deRop: Removing Return-Oriented Programming from
Malware

Kangjie Lu
Peking University, China
Singapore Management

University, Singapore
kangjielu@pku.edu.cn

Weiping Wen
Peking University, China

weipingwen@ss.pku.edu.cn

ABSTRACT

Over the last few years, malware analysis has been one of
the hottest areas in security research. Many techniques and
tools have been developed to assist in automatic analysis of
malware. This ranges from basic tools like disassemblers and
decompilers, to static and dynamic tools that analyze mal-
ware behaviors, to automatic malware clustering and clas-
sification techniques, to virtualization technologies to assist
malware analysis, to signature- and anomaly-based malware
detection, and many others. However, most of these tech-
niques and tools would not work on new attacking tech-
niques, e.g., attacks that use return-oriented programming
(ROP).

In this paper, we look into the possibility of enabling ex-
isting defense technologies designed for normal malware to
cope with malware using return-oriented programming. We
discuss difficulties in removing ROP from malware, and de-
sign and implement an automatic converter, called deRop,
that converts an ROP exploit into shellcode that is semanti-
cally equivalent with the original ROP exploit but does not
use ROP, which could then be analyzed by existing malware
defense technologies. We apply deRop on four real ROP
malwares and demonstrate success in using deRop for the
automatic conversion. We further discuss applicability and
limitations of deRop.

Keywords: return-oriented programming, malware anal-
ysis

1. INTRODUCTION

Malware analysis has been one of the hottest areas in se-
curity research in the last 10 to 20 years. Many techniques
and tools have been introduced and built to automatically
analyze and defend against malware. This ranges from ba-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

Dabi Zou
Singapore Management
University, Singapore
zoudabi@gmail.com

Debin Gao
Singapore Management
University, Singapore

dbgao@smu.edu.sg

sic tools like disassemblers (e.g., IDAPro', OllyDbg?) and
decompilers [11], to static [10, 16] and dynamic tools [4, 31]
to analyze malware behaviors, to automatic malware clus-
tering [3, 18] and classification techniques [22, 1], to virtual-
ization techniques for analyzing malware [13], to signature-
and anomaly-base malware detection [20, 27, 17, 30], and
many others.

Although some of these techniques are designed to be able
to deal with zero-day malware, e.g., anomaly-based detec-
tion, the vast majority of them are based on understanding
of the existing malware techniques. Even anomaly-based
detection might not work when the technology used by mal-
ware changes (instead of new malware exploiting an un-
known vulnerability). Return-oriented programming is an
example of such new malware technology.

Return-oriented programming (ROP) [26, 28] and its vari-
ations [7, 6, 14, 19, 21, 8, 5] have been shown to be able to
perform arbitrary computation without executing injected
code. They execute machine instructions immediately prior
to return (or return-like [7]) instructions within the exist-
ing program or library code. Since ROP does not execute
any injected code, it circumvents most measures that try to
prevent the execution of instructions from user-controlled
memory, e.g., the W & X protection mechanism [25].

One solution to this problem is to design patches to all
existing malware defense technologies so that they can cope
with return-oriented programming. Although not entirely
impossible, it is definitely not scalable due to the huge amount
of existing defense work. Even if it can be done, it will be-
come a nightmare when yet another new malware technology
emerges.

Instead, we propose to automatically remove return-oriented
programming from a piece of malware before it is sent for
further analysis by existing malware defense tools. In this
paper, we design and implement deRop, an automatic tool
to convert shellcode® using ROP into one that does not use

"http://www.hex-rays.com/idapro

http://www.ollydbg.de

3The payload of an ROP attack usually contains many gad-
gets of addresses, constants, and junks. There is usually no
instruction or code in an ROP payload, and strictly speak-
ing we should not call it shellcode. Here we still use the
word shellcode to refer to payload of an attack in general,
should it use ROP or not.

stack pivot

hg esp, eax
0x0012f1a0 |» X" €SP:
esp—> (arbitrary) retn
X 5X0012F1be add ebx, ecx
stack grows retn

0x0012f1a0_|» XCg esp. eax

eax=> (arbitrary) retn
€SP 0x0012f1bc f;: ebx, ecx

Figure 1: Special use of esp

ROP, while preserving the semantics of the original malware
shellcode. Note that here we focus on enabling existing mal-
ware analysis tools to work on the output of deRop. deRop
does not perform this analysis on the malware directly.

Removing return-oriented programming from malware is
non-trivial. Among the many difficulties (discussed in Sec-
tion 3), the use of register esp in ROP shellcode is one of
the most important ones. Figure 1 shows an example in
which esp is used as a stack pivot [2] to chain the execution
of gadgets (address words pointing to “hidden” instructions
and data) in ROP. The stack layouts on the left and right
show the content of esp and eax when instructions pointed
to by the two gadgets start getting executed, respectively.
It is relatively easy to find out all the “hidden” instructions
to be executed pointed to by the gadgets, however, deRop
cannot simply take these instructions as the output of the
conversion. For example, the instruction <xchg esp, eax>
pointed to by one of the gadgets is used to update the value
of esp so that it points to the next gadget to be executed.
In this sense, esp in ROP serves the functionality of eip.
<xchg esp, eax>, therefore, is not really part of the instruc-
tions this attack tries to execute, and should not be part of
the output of deRop.

