
Understanding the Security Risks of Docker Hub

Peiyu Liu1, Shouling Ji1,(�),?, Lirong Fu1, Kangjie Lu2, Xuhong Zhang1,
Wei-Han Lee3, Tao Lu1, Wenzhi Chen1,(�),?, and Raheem Beyah4

1 Zhejiang University, Hangzhou, China
{liupeiyu,sji,fulirong007,lutao,chenwz}@zju.edu.cn,

xuhongnever@gmail.com
2 University of Minnesota Twin Cities, Minneapolis, USA

kjlu@umn.edu
3 IBM Research, Yorktown Heights, USA

wei-han.lee1@ibm.com
4 Georgia Institute of Technology, Atlanta, USA

rbeyah@ece.gatech.edu

Abstract. Docker has become increasingly popular because it provides
efficient containers that are directly run by the host kernel. Docker Hub is
one of the most popular Docker image repositories. Millions of images have
been downloaded from Docker Hub billions of times. However, in the past
several years, a number of high-profile attacks that exploit this key channel
of image distribution have been reported. It is still unclear what security
risks the new ecosystem brings. In this paper, we reveal, characterize, and
understand the security issues with Docker Hub by performing the first
large-scale analysis. First, we uncover multiple security-critical aspects of
Docker images with an empirical but comprehensive analysis, covering
sensitive parameters in run-commands, the executed programs in Docker
images, and vulnerabilities in contained software. Second, we conduct
a large-scale and in-depth security analysis against Docker images. We
collect 2,227,244 Docker images and the associated meta-information from
Docker Hub. This dataset enables us to discover many insightful findings.
(1) run-commands with sensitive parameters expose disastrous harm to
users and the host, such as the leakage of host files and display, and
denial-of-service attacks to the host. (2) We uncover 42 malicious images
that can cause attacks such as remote code execution and malicious
cryptomining. (3) Vulnerability patching of software in Docker images is
significantly delayed or even ignored. We believe that our measurement
and analysis serves as an important first-step study on the security issues
with Docker Hub, which calls for future efforts on the protection of the
new Docker ecosystem.

1 Introduction

Docker has become more and more popular because it automates the deployment
of applications inside containers by launching Docker images. Docker Hub, one

? Shouling Ji and Wenzhi Chen are co-corresponding authors.

2 P. Liu et al.

of the most popular Docker image registries, provides a centralized market for
users to obtain Docker images released by developers [4, 31, 35]. Docker has been
widely used in many security-critical tasks. For instance, Solita uses Docker to
handle the various applications and systems associated with their management
of the Finnish National Railway Service [9]. Amazon ECS allows users to easily
run applications on a managed cluster of Amazon EC2 instances in Docker
containers [1]. In addition, millions of Docker images have been downloaded from
Docker Hub for billion times by users for data management, website deployment,
and other personal or business tasks.

The popularity of Docker Hub however brings many high-profile attacks. For
instance, on June 13, 2018, a research institute reported that seventeen malicious
Docker images on Docker Hub earned cryptomining criminals $90,000 in 30
days [8]. These images have been downloaded collectively for 5 million times
in the past year. The report also explained the danger of utilizing unchecked
images on Docker Hub: “For ordinary users, just pulling a Docker image from
the Docker Hub is like pulling arbitrary binary data from somewhere, executing
it, and hoping for the best without really knowing what’s in it”. Therefore, a
comprehensive and in-depth security study of Docker Hub is demanded to help
users understand the potential security risks.

The study of Docker Hub differs from the ones of other ecosystems such as App
store and virtual-machine image repositories [28, 32, 20, 30, 15] in the following
aspects. (1) Docker images are started through run-commands. They are executed
through special instructions called run-commands which are security-critical to
the created containers. (2) The structures of Docker images are more complex than
traditional applications. A single image may contain a large number of programs,
environment variables, and configuration files; it is hard for a traditional analysis
to scale to scan all images. (3) Docker images can bring new risks to not only the
container itself but also the host because the lightweight virtualization technology
leveraged in containers allows the sharing of the kernel. (4) The vulnerability-
patching process of Docker images is significantly delayed because the programs
are decoupled from the mainstream ones, and developers are less incentivized to
update programs in Docker images. All the aforementioned differences require a
new study for the security of Docker Hub.

The unique characteristics of Docker Hub call for an urgent study of its new
security issues. However, a comprehensive and in-depth study entails overcoming
multiple challenges. (1) It is not clear how to analyze the security impacts of
various categories of information on Docker Hub. For example, run-commands are
security-critical to Docker containers while a method for measuring the security
impacts of run-commands is still missing. This requires significant empirical
analysis and manual effort. (2) Obtaining and analyzing Docker images and the
associated meta-information in a scalable manner is non-trivial. For example, it
is difficult to perform a uniform analysis on Docker images, since a Docker image
contains a large number of files in a broad range of types (e.g., ELF, JAR, and
Shell Scripts).

Understanding the Security Risks of Docker Hub 3

In this paper, we perform the first security analysis against Docker Hub. Based
on the unique characteristics of Docker Hub, we first empirically identify three
major security risks, namely sensitive parameters in run-commands, malicious
docker images, and unpatched vulnerabilities. We then conduct a large-scale and
in-depth study against the three security risks. (1) Run-commands. We carefully
analyze the parameters in run-commands to discover sensitive parameters that
may pose threats to users. Moreover, we develop multiple new attacks (e.g.,
obtaining user files in the host and the host display) in Docker images to demon-
strate the security risks of sensitive parameters in practice. We also conduct a
user study to show that users, in general, are unaware of the risks from sensitive
parameters. (2) Malicious executed programs. To study malicious Docker images
efficiently, we narrow down our analysis to only the executed programs. We
implement a framework to automatically locate, collect, and analyze executed
programs. By leveraging this framework, we scan more than 20,000 Docker im-
ages to discover malicious executed programs. (3) CVE-assigned vulnerabilities.
We provide a definition of the life cycle of vulnerability in Docker images and
manually analyze the length of the time window of vulnerabilities in Docker
images. To enable the analysis, we collect a large number of images and their
meta-information from Docker Hub. Our collected dataset contains all the public
information of 2,227,244 images from 975,858 repositories on Docker Hub.

