
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 1

Unleashing Fuzzing Through Comprehensive,
Efficient, and Faithful Exploitable-Bug Exposing

Bowen Wang*, Kangjie Lu*, Qiushi Wu, and Aditya Pakki
University of Minnesota

Abstract—Fuzzing has become an essential means of finding software bugs. Bug finding through fuzzing requires two parts—exploring
code paths to reach bugs and exposing bugs when they are reached. Existing fuzzing research has primarily focused on improving code
coverage but not on exposing bugs. Sanitizers such as AddressSanitizer (ASAN) and MemorySanitizer (MSAN) have been the dominating
tools for exposing bugs. However, sanitizer-based bug exposing has the following limitations. (1) sanitizers are not compatible with each
other. (2) sanitizers incur significant runtime overhead. (3) sanitizers may generate false positives, and (4) exposed bugs may not be
exploitable. To address these limitations, we propose EXPOZZER, a fuzzing system that can expose bugs comprehensively, efficiently, and
faithfully. The intuition of EXPOZZER is to detect bugs through divergences in a properly diversified dual-execution environment, which
does not require maintaining or checking execution metadata. We design a practical and deterministic dual-execution engine, a co-design
for dual-execution and fuzzers, bug-sensitive diversification, comprehensive and efficient divergence detection to ensure the effectiveness
of EXPOZZER. The results of evaluations show that EXPOZZER can detect not only CVE-assigned vulnerabilities reliably, but also new
vulnerabilities in well-tested real-world programs. EXPOZZER is 10 times faster than MemorySanitizer and is similar to AddressSanitizer.

Index Terms—N-Version Programming; Dual-Execution; Fuzzing; Sanitizers; Bug Detection.

F

1 INTRODUCTION

FUZZERS test the target programs by mutating or generat-
ing inputs, and observing abnormal program behaviors.

Fuzzing has become an essential means for software testing,
and we have witnessed its impact. For example, OSS Fuzzer,
a continuous fuzzing service built by Google, has already
found over 14,000 bugs in 200 open source projects as of Aug,
2019 [1]. An effective fuzzing-based bug-finding approach
requires two parts. (1) Path exploration. A fuzzer should
explore paths to cover as much code as possible to reach
potential bugs. (2) Bug exposing. Once a bug is reached, the
approach should be able to faithfully expose the bug even if
it does not exhibit observable behaviors (e.g., crashing the
program).

Existing fuzzing research has primarily focused on
improving path exploration and its performance, but not
bug exposing. Path-exploration techniques include symbolic
execution (e.g., Driller [2]), dynamic taint analysis (e.g.,
VUzzer [3]), concolic execution (e.g., QSYM [4]), heuristic-
based static analysis (e.g., [5]), and many others [6], [7], [8],
[9]. In addition, researchers have attempted to guide fuzzers
to reach specific code locations. For example, AFLGo [10]
implements guided grey-box fuzzing using static analysis to
find pre-identified potential vulnerable points. SemFuzz [11]
navigates fuzzing to the potential location of vulnerabilities
extracted from the Git commit information.

By contrast, bug exposing is a less-studied topic, which
is arguably because people believe that sanitizers such
as ASAN [12] and MSAN [13] are effective in exposing
bugs. As such, sanitizers have been extensively used and
become the de facto standard for fuzzing. However, we
identify a number of inherent problems with sanitizers
that have impeded the power of existing fuzzers. First,

* Co-first authors

sanitizers such as ASAN and MSAN are incompatible to each
other, thus can not be applied to a target program together.
This is a fundamental design problem—sanitizers employ
a shadow memory–based scheme to maintain and check
against metadata, which requires dedicated and exclusive
uses of the same memory regions. As a result, fuzzers have
to apply each sanitizer separately to detect specific classes of
bugs, which inevitably wastes fuzzing resources. Second,
sanitizers suffer from high performance overhead. Both
ASAN and MSAN can have two to three times performance
overhead [12], [13], which is considerably high in testing. Our
evaluation in §6 shows that the performance overhead can be
even worse when applying ASAN and MSAN on real world
programs other than benchmark programs such as SPEC 2006.
Third, bugs exposed by sanitizers can be non-exploitable. For
example, over-written data in date segment that is never used
is not exploitable. Further, sanitizer-exposed bugs can be
false positives because most sanitizers have stricter security
enforcement comparing to specification of programming
languages. All these limitations of sanitizers impede the
power of fuzzers.