Another difficulty is to be able to find out the next gadget
(and the corresponding “hidden” instructions). Intuitively,
dynamic analysis could help solve this relatively easily. How-
ever, it comes with a price of having to execute the malware
in the analysis, which is a big disadvantage considering the
security of the analysis platform. Therefore, one of the cri-
teria we have in designing deRop is to use static analysis to
simulate the updates to esp as much as possible, and only
resolve to dynamic analysis when needed.

We design and implement deRop to automatically convert
shellcode using ROP into one that does not use ROP. deRop
relies heavily on static analysis without executing the mal-
ware, with a minimum of dynamic analysis only to find the
location of the first gadget in the malware payload and to
find the initial value of esp, which are hard to obtain re-
liably with static analysis alone. We apply deRop on four
real ROP malwares and manually verify that the output
of deRop does not make use of ROP, and is semantically
equivalent to the original ROP malware. We also discuss
applicability of deRop and its limitations.

2. BACKGROUND AND RELATED WORK
2.1 ROP and its variations

Shacham et al. propose Return-Oriented Programming
(ROP) in 2007 [28]. ROP uses a large number of instruction
sequences from the original program and the libraries, and
chains these instruction sequences ending with ret together

to perform arbitrary computation. ROP is also ported to
other platforms such as SPARC [6], ARM [21], Harvard [14],
and voting machines [8]. Besides that, Hund et al. [19] make
use of ROP to propose Return-Oriented Rootkits, which can
bypass kernel code integrity protection mechanisms. Li et
al. [23] propose the corresponding “return-less” kernels to
defeat Return-Oriented Rootkits. However, ROP is recently
extended to use return-less gadgets to achieve the same ef-
fect [7, 5].

2.2 Defense of ROP

With the development of ROP, some researches are seek-
ing ways to detect and prevent ROP attacks. One direction
is to make use of the characteristics of ROP, e.g., short pieces
of instructions ended by a ret. Davi et al. [12] and Chen et
al. [9] make use of dynamic binary instrumentation frame-
works to instrument program code. When the number of
consecutive sequences of five or fewer instructions ending in
a return reaches a threshold, it will trigger an alarm. An-
other direction is to look for violations of last-in, first-out
invariants of the stack data structure that call and return
instructions usually maintain in normal benign programs.
Buchanan et al. [6] suggest to maintain a shadow return-
address stack, which can be used to defend against ROP.
Francillon et al. [15] implement a shadow return-address
stack in hardware for an Atmel AVR microcontroller such
that only call and return instructions can modify the return-
address stack.

Davi et al. [12] claim that it is possible to extend their
ROP defender with a frequency measurement unit to detect
attacks with return-less ROP. The idea is that pop-jump se-
quences are uncommon in ordinary programs, while return-
less ROP [7] invokes such a sequence after each instruction
sequence.

Most recently, Onarlioglu et al. [24] propose G-Free, which
is a compiler-based approach to defeat against any possible
form of ROP. Their solution is to eliminate all unaligned
free-branch instructions inside a binary executable, and to
prevent aligned free-branch instructions from being misused.

Unlike these defense mechanisms, deRop does not try to
detect or stop ROP. Instead, it converts any (attack) pro-
gram that uses ROP into one that does not. This has huge
implication on the applicability of existing malware analysis
tools and they could now be used to analyze ROP attacks.

2.3 Existing malware analysis tools

There have been many malware analysis tools proposed.
Some examples include disassemblers (e.g. IDAPro, Olly-
Dbg) and decompilers (e.g., HexRays decompiler?), static [10,
16] and dynamic tools [4, 31] to analyze malware behav-

“http://hex-rays.com/decompiler.shtml

iors, automatic malware clustering [3, 18] and classification
techniques [22, 1], virtualization techniques for analyzing
malware [13], signature- and anomaly-base malware detec-
tion [20, 27, 17, 30], and many others.

Most, if not all, of these techniques were proposed to an-
alyze traditional malware without considering ROP. In fact,
most of them were proposed before ROP was introduced.
Traditional malware code (usually in form of shellcode) is
very different from ROP in that ROP shellcode consists of
addresses, constants and junks but not instructions. There-
fore, direct applications of such tools on ROP code will likely
fail.

In this paper, we are not trying to propose a new design
of these malware analysis tools so that they could work on
ROP. There are too many such tools proposed and it is not
practical or scalable to patch all of them. Instead, we pro-
pose an automatic converter, called deRop, to convert ROP
shellcode into its semantically equivalent non-ROP shellcode
so that any of the existing malware analysis tools can ana-
lyze it.

3. DIFFICULTIES

In Section 1, we briefly discuss why existing malware anal-
ysis tools are not able to analyze ROP shellcode effectively.
In this section, we detail the difficulties involved in design-
ing deRop, which takes input some shellcode that uses ROP
and outputs non-ROP shellcode to be analyzed by existing
malware analysis tools.

3.1 Locations of gadgets

The payload of an ROP attack would usually leave some
junk before the first gadget, e.g., if the exploit is via a buffer
overflow. Therefore, deRop needs to find a way of locating
the first gadget in the ROP shellcode. In some SEH exploits,
there are even junks between the first and the second gadget
since where esp points to might not follow the location of
the return address. Although deRop tries to use static anal-
ysis as much as possible and tries to avoid using dynamic
analysis (see discussion in Section 1), locating the first two
gadgets in an ROP attack using static analysis turns out to
be unreliable, and therefore we customize a debugger to do
it instead. Note that the debugger never runs any malicious
code.