The comprehensive analysis enables us to have multiple insightful findings.
First of all, we find that the run-commands with sensitive parameters presented in
Docker Hub may introduce serious security risks, including the suffering of denial-
of-service attack and the leakage of user files in the host and the host display.
Moreover, we observe that each recommended run-command in the repository
description contains one sensitive parameter on average. Unfortunately, our user
study reveals that users are not aware of the threats from sensitive parameters—
they will directly execute run-commands specified by developers without checking
and understanding them. Second, our analysis shows that malicious images are
hidden among common ones on Docker Hub. Using our analysis framework, we
have discovered 42 malicious images. The malicious behaviors include remote
execution control and malicious cryptomining. Finally, we observe that the
vulnerability patching for the software in Docker images is significantly delayed
or even ignored. In particular, almost all the images on Docker Hub suffer from
unpatched software vulnerabilities. In extreme cases, a single image may contain
up to 7,500 vulnerabilities. In addition, vulnerabilities in the software of Docker
images tend to have a much longer life cycle due to the lack of image updates.
More critically, we find that the in-Docker vulnerabilities can even cause harms
to the host machine through Docker, e.g., crashing the host.

Our analysis and findings reveal that the Docker ecosystem brings new security
threats to users, contained software, and the host machine as well. To mitigate
these threats, we suggest multiple potential solutions (see Section 7) such as
automatically fixing vulnerabilities in images, detecting malicious images in
Docker Hub, etc. We have reported all the security issues uncovered in this paper
to Docker Hub and they are investigating to confirm these issues.

4 P. Liu et al.

In summary, our work makes the following contributions.

– We empirically identify three major sources of security risks in Docker Hub,
namely sensitive parameters in run-commands, malicious docker images, and
unpatched vulnerabilities. We then conduct a large-scale and in-depth study
against the three security risks based on all the public information of 2,227,244
images collected from 975,858 repositories on Docker Hub. We have open-
sourced this dataset to support reproducibility and motivate future work in
Docker security analysis [13].

– We uncover many new security risks on Docker Hub. 1) Sensitive parameters
in run-commands can expose disastrous harm to users and the host, such as
the leakage of host files and display, and denial-of-service attacks to the host.
2) We uncover 42 malicious images that can cause attacks such as remote code
execution and malicious cryptomining. 3) Vulnerability patching of software in
Docker images is significantly delayed by 422 days on average.

– Our analysis calls for attention to the security threats posed by the new Docker
ecosystem. The threats should be addressed collectively by Docker image
registry platforms, image developers, users, and researchers. Moreover, we have
reported all the security issues uncovered in this paper to Docker Hub and
suggest multiple mitigation approaches.

2 Background and Threat Model

In this section, we provide a brief introduction of Docker Hub and its critical
risk resources. Then, we describe the threat model of our security analysis.

2.1 Critical Risk Sources in Docker Hub

Docker Hub is the world’s largest registry of container images [5]. Images on
Docker Hub are organized into repositories, which can be divided into official
repositories and community repositories. For each image in a Docker Hub reposi-
tory, besides the image itself, meta-information is also available to the users, such
as repository description and history, Dockerfile [5], the number of stars and pulls
of each repository, and developer information. To perform a risk analysis against
Docker Hub, we first need to identify potential risk sources. We empirically
identify risk sources based on which major components control the behaviors of a
Docker image.

Run-command and sensitive parameter. In order to run a Docker container,
users need to execute an instruction called run-command. A run-command mainly
specifies the image and parameters used to start a container. For instance, a
developer may specify a recommended run-command on Docker Hub, such
as “Start container with: docker run --name flaviostutz-opencv2 --privileged -
p 2222:22 flaviostutz/opencv-x86”. For users who have never used the image
before, the recommended run-commands can be helpful for deploying their
containers. However, it is unclear to what extent users should trust the run-
commands posted by the developers, who can publish run-commands without

Understanding the Security Risks of Docker Hub 5

any obstruction because Docker Hub does not screen these content. In addition,
a run-command may contain a variety of parameters that can affect the behavior
of the container [6]. Some of these parameters are sensitive since they control the
degree of isolation of networks, storage, or other underlying subsystems between
a container and its host machine or other containers. For example, when users
run an image with the parameter of --privileged, the container will get the root
access to the host. Clearly, the misuse of run-commands containing sensitive
parameters may lead to disastrous consequences on the container as well as the
host (see Section 4).

Executed programs. Previous work already shows that a large amount of
software in Docker images is redundant [31]. Hence, when analyzing the content
of a Docker image, we should focus on the executed programs that are bound up
with the security of the image. Based on our empirical analysis, we find that the
entry-file (an executable file in Docker images, specified by a configure file or run-
commands) is always the first software triggered when a container starts. Besides,
the entry-file can automatically trigger other files during execution. Therefore,
the executed programs (the entry-file and subsequently triggered files) are key
factors that directly affect the safety of a container. Furthermore, in general,
it is less common for users to run software other than executed programs [4].
Therefore, in the current study, we choose to analyze executed programs to check
malicious images for measurement purposes.

Vulnerabilities in contained software. A Docker image is composed of a
large number of software packages, vulnerabilities in these software packages bring
critical security risks for the following reasons. Vulnerabilities can be exploited
by attackers to cause security impacts such as data leakage. Additionally, Docker
software programs are often duplicated from original ones, and Docker developers
lack incentives to timely fix vulnerabilities in the duplicated programs. As a
result, the security risks with vulnerabilities are elevated in Docker because
vulnerabilities take a much longer time to be fixed in Docker images.

2.2 Threat Model

Attacker

Developer User

DockerHub

Normal
Image

Malicious
Image
Vulnerable
Image

Malicious
Command
Sensitive
Command

Attacker

Fig. 1: The threat model of our security anal-
ysis.