To address the inherent limitations with existing san-
itizers, in this paper, we propose EXPOZZER, a new bug
exposer that can comprehensively, efficiently, and faithfully
report bugs when they are covered. The key intuition
behind EXPOZZER is that a triggered bug will likely cause
divergent behaviors (e.g., control-flow or data flow) in a
properly diversified execution environment. By comparing
the behaviors, we are able to report the divergences and thus
the bug. For example, a buffer over-read will obtain different
data when the memory between buffers is randomized. With
the intuition, EXPOZZER employs diversified dual-execution
to report bugs, which does not require the maintaining
and checking of metadata. To ensure the effectiveness and

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 2

performance of EXPOZZER, we develop multiple techniques.
(1) A practical and deterministic dual-execution engine. It
captures non-determinisms and synchronizes two execution
instances. (2) A co-design of the dual-execution and fuzzers
that ensures fuzzing efficiency. (3) Bug-sensitive diversifica-
tion. It diversifies memory and memory layouts of variants
to effectively expose bugs. (4) Comprehensive and efficient
divergence detection. It efficiently captures divergences in
both control-flow and data-flow, and automatically locates
the root causes of the divergences, i.e., the bug.

EXPOZZER has a number of advantages over sanitizers
in bug exposing. First, EXPOZZER does not require shadow
memory for maintaining and checking metadata; instead, it
detects divergent behaviors in the end of execution, which
avoids the compatibility issues and expensive tracking (thus
ensuring the performance). Second, by enforcing various ex-
isting or new diversification schemes, EXPOZZER can detect
a wide range of bugs including out-of-bound access, use-
after-free, uninitialized uses, etc. The detection of all these
classes of bugs can be realized in the same fuzzing round.
Third, EXPOZZER’s bug reports are faithful. Divergences
are exhibited behaviors in control flow or data flow, so
the detected bug are exploitable. Further, as long as non-
determinisms are synchronized (see §6.3), EXPOZZER does
not have false positives.

We have implemented EXPOZZER and integrated it with
existing fuzzers to achieve automatic bug exposing. We also
evaluated the effectiveness and performance of EXPOZZER.
We collect 117 CVE-assigned bugs reported by sanitizers
and apply EXPOZZER to detect them. We found 12 of them
are non-exploitable bugs (e.g., overwritten data can never be
used). For the remaining 105 bugs, EXPOZZER reliably detects
98 of them and can probabilistically detects 7 (depending if di-
vergences are triggered). Further, by applying EXPOZZER to
well-tested programs, we also found 24 previously unknown
bugs of various classes. As of the paper submission, 6 of them
have been assigned with a CVE. Note that all these bugs
are exploitable and can divert control flow and/or data flow.
Finally, we compare the fuzzing throughput of EXPOZZER
with ASAN and MSAN; results show that EXPOZZER signifi-
cantly outperforms MSAN—ten times faster—and performs
similarity as ASAN. The results confirm that EXPOZZER can
comprehensively, efficiently, and faithfully detect exploitable
bugs. We believe that, with EXPOZZER, we can significantly
unleash the power of existing fuzzers in finding bugs.

We make the following technical contributions:

• We identify inherent limitations with sanitizers in expos-
ing bugs and propose to use diversified dual-execution
to comprehensively, efficiently, and faithfully expose
exploitable bugs. We also propose a co-design of dual-
execution and fuzzers that ensures fuzzing efficiency.