3.2 Keeping track of esp

As pointed out in Section 1, esp in ROP shellcode has
a special usage as a global state pointer whose function is
to get the address of the next group of instructions, just
like eip in normal programs. We need to keep track on the
value of esp, e.g., to locate the next gadget to be used in
the execution. This is non-trivial especially in sophisticated
ROP shellcode that has conditional branches.

3.3 Stack layout and constant relocation

ROP and non-ROP code load constants into registers in
very different ways. Traditional shellcode usually uses <mov
reg, imm>, while ROP shellcode usually pre-arranges the
constant on the stack, and then uses <pop reg> to load the
constant into a register. Therefore, deRop needs to relocate
the constants in its transformation, and the input and out-
put of deRop has very different stack layout. A mapping
between these constants in the input ROP shellcode and

the output non-ROP shellcode is developed to keep track on
them.

3.4 Function calls

Some gadgets in ROP are used to call functions. This is
usually achieved by stack pivot instructions or <pushad> fol-
lowed by ret. One may argue that no special treatment is
needed for function calls as we can simply inline their body
to remove ROP and preserve semantics at the same time.
However, the objective of deRop is to enable other malware
analyzers to be able to analyze the resulting non-ROP shell-
code, therefore being able to recognize these function calls
and to conform to normal function call conventions is im-
portant. Difficulties here include identifying gadgets that
perform function calls and parameter usage (e.g., parame-
ters being constants or pointers) for the call.

3.5 Loops

Loops in ROP are usually implemented using stack pivot
to perform conditional jumps. The difficulty here inlcudes
identifying loops as well as finding out the actual condition
of the loop. deRop uses some heuristics to handle these
difficulties, which turn out to be effective in our experiments.

4. DESIGN AND IMPLEMENTATION OF
deRop

In this section, we detail the design and implementation
of deRop. We first give an overview of the design in Sec-
tion 4.1, and then present a running example to aid the
explanation (see Section 4.2). Section 4.3, Section 4.4, and
Section 4.5 describe the three main steps in the design of
deRop. Finally, we briefly describe how deRop is imple-
mented in Section 4.6.

4.1 Overview

Although converting ROP shellcode to non-ROP shell-
code to be analyzed by existing malware analysis tools is
non-trivial (see difficulties discussed in Section 3), we de-
sign and implement deRop, an automatic tool to remove
return-oriented programming from a piece of code. Figure 2
shows an overview of the design of deRop.

deRop first uses a customized debugger to find out the
locations of of the first two gadgets in the input ROP shell-
code. This is the only component in deRop that uses dy-
namic analysis, and our special design of the debugger makes
sure that potentially harmful instructions in the attack code
do not get executed (we don’t even take the ROP shellcode
as input to the vulnerable program).

After finding out the locations of the first two gadgets in
the ROP shellcode, deRop uses a loop to analyze each indi-
vidual gadget. This step of the analysis employs only static
analysis techniques to simulate the execution of each gadget,
and then output instructions that do not use ROP. During
the simulation, deRop keeps track of many important infor-
mation including the register values, mapping between ad-
dresses of instructions and data in the ROP input shellcode
and non-ROP output shellcode. Finally, deRop performs a
post-processing to improve the output shellcode so that it
can be readily analyzed by existing malware analyzers.

4.2 A running example

Due to the complexity of certain parts of deRop, we find it
easier to understand if we explain it with a simple example.

ROP
shellcode

Locate all
gadgets

data mappings

analyze an

individual gadget

post non-ROP
process shellcode

]

Figure 2: Overview of deRop

We use a real ROP exploit from exploit-db® which exploits
CoolPlayer 2.18% with DEP (Data Execution Prevention) .
The transferred results are shown in Table 1.

We choose this ROP exploit because it is simple and ex-
hibits a typical structure of existing ROP exploits in that
they first use ROP to perform a crucial step in the attack,
and then trigger a piece of traditional (non-ROP) shell-
code to perform whatever the attacker wants to achieve.
In this particular example, the ROP part uses the function
SetProcessDEPPolicy () to disable DEP for the process, so
that the traditional shellcode in the data segment can be
executed.

The first three columns of Table 1 show the structure of
this exploit, where the first part contains junks to perform
buffer overflow, the second part uses 7 gadgets (the first
gadget doesn’t play a role in this attack) to perform ROP,
and the last part contains the traditional non-ROP shellcode
to be executed. Gadget 2 to 6 are used to set up register
values to be pushed on the stack by gadget 7 using pushad.
The subsequent ret instruction causes the process to look
up a return address on the stack (which is located where esi
is pushed) and to transfer control to that location.

The stack layout right after pushad is executed is shown in
Figure 3. Gadget 6 and 5 set esi and edi as pointers to ret
instructions, which means that when control is transferred to
them, they do nothing but moves on. ebp is set to be the ad-
dress of SetProcessDEPPolicy() by gadget 4, which, when
called, uses the value of ebx as its parameter. Gadget 2 and 3
set ebx to be 0, so that when SetProcessDEPPolicy(0) is
called, data execution prevention is disabled.

esp—> edi > address of ‘ret’
esi —>» address of ‘ret’
ebp —» address of the function

original esp |—» return address of the function

ebx —» parameter ‘0’ of the function
edx
ecx 3—» arbitrary junk
eax

Figure 3: Stack layout right after pushad is executed
in our example

Shttp://www.exploit-db.com/
Shttp://www.exploit—-db.com/exploits/15895/

4.3 Locating gadgets

The first challenge we face is to locate the gadgets in an
ROP exploit code. As discussed in Section 3 and shown
in Table 1, this is non-trivial since the ROP exploit may
contain junks before the first gadget. In some cases, there
are even junks between the first and the second gadgets. To
reliably find out the locations of the first and the second
gadgets, we design a debugger to dynamically monitor the
execution of the vulnerable program.