As shown in Figure 1, there are two
different categories of threats that
Docker Hub may face. (1) Vulnera-
ble images. Developers upload their
images and the associated meta-
information to Docker Hub, which
may contain vulnerabilities. If users
download and run the vulnerable
images, they are likely to become
the targets of attackers who ex-
ploit vulnerabilities. Additionally,
the run-commands announced by
developers may contain sensitive

6 P. Liu et al.

parameters, which may bring more security concerns such as giving containers
root access to the host (see Section 4). (2) Malicious images. Attackers may upload
their malicious images to Docker Hub, and sometimes together with malicious
run-commands in the description of their images. Due to the weak surveillance of
Docker Hub, malicious images and metadata can easily hide themselves among
benign ones (see Section 5) [8]. Once users download a malicious image and run it,
they may suffer from attacks such as cryptomining. On the other hand, malicious
run-commands can also lead to attacks such as host file leakage. In this study,
since it is mainly for measurement purposes, we assume that attackers are not
aware of the techniques we employ to analyze Docker images. Otherwise, they
can hide the malicious code by bypassing the analysis, leading to an arms race.

3 Analysis Framework and Data Collection

In this section, we provide an overview of our analysis framework. Then we
introduce our methods of data collection and provide a summary for the collected
dataset.

3.1 Overview of Our Analysis Framework

Result

Docker Hub

Crawler Downloader Images

Extractor

Run-Command and
Sensitive Parameter

Executed Program

Analyzer

Website

Code

Data

Data
Collection

Security
Analysis

Meta Information

Novel
Attributes
Extraction

···

Critical Sources

Repository
Name

Developer
Information

Description

③

① ②

④

Fig. 2: The framework of our analysis.

In our security analy-
sis, we focus on the
key risk sources (run-
commands, sensitive pa-
rameters, entry-files and
vulnerabilities) in Docker
Hub, as uncovered in
Section 2.1. Our anal-
ysis framework for the
study is outlined in Fig-
ure 2. We first collect
a large-scale dataset, in-
cluding the images and
all the public informa-
tion of a Docker im-
age such as image name,
repository description,
and developer informa-
tion, from Docker Hub

(1©, 2©). After data collection, the extractor utilizes a set of customized tools
to obtain several previously-ignored essentials such as sensitive parameters and
executed programs from the raw data (3©). After obtaining the set of essentials,
we perform systematic security analysis on Docker Hub from various aspects
by leveraging Anchore [2], VirusTotal intelligence API [11], and a variety of
customized tools (4©).

Understanding the Security Risks of Docker Hub 7

3.2 Data Collection and Extraction

The abundant information (described in Section 2.1) of Docker images on Docker
Hub is important in understanding the security of Docker Hub. However, most
of this information has never been collected before, leading to incomprehensive
analysis. Hence, we implement a customized web crawler that leverages Docker
Hub API described in [3] to collect the Docker images and their associated
meta-information from Docker Hub. All the information we obtain from Docker
Hub is publicly available to anyone and it is legal to perform analysis on this
dataset.

Summary of Our Collected Data. Our dataset, as shown in Table 1,

Table 1: Data Collected in Our Work.

No.
Repositories

No.
Images

No.
Developers

Official 147 1,384 1
Community 975,711 2,225,860 349,860

Total 975,858 2,227,244 349,861

contains all the public informa-
tion of the top 975,858 repositories
on Docker Hub. For each reposi-
tory, the dataset contains the im-
age files and the meta-information
described in Section 2.1. Further-
more, to support in-depth analysis,
we further extract the following
data and code from the collected
raw data.

Collecting run-command and sensitive parameter. As discussed in Sec-
tion 2.1, run-commands and sensitive parameters can make a great impact on
the behavior of a container. In order to perform security analysis on them, we
collect run-commands by extracting text contents that start with ‘‘docker run’’
from the repository descriptions and further obtain sensitive parameters from
the run-commands through string matching.

Collecting executed program. As discussed in Section 2.1, the executed
program is a key factor that directly affects the security of a container. Therefore,
we develop an automatic parser to locate and extract the executed program. For
each image, our parser first locates the entry-file according to the Dockerfile or
the manifests file. Once obtaining the entry-file, the parser scans the entry-file to
locate the files triggered by entry-file. Then, the parser scans the triggered file
iteratively to extract all executed programs in the image. For now, our parser can
analyze ELF files and shell scripts by leveraging strings [10] and a customized
script interpreter, respectively.

4 Sensitive Parameters

In this section, we (1) identify sensitive parameters; (2) investigate the user
awareness of sensitive parameters; (3) propose novel attacks exploiting sensitive
parameters; (4) study the distribution of sensitive parameters on Docker Hub.

8 P. Liu et al.

4.1 Identifying Sensitive Parameters

As described in Section 2.1, the parameters in run-commands can affect the
behaviors of containers. However, among the over 100 parameters provided
by Docker, it is unknown which parameters can cause security consequences.
Therefore, we first obtain all the parameters and their corresponding descriptions
from the documentation provided by Docker. Then, we manually identify the
sensitive parameters by examining if they satisfy any of the following four proposed
criteria: (1) Violate the isolation of file systems; (2) Violate the isolation of
networking; (3) Break the separation of processes; (4) Escalate runtime privileges.

Next, we explain why we choose these criteria. (1) From the security perspec-
tive, each Docker container maintains its own file system isolated from the host
file system. If this isolation is broken, a container can gain access to files on the
host, which may lead to the leakage of host data. (2) By default, each Docker
container has its own network stack and interfaces. If this isolation is broken, a
container can have access to the host’s network interfaces for sending/receiving
network messages, which, for example, may cause denial of service attacks. (3)
Generally, each Docker container has its own process-tree separated from the
host. If this isolation is broken, a container can see and affect the processes on
the host, which may allow containers to spy the defense mechanism on the host.
(4) Most potentially dangerous Linux capabilities, such as loading kernel modules,
are dropped in Docker containers. If a container obtains these capabilities, it may
affect the host. For example, it is able to execute arbitrary hostile code on the
host.

4.2 User Awareness of Sensitive Parameters

We find that nearly all the default container isolation and restrictions enforced
by Docker can be broken by sensitive parameters in run-commands, such as
--privileged, -v, --pid, and so on. We describe the impact of these sensitive
parameters in Section 4.3. However, the real security impacts of these sensitive
parameters on the users of Docker Hub in practice is not clear. Therefore, the first
question we aim to answer is “are users aware of the sensitive parameters when
the parameters in run-commands are visible to them?” To answer this question,
we conduct a user study to characterize the behaviors of users of Docker Hub,
which allows us to understand user preferences and the corresponding risks.