• We develop multiple techniques, including practical
and deterministic dual-execution engine, bug-sensitive
diversification, comprehensive (both control-flow and
data-flow) and efficient divergence detection, to ensure
the effectiveness and performance of EXPOZZER.

• We implement EXPOZZER and integrate existing fuzzers
into EXPOZZER to detect exploitable bugs. We found 24
new exploitable bugs of different classes in well-tested
real-world programs, and obtained 6 CVEs for them.

The rest of this paper is organized as follows: §2 dis-
cusses the mechanism of sanitizers and their pitfalls, then
presents the motivation of our work. §3.1 demonstrates the
overall architecture of EXPOZZER and key techniques. §4
shows the design of EXPOZZER and how we combine the
dual-execution system with existing fuzzers. §5 provides
interesting details of implementation. §6 shows the results of
evaluations. We briefly talk about possible ways to improve
the performance of EXPOZZER in §7. Finally we discuss
related works in §8 and conclude the paper in §9.

2 BACKGROUND AND MOTIVATION

Sanitizers are the de facto bug-exposers in fuzzing. There are
four commonly used sanitizers: AddressSanitizer (ASAN),
MemorySanitizer (MSAN), UndefinedBehaviorSanitizer (UB-
SAN), and ThreadSanitizer (TSAN). Each sanitizer is capable
of exposing specific classes of bugs. ASAN detects stack
overflow, heap overflow, use-after-free, global buffer over-
flow, etc. MSAN focuses on uninitialized-use bugs. UBSAN
instead targets undefined behaviors such as misaligned
pointers and signed integer overflow. TSAN captures data
races in programs. ASAN and MSAN are the most widely
used; they both employ a shadow memory-based method to
maintain and check against metadata. Both sanitizers include
a compiler instrumentation pass and a runtime library. We
will discuss sanitizers’ inherent problems mentioned in §1.

2.1 Pitfalls of Sanitizers
Although sanitizers are generally effective in bug exposing,
they still have the following inherent problems.
Conflicts between sanitizers. The first problem of sanitizers
is they are not compatible with each other because both
ASAN and MSAN use the shadow memory-based detection
mechanism. They allocate an overapproximated size of
memory in the virtual memory layout at the beginning, thus
leads to conflicts. Fuzzers have to apply sanitizers separately,
which wastes fuzzing resources and may miss bugs within
the given time budget. Moreover, sanitizers can be hard to
use and deploy. For example, to use MSAN and to avoid false
reports, all dependencies of the target program should be
compiled with MSAN instrumentation, which is a non-trivial
task in real-world testing [13].
Performance overhead. Sanitizers are slow. Although both
MSAN and ASAN claim to have moderate performance
overhead—about 2x for ASAN [14] and 3x for MSAN [15],
our test shows that, when fuzzing real programs, both
ASAN and MSAN are much slower even when the target
programs are small. For example, when using MSAN to test
for uninitialized-use bugs, even for small programs without
instrumenting any library, MSAN can slow down the fuzzing
speed by more than 20 times. If testers apply each sanitizer to
test programs sequentially, the inefficiency will dramatically
slow down the bug-finding process.
Non-exploitability. Sanitizers cannot report exploitability
(i.e., exploited to cause security consequences) of detected
bugs. Sanitizers may report unexploitable bugs because
sanitizers detect any violation of specified rules such as “not
using uninitialized memory”. According to Song et al. [16],
the rules are stricter than the de facto programming language

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 3

standard [16]. In some cases, the “violations” do not have
any harmful impact. For example, over-reading limited bytes
in the data segment that are never used does not cause
security impacts. As we confirmed in §6.1, a number of
studied sanitizer-reported bugs are non-exploitable. While
detecting and fixing non-exploitable bugs typically do not
hurt the security of the target program, they do incur
maintenance burdens and may de-prioritize the fixing of
critical exploitable bugs.
False reports. Sanitizers can also generate false positives
and false negatives. For example, out-of-bound accesses
that skip the redzones will not trigger the detection of
ASAN. Also, reading and copying uninitialized memory
internally is common and typically harmless, so MSAN must
manually handle some libc functions (e.g., memcpy()). Using
predefined interceptor functions and hand-written assembly
is also a source of false positives in MSAN [17]. If they are not
handled correctly, MSAN may also generate false positives
and false negatives because initialization status cannot be
correctly maintained or checked.