We stress that this is the only component of deRop that
does dynamic analysis, and deRop does it in such a way that
potentially harmful instructions in the attack code are never
executed.

We first prepare a buffer that is of the same length of the
ROP exploit as shown in Figure 4 to be used to exploit the
vulnerable program. There are two index numbers in this
buffer — a byte-index number and a word-index number
denoted idxp(x) and idxw(x), respectively, where x is a 4-
byte word in the buffer. idx,(x) (2 bits long) appears in each
byte of x, and is used to find the alignment offset in case the
gadgets in the exploit are not aligned at multiples of 4-byte
words. idxw(x) (24 bits long) is used to tell which 4-byte
word the first gadget is located”. We execute the vulnerable
program, use this buffer to exploit it, and observe the values
of eip and esp when the exploit succeeds. The value of eip
tells us the size of the junk before the first gadget, while the
value of esp tells us the size of the junk between the first
two gadgets (indirectly).

When testing with the running example shown in Table 1,
our debugger finds that idxw(eip) = 55, idxw(esp) = 56, and
idxp (eip) = idxy(esp) = 0. This means that location of the
first gadget is at an offset of 55 x 4 + 0 = 220 bytes, and the
value of esp is at an offset of 56 x 4 + 0 = 224 bytes before
the first gadget executes.

Now we have managed to find out the location of the first
gadget without executing any potentially harmful instruc-
tions in the ROP exploit. The next is to find out the loca-
tion of the second gadget. As explained in Section 1, esp
plays the role of eip in ROP. Therefore, all we need is to
find out the value of esp after the execution of (instructions
pointed to by) the first gadget. This can be achieved by an-
alyzing how such instructions change the value of esp, since
we already know the value of esp before the execution of the
first gadget.

In our running example, the first gadget points to the
instruction pop ecx (see Table 1), which added 4 to the

"Note that the 8th bit is 1 instead of 0 in order to make sure
that none of the bytes in the buffer has a value of 0.

Table 1: A running example

ROP shellcode Resulting non-ROP shellcode
Gadget # | Payload | Instructions Initial results | Post-process
“0x41” X220 | junk
1 0x7c9fb028 | pop ecx mov ecx, [0x12flab] mov ecx,0x42424242
0x42424242 | retn
9 0x7c9eaddd | pop ebx mov ebx, [0x12flaf] mov ebx,Oxffffffff
Oxffffffff | retn
3 0x77cl127el | inc ebx inc ebx inc ebx
retn
4 0x7c9eab7b | pop ebp mov ebp, [0x12f1b3] | mov ebp, 0x7c8922a4
0x7c8922a4 | retn
5 0x7c9eeb4d7 | pop edi mov edi, [0x12f1b7] | mov edi, 0x7c9c1508
0x7c9c1508 | retn
6 0x7c9c204c | pop esi mov esi, [0x12f1bb] | mov esi, 0x7c9c2051
0x7c9c2051 | retn
0x7call073 | pushad mov esp, 0x12f1bf mov esp, Ox12flab
7 retn pushad pushad
pop edi pop edi
jmp edi jmp edi
“0x90” x10 | nop 0x42424242
240 bytes shellcode Oxffffffff
0x7c8922a4 nil
0x7c9c1508
0x7c9c2051
idx
idx p idX p idx p idx b
[4 \(_A_\f 2 4 2
(o]ofofofo]oJof1fo]1]ofofofoofof1joJofofofoJofofifi]oJofofofo]0]f
N— B
—
X

Figure 4: Debu

value of esp. Therefore, we know that esp is at an offset
of 224 + 4 = 228 bytes, which will also be the location of
the second gadget. Note that this means that there is no
junk between the first two gadgets, since the size of the
first gadget is 8, which is exactly the difference between the
offsets of the first two gadgets.

Locating subsequent gadgets follows the same idea by
monitoring the value of esp. Note that dynamic analysis
is not needed in locating subsequent gadgets, since all we
need is the change to esp as the result of executing (instruc-
tions pointed to by) the gadgets, which can be obtained by
static analysis.

4.4 Removing ROP

As discussed in Section 3, removing ROP from an exploit
is not as simple as chaining all instructions pointed to by the
gadgets. We need to analyze the instructions pointed to by
each gadget one by one, and monitor 1) address of each in-
struction, 2) values of registers, and 3) addresses of memory
accesses. This is very similar to simulating the execution of
the ROP shellcode, although we perform all this statically
while preserving the semantics of the original ROP shell-
code. Next, we detail how deRop deals with various types
of instructions pointed to by each gadget.

gger payload format

4.4.1 Push and pop instructions

push and pop instructions are used very often in ROP. In
particular, they are used together to transfer the value of one
register to another, the latter typically being esp. ROP also
usually prepares constants in its payload, which are on the
stack during the initial exploit, and pops these constants
from the stack to various registers. A few examples are
shown in Table 1 in gadgets 1, 2, 4, 5, and 6.