Specifically, we survey 106 users including 68 security researchers and 38
software engineers from both academia and industry fields. For all the 106 users,
97% of them only focus on the functionality of images and have never raised doubts
about the descriptions, e.g., the developer identification, the run-commands, on
Docker Hub. It is worth noting that, even for 68 users who have a background
on security research, 95% of them trust the information provided on Docker
Hub. 90% of security experts run an image by exactly following the directions
provided by image developers. Only 10% of security experts indicate that they
prefer to figure out what the run-commands would do. Indeed, the study can
be biased due to issues such as the limited number of the investigated users,

Understanding the Security Risks of Docker Hub 9

imbalanced gender and age distribution, and so on. However, our user study
reveals that users, even the ones with security-research experience, do not realize
the threats of sensitive parameters in general. Nearly 90% of users exactly execute
run-commands specified by developers without checking and understanding them.
Hence, we conclude that sensitive parameters are an overlooked risk source for
Docker users. More details of the user study are deferred to Appendix A.1.

4.3 Novel Attacks Exploiting Sensitive Parameters

To demonstrate the security risks of sensitive parameters in practice, we develop
a set of new attacks in Docker images that do not contain any malicious software
packages. Our attacks rely on only run-commands with sensitive parameters
to attack the host. Note that we successfully uploaded these images with our
“malicious” run-commands to Docker Hub without any obstruction, confirming
that Docker Hub does not carefully screen run-commands. However, to avoid
harm to the community, we immediately removed the sensitive parameters in the
run-commands after the uploading, and performed the attacks in our local lab
machines only.

1 g i t c l one https : //Attacker /data . g i t
2 cd data
3 g i t pu l l
4 cp −r usr−data .
5 g i t add .
6 cur date=‘date ‘
7 g i t commit −m ” $cur date ”
8 g i t push

Fig. 3: Code example to implement the
leakage of host files.

The leakage of host files. As de-
scribed in Figure 3, we show how to
leak user files in the host using sensi-
tive parameters. Specifically, --volume
or -v is used to mount a volume on the
host to the container. If the operator
uses parameter, -v src:dest, the con-
tainer will gain access to src which is
a volume on the host. Exploiting this
parameter, attackers can maliciously
upload user data saved in the host vol-
ume to their online repository, such as GitHub. It is important to note that this
attack can be user-insensitive, i.e., the attacker can prepare a configure file in
the malicious image to bypass the manual authentication.

Other attacks are delayed to Appendix A.2. Overall, these novel attacks
we proposed in this paper demonstrate that sensitive parameters can expose
disastrous harm to the container as well as the host.

4.4 Distribution of Sensitive Parameters

Next, we study the distribution of sensitive parameters used in real images on
Docker Hub. We observe that 86,204 (8.8%) repositories contain the recommended
run-commands in their descriptions on Docker Hub. Moreover, as shown in Table 2,
there are 81,294 sensitive parameters in these run-commands—on average, each
run-command contains one sensitive parameter. Given the common usage of
sensitive parameters and their critical security impacts, it is urgent to improve
users’ awareness of the potential security risks brought by sensitive parameters
and propose effective vetting mechanisms to detect these risks.

10 P. Liu et al.

Table 2: Distribution of sensitive parameters.
Criteria No. Sensitive Parameters

Violate the isolation of file systems 33,951
Violate the isolation of networking 43,278
Break the separation of processes 56

Escalate runtime privileges 4,009

Total 81,294

5 Malicious Images

As reported in [8], high-profile attacks seriously damaged the profit of users.
These attacks originate from the launching of malicious images such as electronic
coin miners. In order to detect malicious images, manual security analysis on each
software contained in a Docker image yields accurate results, which is however
extremely slow and does not scale well for large and heterogeneous software
packages. On the other hand, a dynamic analysis also becomes impractical since it
is even more time-consuming to trace system calls, APIs, and network for millions
of Docker images. Compared to the two methods above, a static analysis seems
to be a potential solution to overcome these challenges. However, the number of
software packages contained in each image varies from hundreds to thousands. It
is still challenging to analyze billions of software packages using static analysis.
Fortunately, we found that a majority of software packages in Docker images are
redundant [31] which thus can be filtered out for efficient analysis. However, it is
unclear which software deserves attention from security researchers. As stated in
Section 2.1, we propose to focus on the executed programs. As long as a malicious
executed program is detected, the corresponding image can be confirmed as
malicious. Considering that our research goal is to characterize malware for
measurement purposes instead of actually detecting them in practice, we focus on
the executed programs only rather than other software for discovering malicious
images in this study. We will discuss how to further improve the detection in
Section 8.

5.1 Malicious Executed Programs

Detecting malicious executed programs. By leveraging the parser proposed
in Section 3.2, we can obtain all the executed programs in the tested images.
We observe that the file types of the extracted executed programs could be
JAR written by JAVA, ELF implemented by C++, Shell Script, etc. It is
quite challenging to analyze many kinds of software at the same time, since
generating and confirming fingerprints for malware are both difficult and time-
consuming. Therefore, we turn to online malware analysis tools for help. In
particular, VirusTotal [11] is a highly comprehensive malware detection platform
that incorporates various signature-based and anomaly-based detection methods
employed by over 50 anti-virus (AV) companies such as Kaspersky, Symantec.

Understanding the Security Risks of Docker Hub 11

Therefore, it can detect various kinds of malware, including Trojan, Backdoor,
and BitcoinMiner. As such, we employ VirusTotal to perform a primary screening.
However, prior works have shown that VirusTotal may falsely label a benign
program as malicious [14, 22, 29]. To migrate false positives, most of the prior
works consider a program malicious if at least a threshold of AV companies
detects it. In fact, there is no agreement in the threshold value. Existing detection
has chosen two [14], four [22], or five [29] as the threshold. In this paper, to more
precisely detect malicious programs, we consider a program as malicious only
if at least five of the AV companies detect it. This procedure ensures that the
tested programs are (almost) correctly split into benign and malicious ones.

The results of the primary screening only report the type of each malware
provided by anti-virus companies. It is hard to demonstrate the accuracy of
primary screening results, let along understanding the behavior of each malware.
Therefore, after we obtain a list of potentially malicious files from the primary
screening, a second screening is necessary to confirm the detection results and
analyze the behavior of these files. Specifically, we dynamically run the potentially
malicious files in a container and collect the logs of system call, network, and so
on to expose the security violations of such files.