2.2 Exploitability Reasoning
After sanitizers report bugs, we can also use automated
reasoning techniques to test their exploitability. For example,
Mayhem employs symbolic execution to determine if a bug
can change control-flow transfers [18]. AEG [19], CRAX [20],
and others [21], [22], [23] can also automatically determine
the exploitability and even generate exploits. Although the
tools mentioned above can reason about exploitability, they
still have shortcomings. First, symbolic execution has its own
limitations;they cannot scale to large real-world programs
and easily lead to path explosion. Second, they primarily
focus on bugs that can cause control-flow hijacking. But in
real programs, bugs that are not related to control data, e.g.,
data-only attacks [24], [25], are becoming prevalent since
control-data related bugs have been extensively studied [26].
It is not clear yet if these tools can also automatically test the
exploitability for data-only attacks.

3 OVERVIEW

We propose EXPOZZER, a new bug exposer, to address
the limitations with existing sanitizers. EXPOZZER is able
to expose bugs comprehensively, efficiently, and faithfully
when they are reached. We design and implement several
techniques in a dual-execution system to make it practical
and easy to use. We also enforce diversification in the
dual-execution system and efficiently detect divergences
introduced by bugs. In this section, we present the high level
overview of EXPOZZER.

3.1 The Workflow of EXPOZZER

We first present the workflow of EXPOZZER, as shown in
Figure 1. There are four phases in EXPOZZER described as
follows.
Compilation. In the compilation phase, the source code of
the target program is compiled twice with different options
(e.g., with and without enabling safe stack) for diversification
and randomization schemes to generate diversified code
variants. These options are not for compiler optimizations

but for diversification. As will be shown in Table 2, we
enforce four randomization schemes (e.g., SafeStack [27]) to
diversify one variant but not the other variant. More details
are shown in §4.3. Note that more diversification schemes
can be adopted and enforced to both variants based on more
needs.
Initialization. The initialization phase accomplishes two
jobs: initializing the dual-execution environment and starting
the execution of forkservers (see §4.2). For the initialization,
EXPOZZER creates data structures for dual-execution, control-
flow recording, and synchronization of the two variants.
Then it starts the execution of variants.
Dual-execution and divergence checking. EXPOZZER does
multiple things during the execution of variants. First, it
synchronizes and diversifies variants, and records control-
and data-flow information. Second, it performs divergence
checking against the recorded control and data flows. Third,
if any divergences were detected, EXPOZZER saves snapshots
of variants at the divergence point to enable further analysis
and diagnosis.
Bug reporting and fuzzing loop. At the end of each round
of execution, upon divergences, EXPOZZER saves the current
inputs and invokes sanitizers and debuggers to confirm the
bugs. Also, EXPOZZER will clean up data structures for the
current round and start new round of fuzzing.

3.2 A Co-Design of Dual-Execution and Fuzzer
Both the dual-execution and the fuzzers have their own
specific designs. To realize EXPOZZER, we must propose a
co-design of them that ensures fuzzing efficiency. The top
two execution modes of fuzzing systems are dummy mode
and forkserver mode. The dummy mode starts a brand new
process for every round of fuzzing. Although dummy mode
is easier to implement, it suffers from performance issues
as it requires an initialization for every round of fuzzing.
On the other hand, in forkserver mode, the fuzzer first
invokes the target program as a forkserver. The forkserver
finishes the initialization and stops at the beginning of the
main function. When a new round of fuzzing starts, the
forkserver spawns a new process, avoids duplication by
performing an efficient copy-on-write mechanism between
parent process and child process. We trade-off simplicity of
design for fuzzing performance, by adopting the forkserver
mode, in EXPOZZER.