Table 2 shows how deRop deals with push and pop in-
structions. In cases where push and pop are used together
(see the second row of Table 2), we use a mov instruction to
replace them, where addr1 is the location of the data that
is used to initialize eax. Note that here we do not replace
them with <mov ecx, eax>. The reason is that pop does
not clear the data (of eax) on the stack, and therefore such
data might be used again later in the ROP exploit. When
pop is used alone to assign a constant prepared on the stack
to a register, we replace pop with the corresponding mov
instruction as shown in Table 2.

An important requirement to enable this transformation
from ROP instructions to non-ROP instructions is that we
keep track on the location of data in memory. For example,
addr1l is the address of the data that is stored in eax, and
addr?2 is the address of the data the ROP originally prepares

Table 2: Push and pop transferring example

ROP instructions non-ROP instructions

push eax; pop ecx
pop ecx

mov ecx, [addri]
mov ecx, [addr2]

on the stack. deRop keeps track on the addresses of them
in the process of analyzing the instructions.

Another challenge is that the memory layout of the ROP
exploit and the resulting non-ROP exploit might not be the
same. In our example shown in Table 1, the gadgets in
the payload contains constants, which is unique in ROP.
Non-ROP shellcode does not usually mix code and data to-
gether in such a special way (it may do so with immediates
as operands of instructions, which will be discussed in Sec-
tion 4.5). Therefore, deRop relocates such data to another
location in memory, e.g., see the last 20 bytes of the initial
results presented in Table 1.

4.4.2 Memory related instructions

deRop deals with memory related instructions by setting
aside a memory region in the output of deRop to store con-
stants, and keeping a mapping between the corresponding
constants in ROP and non-ROP shellcode. As shown in Ta-
ble 1, the non-ROP shellcode reserves the last few bytes to
store 5 constants, which were originally located separately
in 5 different gadgets.

Table 3 shows two examples of instructions that involve
memory access. In the first example, the address 0x1234 is
outside the range of the ROP exploit code. For these type
of addresses, deRop keeps them unchanged. While in the
second example, the address 0x12345678 falls in the range
of the original ROP shellcode, and deRop replaces it with a
new memory location at the end of the resulting non-ROP
shellcode (addr3). deRop updates its mapping of the two
locations of this data so that future access of the same data
can be handled properly.

Table 3: Memory related instruction transferring
example

non-ROP instructions

add ecx, [0x1234]
add [addr3], ecx

ROP instructions

add ecx, [0x1234]
add [0x12345678], ecx

4.4.3 Stack pivot instructions

ROP shellcode typically uses stack pivot instructions to
set the value of esp. This is critical in ROP since esp has a
special usage as a global state pointer (just like eip) to get
the address of the next gadget.

deRop monitors all the stack pivot instructions (e.g., <add
esp, 8>; <xchg esp, eax>) to monitor the value of esp.
Note that deRop simply needs to monitor it so that it knows
where the next gadget is, while there does not need to have
any corresponding instructions in the output of deRop, see
the first example in Table 4.

Table 4: Stack pivot transferring example
[ROP instructions | non-ROP instructions |
[add esp, 20 [nil |
| xchg eax, esp | cmp eax, addr4; jz offsetl |

However, there is a special case we need to be careful of,
which is when esp points to a gadget that has been analyzed
by deRop. This happens in some advanced ROP shellcode
that does looping. deRop recognizes this by checking the
value of esp against addresses of all gadgets, and handles it
with a conditional jump instruction in the output.

In the second example shown in Table 4, deRop finds out
that esp = addr4 points to a gadget previously analyzed
that is located at an offset of offsetl. In this case, the
condition of the loop in the original ROP shellcode is repre-
sented by the value of eax, which equals to addr4 except in
the last round of the loop. Therefore, we compare the value
of eax and addr4 in the non-ROP shellcode, and continues
the loop by jumping to offset offsetl. Note that we apply
the same strategy in other cases where it is suspected that
a conditional jump is intended.

4.4.4 Function calls

Function calls are common in ROP. Special handling of
function calls is not a necessity because as long as all instruc-
tions in the function are converted with semantics preserved,
deRop is sound. In the example shown in Table 1, we could
have continued our analysis after gadget 7, after which con-
trol is transferred to the function SetProcessDEPPolicy().
In that case we will be using deRop to analyze the body of
SetProcessDEPPolicy(), which is unnecessary (since this
function does not use ROP) and degrades readability (the
output of deRop will not show a function call but with the
body inlined). Due to these disadvantages, we decide to
make an effort to recognize function calls and follow some
function call conventions in the output of deRop.

Recognizing function calls in ROP can be done by identi-
fying some function characteristics of the epilogue and pro-
logue. For example, the beginning of a function usually con-
tains instructions to change the value of ebp, esp, etc. How-
ever, such characteristics are not reliable especially in release
versions of libraries, and we choose not to rely on them.

Instead, we use a simple but reliable heuristic that the
number of instructions in a function is usually much larger
than that in instructions pointed by gadgets in ROP. In
particular, the number of instructions pointed to by a gadget
is usually smaller than 5, while there are usually more than
50 instructions in a function. We therefore set a threshold of
50 in recognizing functions. Even if we fail to identify some
very small functions using this heuristic, the drawback is
minimal as not following function call convention for such a
small function would not have seriously affected the malware
analyzer’s performance. Another heuristic deRop uses is to
match the destination address with those in the export table
(Windows) or GOT/PLT (Linux). If the address exists in
the tables, it obviously corresponds to a library function call.