Finally, we implement a framework to finish the above pipeline. First, our
framework utilizes our parser to locate and extract executed programs from
the Docker images. Second, it leverages ViusTotal API to detect potentially
malicious files. Third, we implement a container which contains a variety of tools
such as strace and tcpdump for security analysis. Our framework leverages this
container as a sandbox for automatically running and tracing the potentially
malicious files to generate informative system logs. Since most benign images are
filtered out by the primary screening, system logs are generated for only a few
potentially malicious images. This framework greatly saves manual efforts and
helps detect malicious images rapidly.

5.2 Distribution of Malicious Images

We first study the executed programs in the latest images in 147 official reposito-
ries, and we find that there are no malicious executed programs in these official
images. Then, to facilitate in-depth analyses on community images, we extract
the following subsets from the collected dataset for studying the executed pro-
grams. 1) The latest images in the top 10,000 community repositories ranked by
popularity. 2) According to the popularity ranking, we divide the rest community
repositories into 100 groups and randomly select 100 latest images from each
group. In this way, we obtain 10,000 community images.

Results. On average, our parser proposed in Section 3.2 takes 5 and 0.15
seconds in analyzing one image and one file, respectively. The parser locates
693,757 executed programs from the tested images. After deduplication, we get
36,584 unique executed programs, in which there exist 13 malicious programs
identified by our framework. The 13 malicious programs appear in 17 images.
Moreover, we notice that all the malicious programs are entry-files in these

12 P. Liu et al.

malicious images. This observation indicates that it is common for malicious
images to perform attacks by directly utilizing a malicious entry-file, instead of
subsequently triggered files.

Intuitively, the developer of a malicious image may release other malicious
images on Docker Hub. Therefore, we propose to check the images that are
related to malicious images. By leveraging the metadata collected in Section 3.2,
once we detect a malicious image, we can investigate two kinds of related images:
(1) the latest 10 images in the same repository and (2) the latest images in the
most popular 10 repositories created by the same developer. We obtain 48 and
84 of these two types of related images respectively, in which there are 27 images
contain the same malicious file found in the previously-detected malicious images.
After analyzing all the related images by leveraging the framework developed in
Section 5.1, we further obtain 186 new executed programs, in which there are
20 new malicious programs in 25 images. This insightful finding indicates that
heuristic approaches, such as analyzing related images proposed in this work,
are helpful in discovering malicious images and programs effectively. We hope
that the malicious images and insights discovered in this paper can serve as an
indicator for future works. The case study of the detected malicious images is
deferred to Appendix A.3.

6 CVE Vulnerabilities

In this section, we evaluate the vulnerabilities in Docker images which are
identified through Common Vulnerabilities and Exposures (CVE) IDs because
the information of CVEs is public, expansive, detailed, and well-formed [34].
First, we leverage Anchore [2] to perform vulnerability detection for each image
and study the distribution of the discovered vulnerabilities in Docker images.
The results demonstrate that both official and community images suffer from
serious software vulnerabilities. More analysis about vulnerablities in images are
deferred to Appendix A.4. Then, we investigate the extra window of vulnerability
in Docker images.

Defining of the extra window of vulnerability. To understand the timeline
of the life cycle of a vulnerability in Docker images, accurately determining the
discovery and patch time of a vulnerability, the release and update time of an
image is vital. However, several challenges exist in determining different times.
For instance, a vulnerability may be patched multiple times. In addition, different
vendors might release different discovery times. Hence, we propose to first define
these times motivated by existing research [34].
- Discovery-time is the earliest reported date of a software vulnerability being
discovered and recognized to pose a security risk to the public.
- Patch-time is the latest reported date that the vendor, or the originator of the
software releases a fix, workaround, or a patch that provides protection against
the exploitation of the vulnerability. If the vulnerability is fixed by the upgrade
of the software and the patch is not publicly available, we record the date of the
upgrade of the software instead.

Understanding the Security Risks of Docker Hub 13

- For a vulnerability, release-time is the date that the developer releases an image
that first brings in this vulnerability.

- For a vulnerability, upgrade-time is the date that the developer releases a new
edition of the image, which fixes this vulnerability contained in the previous
edition.

Window of Vulnerability in Software

Discovery-time Patch-time

Upgrade-timeRelease-time
Time

Window of Vulnerability in Image

Time

Extra Window of Vulnerability in Image

Time

Discovery-time

Release-time

Patch-time

Upgrade-time

Discovery-time Patch-time

Release-time Upgrade-time

Td Tr Tu

TdTr Tp Tu

Td Tp Tr Tu

Tp

Fig. 4: Extra window of vulnerabilities in Docker
images.

Suppose that a vulnera-
bility of software S is discov-
ered at Td. Then after a pe-
riod of time, the developer
of S fixes this vulnerability
at Tp. Image I first brings
in this vulnerability at Tr. It
takes extra time for the de-
veloper of I to fix the vulner-
ability and update this im-
age at Tu. The developer of
Image I is supposed to im-
mediately fix the vulnerabil-
ity once the patch is publicly
available. However, it usually
takes a long time before de-
velopers actually fix the vul-
nerability in an image. Therefore, we define We, the extra window of vulnerability
in images, to measure how long it takes from the earliest time the vulnerability
could be fixed to the time the vulnerability is actually fixed. Figure 4 presents
three different cases of the extra window of vulnerability. In the first two cases,
We is spreading from Tp to Tu. In the last case, even though the patch of a
vulnerability is available, image I still brings in the vulnerability, so the We starts
at Tr and ends at Tu. For all the cases, there is always an extra time window of
vulnerability in image I before the developer updates I.

Obtaining different times. We choose the latest five editions of the 15 most
popular images and randomly sample other 15 Docker images to investigate
the extra window of vulnerabilities in images. By leveraging Anchore [2], we
obtain 5,608 CVEs from these 30 images. After removing duplication, 3,023
CVEs remain, from which we randomly sample 1,000 CVEs for analysis. Then,
we implement a tool to automatically collect discovery-, patch-time, and image
release-, update-time for each CVE by leveraging the public information released
on NVD Metrics [12]. We aim to obtain all the vital time of 1,000 CVEs from
public information. However, the discovery- and patch-time of vulnerabilities are
not always released in public. Therefore, we only obtain the complete information
of vital time of 334 CVEs. It is worth noting that in some complex cases (e.g.,
there are multiple discovery-time for a CVE), we manually collect and confirm
the complete information by reviewing the external references associated with
CVEs.

