 𝐷𝑆𝑂 is unclear, which inevitably causes a false negative.
Besides, to reduce false positives, CPscan reports a 𝐷𝑆𝑂 to be
vulnerable iff the paired security-critical variables’ bounded use
chains are the same. Therefore, CPscan filters out all the𝐷𝑆𝑂s that
have different bounded use chains but are vulnerable as listed in
Figure 8. Finally, to find a security-critical variable and its bounded
use chain in an IoT kernel (as described in §4.3), CPscan performs
pointer analysis to find the propagation of this security-critical
variable. Inaccurate alias analysis results in an inaccurate bounded
use chain of this critical variable. To solve this problem, Andersen-
style pointer analysis [24] and Steensgaard alias analysis [45] would
be helpful and could be a potential future work.

6.2 Discussion

Extending CPscan. Currently, the implementation of CPscan
supports identifying the detection of missing security checks, miss-
ing variable initializations, and missing resource-release operations.
In theory, the techniques developed in CPscan can support identi-
fying other bug classes such as missing lock/unlock and reference
count by specifying suitable patterns. In the future, we would like to
extend CPscan to support more types of vulnerabilities. Moreover,
it is worth noting that code customization is not specific to IoT
kernels. The security bugs caused by code pruning also exist in the
widely-used mobile OS kernels and other projects. We can natu-
rally extend CPscan to detect missing security operations in other
software. Finally, code additions or the deletions of non-security
operations may also potentially change the data or control flow
dependence of sensitive operations, hence causing security bugs.
We will investigate this interesting problem in the future.

Exploitation. We conduct manual analysis on the bugs re-
ported by CPscan carefully to investigate their security impact and
exploitability. To boost the efficiency of confirming the security
impact of the bugs reported by CPscan, we can generate inputs
to trigger a missing security operation bug by using symbolic ex-
ecution [40] and a theorem prover [18]. Besides, fuzzing can also
dynamically trigger a bug by inputting mutated seeds [30, 35, 55].
In fact, how to automatically exploit a class of security bugs remains
a challenging research problem requiring dedicated research. In
this paper, the goal of CPscan is not to automatically exploit bugs
but automatically identify security bugs caused by code pruning.
Automatically generating proof-of-concept exploits by leveraging
kernel fuzzing or symbolic execution is an interesting future work.

7 RELATED WORK

IoT device bug detection. Many detection systems are proposed
to discover bugs in IoT devices and have greatly improved the se-
curity of IoT ecosystems. For one thing, the state-of-the-art ap-
proaches [15, 16, 22, 44, 54, 59] perform static analysis on IoT
firmware. However, these static approaches aim to discover N-
day bugs by code clone detection. By contrast, CPscan can find

0-day bugs caused by code pruning. For another thing, existing
approaches [12–14, 17, 21, 27, 31, 37, 49, 57, 60] support dynamic
analysis on IoT firmware. However, these methods currently aim to
fuzz IoT apps or IoT libraries rather than IoT kernels. Meanwhile,
the efficiency of these dynamic methods is low due to their slow
throughput. Furthermore, dynamic analysis is inherently limited
by the code coverage problem [23].

Inconsistency-based bug detection. Inconsistency-based de-
tection is widely used in the closely related approaches [33, 56, 58]
that find bugs in the Linux kernel. It is intuitive to apply these bug
detectors to discover bugs in IoT kernels. However, these methods
are insufficient for our problem due to the following reasons. (1)
Crix [33], PeX [58], and APISan [56] are based on cross-checking.
However, cross-checking has two main limitations. First, it is diffi-
cult to find similar paths for cross-checking, which needs semantic-
or context-aware analysis. Second, cross-checking requires suffi-
cient reference paths to detect buggy paths against the majority of
usage patterns. Unfortunately, the evaluation in Table 8 indicates
that in most cases, there are no sufficient similar paths to enable
cross-checking for a 𝐷𝑆𝑂 . (2) Most bugs discovered by Crix, PeX
and APISan are API misuses or missing permission checks. For the
deletion of other security operations such as variable initialization,
these methods are not suitable. Unlike the above approaches that
check the inconsistency of different paths, CPscan determines the
inconsistency between different kernels. In the scenario of code
pruning where a reference (the compared Linux kernel with the
same edition) exists, we believe that we should make full use of the
references for detecting bugs in IoT kernels in a more effective way
to avoid the limitation with cross-checking.