Considering the efficiency of the forkserver mode, we
propose to maintain two separate forkservers for spawning
the variants; the architecture of the co-design is shown
in Figure 2. EXPOZZER coordinates both forkservers and
variants and their communication (through shared memory).
The control flow coverage information from the variants is
compared and returned back to the fuzzer through shared
memory. In addition to the coordination, EXPOZZER also
diversifies, synchronizes, and monitors the execution of
variants. More details are presented in §4.

With the co-design, some conflicts exist between the fork-
server mode and the dual-execution system. Specifically, the
return value (i.e., the pid) of the system call fork() is always
different in the two variants, so it is one source of the non-
determinisms which can introduce false positives. To handl
the non-determinism, EXPOZZER intercepts fork() system

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 4

2. Execute forkservers

1. Init dual-execution
environment

Dual-executionInitialization

</>

Source code

Diagnosis

2. Check divergence

1.Synchronize and
diversify variants

3. Save snapshots
and inputs of variants

Bug reporting

Divergences
YES

NO

Confirm bug

Compilation

Variant 1

Variant 2

Fig. 1: Overview of EXPOZZER.

call to return the same pid for both variants. However,
the forkserver mode requires real pids for both variants
to control the execution. We thus instrument the calls of
fork() during comparison to distinguish them at runtime.

3.3 Key Techniques

There are many obstacles to overcome in order to make
the dual-execution practical and easy to use, while compre-
hensively, efficiently and faithfully exposing bugs through
control-flow and data-flow divergences. We propose several
techniques to tackle these challenges.

Efficient dual forkserver. The process of program ini-
tialization is expensive; the performance can be further
degraded in EXPOZZER because of the dual-execution system.
We design and implement a dual forkserver in EXPOZZER
to eliminate overhead caused by repetitive execution of
variants, thus preserving high performance. With the dual
forkserver, EXPOZZER can continue to execute variants when
divergences are detected instead of restarting the testing.

Bug-sensitive randomization. We adopted two memory
randomization techniques to detect both spatial and temporal
memory bugs: memory poisoning and memory layout
diversification. EXPOZZER poisons the memory in variants
with different values after malloc() and free(), so that
when any poisoned bytes are used in either system calls or
determining control flow, EXPOZZER can capture divergences
to detect temporal memory bugs such as use-after-free and
UUM. On the other hand, the memory layout diversification
technique in EXPOZZER diversifies memory layout in both
heap and stack of variants to detect spatial memory bugs.

Comprehensive detection of bug-triggered divergences.
To comprehensively detect bugs, EXPOZZER captures di-
vergences in both data flow and control flow. To detect
divergences in data flow, EXPOZZER intercepts system
calls and compares their arguments because critical bugs
typically involve system calls. This way, we can avoid
expensive runtime data-flow tracking. To detect control-flow
divergences, EXPOZZER records and compares the control-
flow information in hashmaps during the execution. Any
divergences in control flow will be reflected in the hash
values.

4 COMPONENTS DESIGN OF EXPOZZER

In this section, we present the design of key components in
EXPOZZER and techniques mentioned in §3.1.

Fuzzer
1. SC/LF/NI divergence
 detection
2. Execute SC

Sync engine

Expozzer

R
u
n
ti

m
e

1. Saves SC information
2. Handles Nd
3. Heap/Stack
 randomization

Runtime 1

Runtime 2

Forkserver 2 Variant 2:
Randomized stack

Fork

Exit code

Forkserver 1 Fork

Exit code
Return Trap

Return Trap

SHM1
CF hash map

SHM2
CF hash map

Comparison

Variant 1:
Randomized stack

Fig. 2: Architecture and components of EXPOZZER. SC =
System call, SHM = Shared memory, Nd = Non-determinisms.
LF = Library functions, NI = Nondeterministic instructions.