14 P. Liu et al.

Results. After analyzing the vital time of the 334 CVEs, we observe that it takes
181 days on average for common software to fix a vulnerability. However, the
extra window of vulnerabilities in images is 422 days on average while the longest
extra window of vulnerabilities could be up to 1,685 days, which allows sufficient
time for attackers to craft corresponding exploitations of the vulnerabilities in
Docker images.

7 Mitigating Docker Threats

In this section, we propose several possible methods to mitigate the threats
uncovered in this paper.

Sensitive parameters. To mitigate attacks abusing sensitive parameters, one
possible method is to design a framework which automatically identifies sensitive
parameters and alerts users on the webpages of repository descriptions on Docker
Hub. First of all, it is necessary to maintain a comprehensive list of sensitive
parameters by manual analysis. After that, sensitive parameters in the descriptions
of Docker images can be identified easily by leveraging string matching. Docker
Hub should be responsible for displaying the detection results in the image
description webpage and prompting the users about the possible risks of the
parameters in run-commands. The above framework can be implemented as a
backend of the website of Docker Hub or a browser plug-in. Additionally, runtime
alerts, as adopted by iOS and existing techniques [33, 38], can warn users of
potential risks before executing a run-command with sensitive parameters, which
will be an effective mechanism to mitigate the abusing of sensitive parameters.

Malicious images. To detect malicious images, traditional static and dynamic
analysis, e.g., signature-based method, system call tracing can be certainly helpful.
However, many challenges do exist. For example, if the redundant files of an
image cannot be removed accurately, it will be extraordinarily time-consuming to
analyze all the files in an image by traditional methods. The framework proposed
in Section 5.1 can be utilized to solve this problem. Furthermore, heuristic
approaches, such as analyzing related images proposed in Section 5.2, could also
be beneficial in discovering malicious images.

Vulnerabilities. Motivated by previous research [18], we believe that automatic
updating is an effective way to mitigate the security risks from vulnerable
images. However, software update becomes challenging in Docker. Because the
dependencies among a large quantity of software are complicated and arbitrary
update may cause a broken image. We propose multiple possible solutions to
automated updating for vulnerable software packages. First, various categories
of existing tools such as Anchore [2] can be employed to obtain vulnerability
description information including the CVE ID of the vulnerability, the edition of
the corresponding vulnerable software packages that bring in the vulnerability,
the edition of software packages that repairs this vulnerability. Second, package
management tools, e.g., apt, yum, can be helpful to resolve the dependency
relationship among software packages. After we obtain the above information,
we may safely update vulnerable software and the related software.

Understanding the Security Risks of Docker Hub 15

8 Discussion

In this section, we discuss the limitations of our approach and propose several
directions for future works.

Automatically Identifying Malicious Parameters. We perform the first
analysis on sensitive parameters and show that these parameters can lead to
disastrous security consequences in Section 4. However, the sensitive parameters
we discuss in this paper are recognized by manual analysis. Obviously, there are
other sensitive parameters in the field that still need to be discovered in the future.
Additionally, even though we discover many sensitive parameters on Docker Hub,
it is hard to identify which parameters are published for malicious attempts
automatically. Hence, one future direction to improve our work is to automatically
identify malicious parameters in repository descriptions. One possible method is
gathering images with the similar functionalities and employ statistical analysis to
detect the deviating uses of sensitive parameters—deviations are likely suspicious
cases, given that most images are legitimate.

Improving Accuracy for Detecting Malicious Images. In Section 5, we
narrow down the analysis of malicious images to the executed programs. Although
this method achieves the goal of discovering security risks in Docker Hub, it
still has shortcomings for detecting malicious images accurately. For example,
malware detection is a well-known arms-race issue [17]. First of all, VirusTotal,
the detector we used in the primary screening may miss malware. Additionally, we
cannot detect malicious images that perform attacks with other files rather than
their executed programs. For example, our approach cannot detect images that
download malware during execution, since our parser performs static analysis.
Furthermore, after we obtain the system log of potential malicious images, we
conduct manual analysis on these log files. Motivated by [21], we plan to include
more automatic techniques to parse and analyzing logs as future work. Moreover,
we plan to analyze more images in the future.

Polymorphic Malware. Malware can change their behaviors according to
different attack scenarios and environments [25, 17]. Since our research goal is to
characterize malware for measurement purposes instead of actually detecting them
in practice, we employ existing techniques to find and analyze malware. However,
it is valuable to understand the unique behaviors of Docker Malware. For instance,
Docker has new fingerprints for malware to detect its running environments.
How to emulate the Docker fingerprints to expose malicious behaviors can be an
interesting future topic.

9 Related work

Vulnerabilities in Docker images. Many prior works focus on the vulnera-
bilities in Docker images [23, 36, 39, 27, 16]. For instance, Shu et al. proposed the
Docker Image Vulnerability Analysis (DIVA) framework to automatically discover,
download, and analyze Docker images for security vulnerabilities [36]. However,

16 P. Liu et al.

these studies only investigate the distribution of vulnerabilities in Docker images,
while our work uniquely conducts in-depth analysis on new risks brought by
image vulnerabilities, such as the extra window of vulnerability.

Security reinforcement and defense. Several security mechanisms have
been proposed to ensure the safety of Docker containers [26, 37, 35]. For instance,
Shalev et al. proposed WatchIT, a strategy that constrains IT personnel’s view
of the system and monitors the actions of containers for anomaly detection [35].
There also exist other Docker security works that focus on defenses for specific
attacks [24, 19]. For instance, Gao et al. discuss the root causes of the containers’
information leakage and propose a two-stage defense approach [19]. However,
these studies are limited to specific attack scenarios, which are not sufficient for
a complete understanding of the security state of Docker ecosystems as studied
in this work.