8 CONCLUSION

Code pruning is prevalent in IoT kernels. In this paper, we present
CPscan, an effective detection system to automatically identify
various bugs caused by the 𝐷𝑆𝑂s in IoT kernels. First, to precisely
locate the 𝐷𝑆𝑂s, we design and implement a new structure-aware
graph matching algorithm by iteratively performing basic block
matching. Then, to automatically infer the security impact of a𝐷𝑆𝑂 ,
CPscan employs inconsistency analysis by comparing the bounded
use chains of the security-critical variable associated with a 𝐷𝑆𝑂 .
Overall, the identification accuracy and efficiency of CPscan are
much higher than state-of-the-art tools. To the best of our knowl-
edge, CPscan is the first system that aims to detect bugs caused
by code pruning in IoT kernels. Extensive experiments with 28 IoT
kernels from 10 vendors show that CPscan effectively discover 114
new bugs with outstanding performance.
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A APPENDIX

A.1 Detecting code movement by Unix-Diff

In Figure 9, Unix-Diff [11] compares two versions of the source code
by performing the Myers algorithm [38] at the text line granularity.
In fact, there are no code line additions or deletions in this example.
However, Unix-Diff [11] reports Part B in Figure 9(a) as deleted code
lines. This is because Unix-Diff [11] is limited by its coarse-grained
comparison, which is not aligned with the source code structure.
Therefore, it can only recognize additions and deletions instead of
simple code segment movements. However, code movements are
common in the customization process of IoT kernels. Therefore,
Unix-Diff [11] is not suitable for identifying code pruning in IoT
kernels.

A.2 Efficiency comparison of graph matching

The graph-based approach used in CPscan is much more efficient
than the traditional graph matching approaches. Therefore, we
further compare the efficiency of CPscan with McGregor [36],
the most closely related MCS algorithm. Although McGregor is
not suitable in locating code pruning since it cannot match the
modified nodes, comparing CPscan with it can help us understand
the difference between the efficiency of CPscan and the traditional
graph matching methods. We intend to evaluate the efficiency of
McGregor and CPscan on all the functions in the real dataset.

However, limited by its design, the matching process of McGregor
is too long. McGregor can only perform graph matching for the
functions whose number of basic blocks is less than 25 within a
certain time (300 hours in this experiment). Therefore, we can only
compare the matching efficiency of 2,671 functions. For McGregor,
the matching time significantly increases when the number of basic
blocks becomes larger. In contrast, the matching time of CPscan
remains at a very low value for the functions with large sizes.
On average, the efficiency of the graph matching algorithm used
in CPscan (4.05 seconds per file) is about 400 times faster than
McGregor. The reason is that CPscan is structure-aware and fully
utilizes the characteristics of a basic block in the matching process.
Besides, there are about 30% functions whose number of basic block
is larger than 25 (as shown in Table 12 in Appendix A), which
further shows that CPscan can achieve high efficiency in the graph
matching for locating the 𝐷𝑆𝑂s.

A.3 The distribution of the DSOs

We evaluate the distribution of the 𝐷𝑆𝑂s on over half of the IoT
kernels in the real dataset (whose IDs are from 1 to 17 in Table 1).
Similar to prior research [25, 50, 53], a majority of bugs caused
by code pruning exist in the driver or network subsystem of an
IoT kernel. The distribution of the 𝐷𝑆𝑂s is shown in Figure 10.
Based on our communication with the developers of IoT kernels,
IoT vendors usually need to customize the driver and network code
to adapt to the new hardware or functions in IoT devices. In total,
about 90% of the detected bugs exist in the driver and net modules.
Other subsystems such as file system are also subject to missing
security operation bugs. Moreover, we discover that a class of bugs
is highly likely to appear in other versions of the same IoT device.

A.4 Other false positives

As shown in Figure 12, the newly added conditional statement
in line 4 splits an original basic block (lines 5 and 6 in Linux
kernel) into two basic blocks, which causes the CFG change of
𝑖𝑝6_𝑓 𝑙𝑢𝑠ℎ_𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑓 𝑟𝑎𝑚𝑒𝑠 . Therefore,CPscanmistakenly reports
𝑘 𝑓 𝑟𝑒𝑒 (line 6) as a deleted resource-release operation because there
is no basic block that can be matched with it.

From our manual analysis, the other false positives (13%) con-
sist of the following aspects. 1) In IoT kernels, a security check is
deleted while its error handling branch remains in the function.
Thus, the corresponding critical variables will not reach error states
and the 𝐷𝑆𝑂 does not cause any security impact. Therefore, such
reported 𝐷𝑆𝑂 is a false positive. 2) In the compiling process, even
though we try to make sure that the building configurations of

1 i n t s p e c t r um_c s _ con f i g ( . . . ) {
2 Pa r t A ;
3 Pa r t B ;
4 r e t = p cmc i a _ r e qu e s t _ i r q ( l i nk , . . . ) ;
5 i f ( r e t )
6 goto f a i l e d ;
7 }

(a) Function definition in Linux kernel

1 i n t s p e c t r um_c s _ con f i g ( . . . ) {
2 Pa r t A ;
3 r e t = p cmc i a _ r e qu e s t _ i r q ( l i nk , . . . ) ;
4 i f ( r e t )
5 goto f a i l e d ;
6 Pa r t B ;
7 }

(b) Function definition in IoT kernel

Figure 9: An example of simple code movement in an IoT kernel, where code segment Part B is moved from line 3 to line 6.
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Table 9: The manually constructed synthetic dataset. DSC = deleted security check, DVI = deleted variable initizlization, DRR

= deleted resource release, and NCL = normal code line.