4.1 Practical and Easy-to-Use Dual-Execution
To ensure that the dual-execution is practical and does not
introduce false positives, we need to synchronize the two
variants properly and handle non-determinisms.
Challenges. There are several challenges in using the dual-
execution for fuzzing. First, to eliminate false positives in
fuzzing, benign non-determinsms such as random num-
ber generation in variants must be handled. Second, the
performance overhead of dual-execution must be reduced
so that more tests can be done within a limited fuzzing
time budget. Third, dual-execution must be able to continue
executing variants even if divergences are detected. Naively
terminating programs after the first divergence not only hides
potential bugs, but also confuses fuzzers about the coverage
information. To overcome these challenges, we present the
following design.

4.1.1 Synchronization
The dual-execution engine of EXPOZZER is divided into two
parts: the application side and the system side. In the initial-
ization phase of EXPOZZER, the application side is attached to
each variant, and it is responsible for system call interception
and coordination with the system side. The system side
serves as the synchronization engine. On each system call, it
is notified by both variants; it is also responsible for actually
executing the system call and returning results of system
calls back to variants.

EXPOZZER achieves synchronization between variants
using system call interception. During the execution of
variants, when a system call is encountered, variants trap into
the application side of the dual-execution system. EXPOZZER
saves all the arguments of system calls and related execution
information. After saving those information, the application

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 5

side notifies the system side, i.e. the synchronization engine.
On the server side, service threads are created to communi-
cate with variants.

4.1.2 Handling Non-Determinism
Non-determinisms can cause benign divergences, leading
to false positives. There are three sources of benign non-
determinisms, as listed in Table 1: system calls, library
function calls, and instructions that return random values.
Our goal of handling non-determinisms is to eliminate
false positives while preserving the normal execution of
programs. Numerous solutions exist to handle benign non-
determinisms. One solution can return predefined values for
these function/system calls and instructions. This is easy to
do and should work in most cases. The key problem with
this solution is that no matter how the predefined value
is set, it could potentially affect the program’s execution.
Further, the predefined value may be not meaningful to the
program. This solution causes the program to behave ab-
normally, leading to false reports. Another possible solution
instruments function/system calls and instructions during
compilation. This also requires modification of the OS to
ensure the solution can return the same value for variants.
Moreover, this solution has no effect on program’s execution
since it can guarantee to return real and meaningful values
to variants.

We choose the second solution to handle non-
determinisms—we first identify a list of non-determinisms,
intercept them (see Table 1), and make sure they return
the same value at runtime. Specifically, interception is
achieved through syscall filter (libseccomp), dynamic
linker (LD_PRELOAD), or code instrumentation. When non-
determinism is encountered at runtime, variants will trap
into the application side of the dual-execution engine and
notify the server side, and the server side is responsible for
actually executing system calls/functions or instructions, and
returning the same value back to variants.

TABLE 1: Sources of non-determinisms and interception.

Source Intercept methods/tools

System calls Syscall filter (libseccomp)

Library functions Dynamic linker (LD_PRELOAD)

Non-deterministic instructions Code instrumentation

Supporting multi-threading programs. Thread interleav-
ing may also cause benign divergences in system-call
synchronization, so we need to synchronize all shared
resource/memory accesses. A number of works have at-
tempted to achieve such synchronization. As shown in the
deterministic multi-threading (DMT) [28], [29], [30], [31],
this is achievable, but would significantly slow down the
runtime. Considering that EXPOZZER’s goal is to find bugs
instead of defending against attacks, we choose to adopt the
lightweight synchronization mechanism (mapping threads in
the two instances) borrowed from Varan [32] and the system-
call synchronization part of MVEE [29], [31]. Although, the
synchronization is lightweight, we believe that it suffices
for fuzzing—as shown in §6, EXPOZZER can support multi-
threading programs, and we did not observe false positives
in the testing.