After identifying a function call, deRop chains the pa-
rameters, variables, and the return address on the stack in
the right order and then updates esp to point to the first
parameter. In cases where the parameters or variables are
pointers, deRop also prepares the corresponding data and
structure pointed to by these parameters and variables.

In the example shown in Table 1, there are two things
to do to make sure that the function call works well in the
resulting non-ROP shellcode. One is to set up esp as the
return address after the function returns. This is simply the
current value of esp in the non-ROP shellcode, which will be
the value of eip when the non-ROP shellcode is executed.

The other is to set up edi as the target of the jump, which is
the address of the function to be called. We use jmp instead
of call instruction because the execution of call pushes the
address of the next instruction on the stack, which diverges
the ROP execution.

4.4.5 Unconditional jump instructions

An ROP exploit might use unconditional jumps to ex-
ecute some instruction sequences indirectly. For example,
the gadget may point to <jmp eax> while eax points to the
instructions to be executed. In this case, deRop simply re-
cursively applies the analyzing process on the instructions
at the jump target.

4.4.6 Other instructions

These instructions can be processed easily since they do
not involve reading/writing of memory locations, changing
of stack layout, or changing of control flow. We simply copy
these instructions to the output of deRop. Examples include
<xor eax, ebx>, <add eax, ebx>, and many others.

4.5 Post-processing

There are a few steps that we can perform after all gadgets
are analyzed. The purpose of this post-processing is to make
the output of deRop look more similar to traditional non-
ROP shellcode.

4.5.1 Data in memory

As discussed in Section 4.4, we relocate some data/constant
in the original ROP shellcode to a specific location in the
output of deRop, e.g., the last 20 bytes of the initial results
presented in Table 1. This output is correct in the sense
that it is semantically equivalent to the original ROP, but
traditional non-ROP shellcode might not do this, e.g., the
constants are usually directly inserted into code as operands
instead of being stored at a different location on the stack.
Moreover, using a specific location in memory makes the
output of deRop dependent on a specific execution instance.
For example, such non-ROP shellcode might not execute
well in different running instances of an ASLR [29, 32] sys-
tem.

deRop performs its post-processing to find out the use of
such data throughout the program/malware. If the data is
not directly used as a parameter of a function to be called,
and is not being accessed more than once, then deRop re-
places the memory access with the immediate value in the
operand of the instruction, and also deletes the data from
its allocated memory location in the initial result®. In our
example shown in Table 1, this applies to gadget 1, 2, 4, 5,
and 6. We can see that all the 20 bytes at the end of the
non-ROP shellcode are gone after post-processing, and the
memory accesses are replaced by immediate values in the
instructions. Under ASLR, we set it as an option for deRop
to change the absolute addresses into relative addresses (i.e.,
offsets from the base of the resulting non-ROP shellcode).

4.5.2 Null-bytes

Exploit payloads usually require that null-bytes do not
exist, since it truncates the payload in various operations.
deRop first encodes all null-bytes into non-zero values, and

8In cases where pushad is used to prepare data (parameters,
variables, and return address) of a function call, deRop also
replaces them with the corresponding immediate values.

then adds a decoder to the final shellcode to be executed at
the beginning of the exploit to restore the original value.

4.5.3 Return address

In cases where the exploit payload is to overflow a buffer
to overwrite the return address, deRop replaces the word
that overwrites the return address with the address of the
start of the resulting shellcode.

Note that the processing of null-bytes and return address
are needed only if the output of deRop is used directly to
exploit the vulnerable program.

4.6 Implementation

We have implemented deRop in C++ with Visual Stu-
dio 6.0 with less then 2,000 lines of code. deRop now is
implemented as a prototype, but using deRop as a prod-
uct (e.g., running deRop on end user machines) is just a
engineering problem. We believe deRop can be fitted into
large system for malware detection and analysis. It consists
of two components, a debugger and an analyzer. The de-
bugger takes as input the length of the original ROP shell-
code and the vulnerable application, and outputs the off-
sets of the first gadget and the value of esp when control is
first transferred to the exploit code. It uses some Windows
API (e.g., WaitForDebugEvent (), GetThreadContext () and
ContinueDebugEvent ()) to get debug information and con-
structs a special buffer which is shown in Figure 4.

The analyzer takes input the information from the de-
bugger as well as the original ROP shellcode, removes ROP
from it and outputs the non-ROP shellcode. The implemen-
tation of it uses a third-party tool ndisasm® to disassemble
the binary code pointed to by addresses in the gadgets.

With the implementation of deRop, we run some ROP
exploit examples for evaluation, and show our results in Sec-
tion 5.

S. EVALUATION

In this section, we report success in applying deRop to four
real-world ROP exploits. In all four cases, deRop manages
to remove ROP and output the semantically equivalent non-
ROP shellcode. We use the resulting non-ROP shellcode to
exploit the vulnerable programs, and confirm that the same
behaviors are observed in the original ROP exploit and the
non-ROP exploit.

The first two columns of Table 5 summarize the four vul-
nerable applications and the corresponding exploits we use
in our evaluation. The exploits are all published at Exploit
Database'® and tested on Windows XP SP3. Note that a
common feature in these ROP exploits is that they use ROP
to call SetProcessDEPPolicy() to make the appended non-
ROP shellcode executable. Some of them do this by calling
VirtualProtect (). In this sense, these four examples are
relatively easy as the ROP portion performs limited func-
tionality. We stress that we choose these four examples not
because of their simplicity. It is simply because the fact that
most current real-world ROP exploits use this strategy.