ID Kernel

# of

DSC

# of

DVI

# of

DRR

# of

NCL

1* linux-2.6.30 57 53 54 54
2* linux-2.6.36 70 55 58 188
3* linux-4.9.37 73 55 53 96
4* linux-3.18 61 51 60 108

Total 261 214 225 446

Table 10: The identification precision (Pre.) and recall (Re.) of baselines on the deleted code lines in the synthetic dataset

generated from the Linux kernels.

ID
GrumTree LLVM-Diff LLVM-Diff-N

TP Pre. Re. TP Pre. Re. TP Pre. Re.

1* 193 68% 89% 48 53% 22% 48 55% 22%
2* 341 36% 92% 82 50% 22% 89 90% 24%
3* 233 59% 84% 60 53% 22% 59 88% 21%
4* 252 54% 91% 100 28% 36% 92 94% 33%

Average 255 54.2% 89.0% 72 46.0% 25.5% 72 81.7% 25.0%

Table 11: The identification precision and recall of CPscan on the DSOs in the synthetic dataset. DSC = deleted security check,

DVI = deleted variable initialization, and DRR = deleted resource release.

ID
# of DSC # of DVI # of DRR

TP Pre. Re. TP Pre. Re. TP Pre. Re.

1* 55 93% 96% 52 100% 98% 54 100% 100%

2* 68 97% 97% 54 98% 98% 58 100% 100%

3* 72 97% 98% 55 98% 100% 51 96% 96%
4* 58 97% 95% 51 96% 100% 60 100% 100%

Average 63 96.0% 96.5% 53 98.0% 99.0% 56 99.0% 99.0%

Net 
36.0%

Driver 
47.2%

FS
10.6%

Others
5.1%

MM
1.1%

Figure 10: The distribution of the 𝐷𝑆𝑂s.

an IoT kernel and Linux kernel are the same, there are some ex-
tra building configurations only in IoT kernels. The differences
between building configurations cause the deletion of unnecessary
security operations, which brings in new false positives.

1 / ∗ ne t / i e e e 8 0 2 1 1 / i e e e 8 0 2 1 1 _ t x . c ∗ /
2 i n t i e e e 8 0 2 1 1_xm i t ( s t r u c t s k _ bu f f ∗ skb , . . . ) {
3 / ∗ Ensure ze ro i n i t i a l i z e d ∗ /
4 − s t r u c t i e e e 8 0211_hd r_3add rqo s header = {
5 − . d u r a t i o n _ i d = 0 ,
6 − . s e q _ c t l = 0 ,
7 − . q o s _ c t l = 0
8 − } ;
9 + memset (& header , 0 , s i z e o f ( s t r u c t i e e e 8 0211_hd r_3add rqo s ) ) ;
10 }

Figure 11: ℎ𝑒𝑎𝑑𝑒𝑟 initialization (lines 4 - 8) is deleted. How-

ever, the same semantics is implemented as𝑚𝑒𝑚𝑠𝑒𝑡 (line 9).

Table 12: The distribution of functions in the Linux kernel

with respect to the number of basic blocks in a function.

# of Basic Blocks in a Function [1,10) [10,20) [20,30) [30, +∞)
Ratio of Functions 40.0% 22.8% 17.4% 19.8%
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Table 13: List of some new bugs detected with CPscan in IoT kernels. DSC = deleted security check, DVI = deleted variable

initialization, and DRR = deleted resource release. The S and C in the Status field represent patch status - Submitted and

Confirmed, respectively.