4.1.3 Continuous Fuzzing
One important feature of EXPOZZER requires, not terminat-
ing the current execution, upon encountering a divergence.
To support that, when a divergence is detected, we instruct
EXPOZZER to save the snapshots of variants and related
execution information on the divergence, and to continue
the execution by discarding the corresponding seed input
triggering the divergences. We discard such seed inputs
for two reasons. First, it is to avoid redundant divergences
because using the same seed input would repeatedly trigger
divergences. Second, having a divergence means the program
is already in an erroneous state. That is, we have already
found the bug triggering the divergence. Even if new
divergences are discovered by keeping the seed input, they
are likely false positives caused by the same bug.

4.2 Efficient Dual Forkserver

A key design goal of applying the dual-execution in fuzzing
is to preserve the performance. In order to achieve the design
goal, unnecessary performance overhead must be eliminated.
One of the most commonly used techniques in popular
fuzzing systems is forkserver. The forkserver can save time of
loading libraries at the initialization phase of the program. In
fuzzing systems that employ forkserver, the target program
is first invoked by fuzzer as a forkserver; after finishing the
initialization, it stops at the beginning of the main() function.
To start a new round of execution, the forkserver just forks
itself and continues the execution to save the time of the
initialization.

Naively applying the forkserver technique into the dual-
execution system, however, would not work because of
various reasons. First, the fork() system call introduces non-
determinism into execution, thus can cause false positives.
Second, simply intercepting fork() system call to make it
return the same pid of child processes for both variants
can make the management of dual-execution system harder
since pids are essential to managing different processes
in the dual-execution system. For example, when variants
timeout during fuzzing, pids are necessary information to
kill variants and start a new round of fuzzing. The reason for
this conflict is enforcing the same interception policy for both
the forkserver and the normal process of the target program.
There are two places where fork can happen in EXPOZZER:
forkserver (to spawn variants) and normal execution. They
have different requirements on the return value of fork().
In forkserver, real pids of fork() must be returned so
that EXPOZZER can perform management. While in normal
execution, it returns the same pid for fork() in variants to
eliminate non-determinism. Therefore, the key to address the
conflict is to distinguish fork() between the forkserver and
normal execution and to return proper pid correspondingly.

To distinguish the sources of fork(), we build the dual
forkserver in EXPOZZER by incorporating instrumentation
and the runtime environment. At the compilation phase,
when the customized compiler adds forkserver instrumenta-
tion to the target code, the compiler also adds an extra param-
eter to fork() used by the forkserver. The dual-execution
engine will then intercept fork() during execution. In the
intercepted version of fork(), EXPOZZER applies different
interception policy if the extra parameter is presented. This

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 6

way, in normal execution, EXPOZZER can return the same
pid, and in the forkserver, EXPOZZER can return the real
(different) pids to variants.

4.3 Bug-Sensitive Randomization

Because EXPOZZER exposes bugs through divergences, it
is essential for EXPOZZER to expose divergences as long
as a bug is triggered. Since EXPOZZER targets memory
errors (both temporal and spatial), we focus on memory
and memory layout randomization. It is important to note
that EXPOZZER is compatible with other randomization tech-
niques (e.g., injecting random delays in thread scheduling).
More randomization schemes can be plugged in to cover
more classes of bugs. Our randomization schemes target
both the stack and the heap, as summarized in Table 2.
These randomization schemes are dedicated for exposing
bugs, which are both efficient and effective in generating
divergences for memory errors. Except the SafeStack, other
three schemes are proposed in this work.

TABLE 2: Randomization techniques enforced in EXPOZZER.