The last three columns of Table 5 show the result of our
debugger in locating the gadgets (see Section 4.3). Note that
in two of the exploits the first gadget is located at a large
offset, and deRop manages to find it.

“http://www.nasm.us/doc/nasmdoca.html
Ohttp://wuw.exploit-db.com

Table 5: Locating gadgets in ROP exploits

Vulnerable application Exploit Offset of 1st gadget | Offset of esp | Value of esp
CoolPlayer 2.18 DEP bypass 212 bytes 216 bytes 0x12F18C
WM Downloader 3.1.2.2 Buffer overflow & DEP bypass 17,432 bytes 17,440 bytes 0x0DC5C0
MP3-Nator Buffer overflow & SEH-DEP bypass 28 bytes 32 bytes 0x12FBBS8
SnackAmp Buffer overflow & SEH-DEP bypass 10,564 bytes 10,570 bytes 0x12FA80

5.1 Results of removing ROP from four real-
world exploits

Table 6 shows the results of removing ROP from these
four exploits. An interesting observation is that the output
non-ROP shellcode and the original ROP shellcode are of
about the same size. This is a bit counter-intuitive since
each gadget in ROP points to a sequence of instructions,
which is supposed to be longer than the gadget itself. Our
investigation into the details reveal that this is because

e the instruction sequence pointed to by each gadget
usually contains only less than 5 instructions;

e there is a lot of junk among gadgets in ROP;

e most of the push, pop, and esp-related instructions are
removed in the output non-ROP shellcode.

5.2 Other observations and discussions

We also encounter some special situations when applying
deRop on these real-world ROP exploits.

5.2.1 Non-ROP shellcode in ROP exploits

This is the case for most real-world ROP exploits. ROP
first calls a function which makes the non-ROP shellcode ex-
ecutable, and then transfers control to the non-ROP shell-
code. This shows the importance of deRop being able to
recognize function calls in ROP so that the output of deRop
can be easily analyzed by existing malware analysis tools.

5.2.2 System call

ROP can be used to make system calls, which is common
on Linux. deRop is able to address this in the same way of
handling functions as discussed in Section 4.4. deRop recog-
nizes system call making by looking for <call *¥%gs:0x10>,
which is the new system call instruction on Linux.

5.2.3 ASLR

The address of the stack is different in different running
instances of the same program under address space random-
ization. deRop is capable of removing ROP from exploits
that execute on ASLR systems. Note that due to the post-
processing of data in memory as discussed in Section 4.5,
the output of deRop is also independent of any specific run-
ning instance. That is, although the output of the dynamic
analysis of deRop (value of esp) differs in each running in-
stance, the output of deRop can be always the same, and
is semantically equivalent to the original ROP and executes
on the vulnerable application in all running instances.

5.2.4 Return-less ROP

While transferring ROP into non-ROP, ret instruction
has two special functions: 1) indicating the end of the in-
struction sequences pointed by gadget; 2) changing the value
of esp. These two functions are used to extract instruc-
tion sequences pointed by gadget and trace the value of esp.

When come to return-less ROP, through it does not use ret
instruction sequences ending with ret, there are also similar
instructions act like ret, e.g., jmp instruction and pop-jmp
instructions are used to chain next gadget. Thus, we can
simply monitor the ret-like instructions rather than ret in-
struction to apply deRop in return-less ROP.

5.2.5 Semantically equivalent instructions

As discussed in Section 4.4, for different kinds of special
instructions, we use corresponding instructions to replace
them. Based on the characteristics of ROP and stack , we
select the most direct and uniform instructions which are
certain. Actually, for different ROP shellcode, the trans-
ferring processes are a little different and there are multi-
ple semantically equivalent instructions, so deRop provides
the post-processing to optimize the resulting non-ROP shell-
code. The post-processing described in Section 4.5 is just to
optimize the memory related instructions. There may be
more direct and simpler but equivalent instructions to opti-
mize other types of instructions, which related to equivalent
semantic technique and we leave it for future work.

6. CONCLUSION AND LIMITATIONS

In this paper, we design and implement deRop to re-
move return-oriented programming from malware instances.
deRop enables malware analyzers to use many existing mal-
ware analysis tools to analyze ROP-based malware, which
has not been taken into consideration when the existing
analysis tools were designed and built. deRop is a fully
automated tool that preserves the semantics of the original
malware. We evaluate deRop by applying it to four real-
world ROP exploits and demonstrate its success in removing
ROP and preserving semantics.

We have discussed some of the limitations of deRop in
previous sections, e.g., its output is one running instance
specific in ASLR. Besides that, deRop needs dynamically
executing the vulnerable application in order to locate the
gadgets in the ROP exploit. However, we stress that this
dynamic analysis does not involve running any potentially
harmful instructions in the original ROP exploit code. One
last limitation of deRop is that its output might still be
slightly different from traditional shellcode even with the
post-processing. For example, the output of deRop calls a
function using jmp.

7. REFERENCES

[1] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao,
F. Jahanian, and J. Nazario. Automated classification
and analysis of internet malware. In Proceedings of the
10th International Conference on Recent Advances in
Intrusion Detection (RAID), 2007.

[2] P. Bania. Security mitigations for return-oriented
programming attacks. Whitepaper, Kryptos Logic
Research, 2010.