Subsystem File Function Type
Security Critical

Consequence Status
Operation Variable

Driver core.c regulator_unregister DRR kfree rdev->constraints Memory leakage S
Driver hub.c hub_port_init DSC device check hub->tt.hub Denial of service S
Driver sierra.c sierra_outdat_callback DRR kfree urb->transfer_buffer Memory leakage S
Driver serial_core.c uart_poll_init DVI device initialization tport Denial of service S
Driver cdc-acm.c acm_probe DSC running state check control_interface system crash S
Driver dvb_demux.c dvbdmx_release_section_feed DSC running state check &demux->mutex dead lock S
Driver hci_ldisc.c hci_uart_tty_open DSC NULL pointer check tty_ops_write NULL pointer dereference S
Driver n_gsm.c gsm_control_reply DSC NULL pointer check msg NULL pointer dereference S
Driver synclink_cs.c hdlcdev_ioctl DVI memset &newline Memory leakage S
Driver iowarrior.c iowarrior_ioctl DVI memset &info Memory leakage S
Driver m25p80.c m25p_probe DRR kfree flash Memory leakage S
Driver serial_core.c uart_poll_init DRR kfree tport Memory leakage S
Driver xhci.c xhci_resume DVI device initialization xhci Denial of service S
Driver f_uac1.c f_audio_free_inst DRR kfree opts->fn_play Memory leakage C
Driver f_uac1.c f_audio_free_inst DRR kfree opts->fn_cap Memory leakage C
Driver f_uac1.c f_audio_free_inst DRR kfree opts->fn_cntl Memory leakage C
Driver ion.c ion_client_create DVI device initialization &client->idr Denial of service C
Driver nand_base.c check_offs_len DSC bound check mtd->size Out-of-bound access S
Driver nandsim.c do_read_error DVI variable initialization ns->buf.byte Denial of service S
Driver onenand_base.c onenand_panic_write DSC bound check mtd->size Out-of-bound access S
Driver m25p80.c m25p80_erase DSC bound check instr->addr Out-of-bound access S
Driver pegasus.c alloc_urbs DRR resource free pegasus->ctrl_urb Denial of service S
Driver configfs.c usb_string_copy DRR kfree copy Memory leakage S
Driver of-thermal.c thermal_zone_of_sensor_register DSC running state check child Denial of service S
Driver mt29f_spinand.c spinand_probe DSC NULL pointer check mtd NULL pointer dereference S
Driver dm-thin.c check_for_space DSC running state check pool Denial of service S
Driver ch.c ch_probe DVI variable initialization &ch->ref Memory leakage S
Driver of-thermal.c of_thermal_set_emul_temp DSC running state check data->ops Denial of service S
Net br_multicast.c br_multicast_set_hash_max DSC running state check br_dev Denial of service S
Net br_multicast.c br_ip4_multicast_igmp3_report DSC running state check skb Denial of service S
Net wext-core.c ioctl_standard_iw_point DSC bound check len Out-of-bound access S
Net xgmac.c xgmac_change_mtu DSC bound check new_mtu Out-of-bound access S
Net via-velocity.c velocity_init_registers DVI device initialization vptr Denial of service S
Net nf_conntrack_l3proto_ipv4.c ipv4_conntrack_local DSC bound check skb->len Out-of-bound access S
Net af_econet.c econet_sendmsg DSC bound check len Out-of-bound access S
Net main.c b43_wireless_core_init DVI device initialization dev->wl Denial of service S
Net netdev.c bnep_net_setup DVI memset dev->broadcast memory lekage C
Net tty.c rfcomm_wmalloc DSC bound check &dev->wmem_alloc Out-of-bound access C
Net raw.c do_rawv6_setsockopt DSC running state check sk Denial of service S
Net tcp.c tcp_init_sock DVI variable initialization &tp->tsq_node Denial of service S
Net l2cap_sock.c l2cap_sock_accept DSC running state check &sk->sk_state Double free S
Net l2cap_core.c l2cap_ertm_init DVI variable initialization &chan->busy_q Denial of service C
Net l2cap_core.c l2cap_ertm_init DVI variable initialization l2cap_busy_work Denial of service C
Net sme.c __cfg80211_connect DSC running state check wdev->sem_state Denial of service S
Net soc.c sco_sock_connect DSC bound check alen Out-of-bound access C
Net nl80211.c nl80211_key_allowed DSC NULL pointer check wdev->current_bss Denial of service S
FS smb2pdu.c SMB2_sess_setup DRR kfree ses->auth_key.response memory lekage S
FS messenger.c ceph_msg_data_destroy DSC NULL pointer check data NULL pointer dereference S
ARCH c-r4k.c local_r4k_flush_cache_page DSC NULL pointer check vaddr NULL pointer dereference C
Security keyctl.c SYSC_add_key DSC NULL pointer check _payload NULL pointer dereference S

1 / ∗ ne t / i pv6 / i p 6 _ou t pu t . c ∗ /
2 vo id i p 6 _ f l u s h_p end i ng_ f r ame s ( s t r u c t sock ∗ sk ) {
3 whi l e ( . . . ) {
4 + i f ( skb −> d s t )
5 IP6_INC_STATS ( . . . ) ;
6 k f r e e _ s kb ( skb ) ;
7 }
8 }

Figure 12: 𝑘 𝑓 𝑟𝑒𝑒_𝑠𝑘𝑏 (line 6) is mistakenly reported as a

deleted resource-release operation, because the new added

conditional statement (line 4) changes the function CFG.
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