Registry security. Researchers have conducted a variety of works on analyzing
the code quality and security in third-party code store and application registries,
such as GitHub and App Store [28, 32, 20, 30, 15]. For instance, Bugiel et al.
introduced the security issues of VM image repository [15]. Duc et al. investigated
Google Play and the relationship between the end-user reviews and the security
changes in apps [30]. However, Docker image registries such as Docker Hub have
not been fully investigated before. This work is the first attempt to fill the gap
according to our best knowledge.

10 Conclusion

In this paper, we perform the first comprehensive study of Docker Hub ecosystem.
We identified three major sources for the new security risks in Docker hub. We
collected a large-scale dataset containing both images and the associated meta-
information. This dataset allows us to discover novel security risks in Docker Hub,
including the risks of sensitive parameters in repository descriptions, malicious
images, and the failure of fixing vulnerabilities in time. We developed new attacks
to demonstrate the security issues, such as leaking user files and the host display.
As the first systematic investigation on this topic, the insights presented in this
paper are of great significance to understanding the state of Docker Hub security.
Furthermore, our results make a call for actions to improve the security of the
Docker ecosystem in the future. We believe that the dataset and the findings of
this paper can serve as a key enabler for improvements of the security of Docker
Hub.

Acknowledgements. This work was partly supported by the Zhejiang Provin-
cial Natural Science Foundation for Distinguished Young Scholars under No.
LR19F020003, the National Key Research and Development Program of China un-
der No. 2018YFB0804102, NSFC under No. 61772466, U1936215, and U1836202,
the Zhejiang Provincial Key R&D Program under No. 2019C01055, and the Ant
Financial Research Funding.

Understanding the Security Risks of Docker Hub 17

A Appendix

A.1 User Study on Sensitive Parameters

We design an online questionnaire that contains questions including “Do you try
to fully understand every parameter of the run-commands provided on the Docker
Hub website before running those commands?”, “Do you make a security analysis
of the compose.yml file before running the image?”, etc. Our questionnaire was
sent to our colleagues and classmates, and further spread by them. In order to
ensure the authenticity and objectivity of the investigation results, we did not
tell any respondents the purpose of this survey. We plan to conduct the user
study in the official community of Docker Hub in the future.

Finally, we collected 106 feedback offered by 106 users from various cities
in different countries. All of them have benefited from Docker Hub, i.e., they
have experiences in using images from Docker Hub. Besides, they are from a
broad range from both academia and industry fields, including students and
researchers from various universities, software developers and DevOps engineers
from different companies, etc.

As described in Section 4.2, the results of our user study show that 97% of
users only care about if they can successfully run the image while ignoring how
the images run, not to mention the sensitivity parameters in run-command and
docker-compose.yml file. Even for 68 users who have a background in security
research, only 10% of them indicate that they prefer to figure out the meaning of
the parameters in run-commands.

A.2 Novel Attacks Exploiting Sensitive Parameters

Obtaining the display of the host. --privileged is one of the most powerful
parameters provided by Docker, which may pose a serious threat to users. When
the operator uses command --privileged, the container will gain access to all the
devices on the host. Under this scenario, the container can do almost anything
with no restriction, which is extremely dangerous to the security of users. More
specifically, --privileged allows a container to mount a partition on the host.
By taking a step further, the attacker can access all the user files stored on
this partition. In addition to accessing user files, we design an attack to obtain
the display of a user’s desktop. In fact, with --privileged, a one-line code, cp
/dev/fb0 user desktop.txt, is sufficient for attackers to access user display
data. Furthermore, by leveraging simple image processing software [7], attackers
can see the user’s desktop as if they were sitting in front of the user’s monitor.

Spying the process information on the host. --pid is a parameter related
to namespaces. Providing --pid=host allows a container to share the host’s PID
namespace. In this case, if the container is under the control of an attacker,
all the programs running on the user’s host will become visible to the attacker
inside the container. Then, the attacker can utilize these exposed information
such as the PID, the owner, the path of the corresponding executable file and the
execution parameters of the programs, to conduct effective attacks.

18 P. Liu et al.

A.3 Case Study of Malicious Images

We manually conduct analysis on detected malicious images. For instance, the
image mitradomining/ffmpeg on Docker Hub is detected as malicious by our
framework. The entry-file of this image is /opt/ffmpeg [7]. According to the name
and entry-file of the image, the functionality of this image should be image and
video processing. However, our framework detects that the real functionality
of the entry-file is mining Bit-coins. By leveraging the syscall log reported by
our framework, we determine that the real identity of this image is a Bit-coin
miner. Thus, once users run the image, their machines will become slaves for
cryptomining.

A.4 Distribution of Vulnerabilities

Negligible
19286
60.94%

Medium
6777

21.42%

Unknown
1069
3.38%

Low
2808
8.87%

High
1704
5.38%

Critical
2

0.01%

(a) Official images.

Negligible
1573316
38.15%

Medium
1527037
37.03%

Unknown
32329
0.79%

Low
654868
15.88%

High
334054
8.1%

Critical
2038
0.05%

(b) Community images.

Fig. 5: Vulnerabilities existing in the latest images.

We investigate the distribu-
tion of vulnerabilities in the
latest version of all official
images. First, we observe
that the latest official images
contain 30,000 CVE vulner-
abilities. Figure 5(a) catego-
rizes these CVE vulnerabili-
ties into 6 groups according
to the severity levels assessed

by the latest CVSSv3 scoring system [12]. Although only 6% of vulnerabilities
are highly/critically severe, they exist in almost 30% of the latest official images.
Furthermore, we conduct a similar analysis on the latest images in the 10,000
most popular community repositories. As shown in Figure 5(b), the ratios of
vulnerabilities with medium and high severity increase to over 37% and 8%,
respectively, which are higher than those of official images. In addition, it is quite
alarming that more than 64% of community images are affected by highly/criti-
cally severe vulnerabilities such as the denial of service and memory overflow.
These results demonstrate that both official and community images suffer from
serious software vulnerabilities. Additionally, community images contain more
vulnerabilities with higher severity. Hence, we propose that software vulnerability
is an urgent problem which seriously affects the security of Docker images.