Table 6: Results in removing ROP from four real-world ROP exploits

Exploit on CoolPlayer WM Downloader MP3-Nator SnackAmp
Code ROP | non-ROP ROP non-ROP ROP | non-ROP ROP non-ROP
Size (bytes) 488 495 21,831 21,418 1,003 1,202 16,700 16,764
of gadgets 7 N/A 44 N/A 34 N/A 53 N/A
of instructions N/A 10 N/A 80 N/A 50 N/A 86
of instructions executed 16 10 134 80 91 50 133 86

[3] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krugel,
and E. Kirda. Scalable, behavior-based malware
clustering. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS),
2009.

[4] U. Bayer, A. Moser, C. Krugel, and E. Kirda.
Dynamic analysis of malicious code. Journal in
Computer Virology, Volume 2(1), 67-77, 2006.

[5] T. Bletsch, X. Jiang, and V. W. Freeh. Jump-oriented
programming: A new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security
(ASIA CCS), 2011.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: generalizing
return-oriented programming to risc. In Proceedings of
the 15th ACM conference on Computer and
communications security (CCS), 2008.

[7] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In Proceedings of the
17th ACM conference on Computer and
Communications Security (CCS), 2010.

[8] S. Checkoway, A. J. Feldman, B. Kantor, J. A.
Halderman, E. W. Felten, and H. Shacham. Can dres
provide long-lasting security? the case of
return-oriented programming and the avc advantage.
In Proceedings of the 2009 Electronic Voting
Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE), 20009.

[9] P. Chen, G. Xiao, X. Shen, X. Yin, B. Mao, and
L. Xie. Drop: Detecting return-oriented programming
malicious code. In Proceedings of the 5th International
Conference on Information Systems Security (ICISS),
20009.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-awaremalware detection. In
Proceedings of the 2005 IEEE Symposium on Security
and Privacy, 2005.

[11] C. Cifuentes and K. J. Gough. Decompilation of
binary programs. Software Practice and Experience,
Volume 25 (7): 811-829, July 1995.

[12] L. Davi, A. Sadeghi, and M. Winandy. Ropdefender:
A detection tool to defend against return-oriented
programming attacks. In Proceedings of the 6th ACM
Symposium on Information, Computer and
Communications Security (ASIA CCS), 2011.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware analysis via hardware virtualization
extensions. In Proceedings of the 15th ACM conference
on Computer and communications security (CCS),
2008.

[14] A. Francillon and C. Castelluccia. Code injection

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

(23]

[24]

25]

(26]

27]

attacks on harvard-architecture devices. In Proceedings
of the 15th ACM conference on Computer and
Communications Security (CCS), 2008.

A. Francillon, D. Perito, and C. Castelluccia.
Defending embedded systems against control flow
attacks. In Proceedings of the first ACM workshop on
Secure execution of untrusted code (SecuCode), 2009.
D. Gao, M. K. Reiter, and D. Song. Binhunt:
Automatically finding semantic differences in binary
programs. In Proceedings of the 10th International
Conference on Information and Communications
Security (ICICS), 2008.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, Volume 6(3), 1998.

X. Hu, T. cker Chiueh, and K. G. Shin. Large-scale
malware indexing using function-call graphs. In
Proceedings of the 16th ACM conference on Computer
and communications security (CCS), 2009.

R. Hund, T. Holz, and F. C. Freiling. Returnoriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Proceedings of the 18th USENIX
Security Symposium, 2009.

J. O. Kephart and W. C. Arnold. Automatic
extraction of computer virus signatures. In
Proceedings of the 4th Virus Bulletin International
Conference, 1994.

T. Kornau. Return oriented programming for the arm
architecture. Master’s thesis, Ruhr-University
Bochum, Germany, 2009. Online:
http://zynamics.com/downloads/
kornautim--diplomarbeit--rop.pdf.

T. Lee and J. Mody. Behavioral classification. In
Proceedings of the 15th Annual EICAR Conference
(EICAR), 2006.

J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating return-oriented rootkits with "return-less”
kernels. In Proceedings of the 5th European conference
on Computer systems (EuroSys), 2010.

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarottie, and
E. Kirda. G-free: Defeating return-oriented
programming through gadget-less binaries. In
Proceedings of The 26th Annual Computer Security
Applications Conference (ACSAC), 2010.

OpenBSD. W xor X, the openbsd new features.
http://wuw.openbsd.org/33.html.

R. Roemer, E. Buchanan, H. Shacham, and S. Savagm.
Return-oriented programming: Systems,languages,
and applications. Manuscript, 2009. Online:
http://cseweb.ucsd.edu/hovav/dist/rop.pdf.

V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar.
Signature generation and detection of malware
families. In Proceedings of the 13th Australasian

[30]

[31]

conference on Information Security and Privacy
(ACISP), 2008.

H. Shacham. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS), 2007.
H. Shacham, M. Page, B. Pfaff, E. Goh,

N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proceedings of the
11th ACM conference on Computer and
Communications Security (CCS), 2004.

K. Wang and S. Stolfo. Anomalous payload-based
network intrusion detection. In Proceedings of the 7th
International Symposium on (RAID), 2004.

C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
CWSandbox. IEEE Security and Privacy, Volume
5(2), 2007.

J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent
runtime randomization for security. In Proceedings of
the 22nd Symposium on Reliable and Distributed
Systems (SRDS), 2003.