References

1. Amazon Elastic Container Servicen (August 2019), https://aws.amazon.com/g
etting-started/tutorials/deploy-docker-containers

2. Anchore (August 2019), https://anchore.com/engine/

3. API to get Top Docker Hub images (August 2019), https://stackoverflow.co
m/questions/38070798/where-is-the-new-docker-hub-api-documentation

4. Docker (August 2019), https://www.docker.com/resources/what-container

Understanding the Security Risks of Docker Hub 19

5. Docker Hub Documents (August 2019), https://docs.docker.com/glossary/?
term=Docker\%20Hub

6. Docker Security Best-Practices (August 2019), https://dev.to/petermbenjami
n/docker-security-best-practices-45ih

7. FFmpeg (August 2019), http://ffmpeg.org
8. Malicious Docker Containers Earn Cryptomining Criminals $90K (August

2019), https://kromtech.com/blog/security-center/cryptojacking-invades
-cloud-how-modern-containerization-trend-is-exploited-by-attackers

9. Running Docker in Production (August 2019), https://ghost.kontena.io/doc
ker-in-production-good-bad-ugly

10. strings(1) - Linux man page (August 2019), https://linux.die.net/man/1/st
rings

11. Virustotal Api (August 2019), https://pypi.org/project/virustotal-api/
12. Vulnerability Metrics (August 2019), https://nvd.nist.gov/vuln-metrics/cvss
13. Understanding the Security Risks of Docker Hub (July 2020), https://github.c
om/decentL/Understanding-the-Security-Risks-of-Docker-Hub

14. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: Effective and explainable detection of android malware in your pocket. In:
NDSS. vol. 14, pp. 23–26 (2014)

15. Bugiel, S., Nürnberger, S., Pöppelmann, T., Sadeghi, A.R., Schneider, T.: Amazonia:
when elasticity snaps back. In: Proceedings of the 18th ACM conference on Computer
and communications security. pp. 389–400. ACM (2011)

16. Combe, T., Martin, A., Di Pietro, R.: To docker or not to docker: A security
perspective. IEEE Cloud Computing 3(5), 54–62 (2016)

17. Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D.: Understanding linux
malware. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 161–175.
IEEE (2018)

18. Duan, R., Bijlani, A., Ji, Y., Alrawi, O., Xiong, Y., Ike, M., Saltaformaggio, B., Lee,
W.: Automating patching of vulnerable open-source software versions in application
binaries. In: NDSS (2019)

19. Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., Wang, H.: Containerleaks: Emerging
security threats of information leakages in container clouds. In: 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
pp. 237–248. IEEE (2017)

20. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: Proceedings of the 36th International Conference on Software
Engineering. pp. 1025–1035. ACM (2014)

21. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Transactions on Dependable and Secure Computing
15(6), 931–944 (2017)

22. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified pup: abuse in authenticode
code signing. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. pp. 465–478 (2015)

23. Kudva, P.: Security analysis of container images using cloud analytics framework.
In: Web Services–ICWS 2018: 25th International Conference, Held as Part of the
Services Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018,
Proceedings. vol. 10966, p. 116. Springer (2018)

24. Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., Zhou, Q.: A measurement study on
linux container security: Attacks and countermeasures. In: Proceedings of the 34th
Annual Computer Security Applications Conference. pp. 418–429. ACM (2018)

20 P. Liu et al.

25. Liu, B., Zhou, W., Gao, L., Zhou, H., Luan, T.H., Wen, S.: Malware propagations in
wireless ad hoc networks. IEEE Transactions on Dependable and Secure Computing
15(6), 1016–1026 (2016)

26. Loukidis-Andreou, F., Giannakopoulos, I., Doka, K., Koziris, N.: Docker-sec: A
fully automated container security enhancement mechanism. In: 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). pp. 1561–
1564. IEEE (2018)

27. Martin, A., Raponi, S., Combe, T., Di Pietro, R.: Docker ecosystem–vulnerability
analysis. Computer Communications 122, 30–43 (2018)

28. Martin, W., Sarro, F., Yue, J., Zhang, Y., Harman, M.: A survey of app store
analysis for software engineering. IEEE Transactions on Software Engineering 43(9),
817–847 (2017)

29. Miller, B., Kantchelian, A., Tschantz, M.C., Afroz, S., Bachwani, R., Faizullabhoy,
R., Huang, L., Shankar, V., Wu, T., Yiu, G., et al.: Reviewer integration and
performance measurement for malware detection. In: International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 122–141.
Springer (2016)

30. Nguyen, D., Derr, E., Backes, M., Bugiel, S.: Short text, large effect: Measuring
the impact of user reviews on android app security and privacy. In: 2019 IEEE
Symposium on Security and Privacy (SP). pp. 155–169. IEEE (2019)

31. Rastogi, V., Davidson, D., Carli, L.D., Jha, S., Mcdaniel, P.: Cimplifier: auto-
matically debloating containers. In: Joint Meeting on Foundations of Software
Engineering (2017)

32. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in github. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. pp. 155–165.
ACM (2014)

33. Ringer, T., Grossman, D., Roesner, F.: Audacious: User-driven access control
with unmodified operating systems. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 204–216. ACM (2016)

34. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of soft-
ware vulnerability life cycles. In: 2012 34th International Conference on Software
Engineering (ICSE). pp. 771–781. IEEE (2012)

35. Shalev, N., Keidar, I., Weinsberg, Y., Moatti, Y., Ben-Yehuda, E.: Watchit: Who
watches your it guy? In: Proceedings of the 26th Symposium on Operating Systems
Principles. pp. 515–530. ACM (2017)

36. Shu, R., Gu, X., Enck, W.: A study of security vulnerabilities on docker hub. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy. pp. 269–280. ACM (2017)

37. Sun, Y., Safford, D., Zohar, M., Pendarakis, D., Gu, Z., Jaeger, T.: Security
namespace: making linux security frameworks available to containers. In: 27th
{USENIX} Security Symposium ({USENIX} Security 18). pp. 1423–1439 (2018)

38. Wijesekera, P., Baokar, A., Tsai, L., Reardon, J., Egelman, S., Wagner, D., Beznosov,
K.: The feasibility of dynamically granted permissions: Aligning mobile privacy
with user preferences. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
1077–1093. IEEE (2017)

39. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation
between outdated docker containers, severity vulnerabilities, and bugs pp. 491–501
(2019)