Technique Region Error type

Memory poisoning Heap Temporal

Address randomization Heap Spatial & temporal

Random padding Stack & heap Spatial & temporal

SafeStack Stack Spatial

Heap Randomization. Our heap randomization includes
address randomization, random padding, and memory
poisoning. The heap allocator in EXPOZZER adds random
padding bytes after a successful memory allocation on heap.
The padding bytes are different in variants so that if values
are used, divergences can be detected in data flow and/or
control flow. The memory poisoning technique in EXPOZZER
is used to assign poised values to memory regions that
have just been allocated or freed. In this way, uninitialized-
use and use-after-free bugs can cause divergences and thus
be detected. To further increase the ability of detecting
temporal memory bugs, EXPOZZER allocates heap object
at randomized addresses on the heap instead of consecutive
addresses. Because of the randomized allocation, poisoned
areas would be less likely reused by other allocations.
Stack randomization. The stack randomization in
EXPOZZER gives variants different stack layouts. EXPOZZER
employs a different randomization mechanism on stack com-
paring to heap. There are several reasons for not adopting
the same randomization mechanisms as for the heap. First, a
complete randomized allocation stack could degrade the
performance of the dual-execution system. Unlike heap,
accesses on stack are based on offsets and the base pointer,
a complete randomized allocation scheme adds too much
overhead to the system. Second, memory poisoning on stack
may not be as effective as on heap. Stack is a small region
of memory that are reused frequently; this is inherently
different compared to heap as heap is a huge chunk of
memory. Poisoned values on stack can be overwritten by
later execution very quickly, thus rendering the technique
ineffective.

To overcome these problems, EXPOZZER first adopts the
SafeStack technique from CPI [27] to detect spatial memory
errors. SafeStack divides the stack layout of a variant into
two regions: safe and unsafe. The safe region stores variables
that can only be accessed in a secure way, while the unsafe
region stores buffers that can cause problems. Specifically,
EXPOZZER employs clang’s SafeStack instrumentation to
realize the stack randomization. In EXPOZZER’s compilation
phase, one variant is compiled with SafeStack, and the other
is compiled without it.

To further detect temporal memory errors on the stack,
we also inject random padding between stack frames.
Specifically, a random number of words (8 bytes each) will
be injected between stack frames. To make sure that the
execution can restore the stack upon a function return, the
previous stack-frame pointer will be saved in the current
stack frame, which also ensures that the two variants have
different pointers on the stack. This way, the overlaps
between the current and the previous stack frames will be
randomized, enabling the detection of temporal memory
errors.

4.4 Comprehensive Divergence Coverage
To comprehensively cover different classes of bugs,
EXPOZZER detects divergences in both control flow and
data flow. The control-flow divergence detection is done by
combining compiler instrumentation and runtime checking.
The data-flow divergence detection is realized through
argument comparison of system calls. In this section, we
present the details.

4.4.1 Control-Flow Divergence
There are mainly two methods to achieving control-flow
divergence detection: online and offline. The online control-
flow comparison requires the dual-execution system to
synchronize variants at each conditional jump. An advantage
of online control-flow comparison is that it can detect control-
flow divergence on time, i.e. when the divergence happens.
However, this property is only necessary when used in
defense systems as it can immediately stop execution when
abnormal behaviors are detected. In bug detection, it is
acceptable for the target program to continue execution
even if abnormal behaviors are detected. Another advantage
of online control-flow comparison is that it can accurately
report the location of control-flow divergences. However,
this can be easily replaced by post-execution analysis based
on debuggers or sanitizers.

Online control-flow comparison however comes with
unacceptable drawbacks. First, the online detection can intro-
duce unacceptable performance overhead. The performance
overhead can degrade the throughput of fuzzing. Second,
it can complicate the design of the dual-execution system.
To realize the online control flow comparison, the dual-
execution must enforce instruction-level synchronization
between variants. This not only increases the performance
overhead, but also design challenges and problems. For
example, to perform the comparison, the destination of
control-flow transfer must be identified and mapped ac-
curately between variants. This task can be hard to achieve
since variants have different memory layouts because of
randomization.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 7

Offline comparison of control-flow hashes. Considering
the drawbacks of online comparison, EXPOZZER instead
employs a offline control-flow detection mechanism. To
realize the offline comparison, control-flow information is
recorded during execution. EXPOZZER first employs AFL’s
control-flow recording mechanism. During compilation, each
basic block is assigned with a random block ID, and during
execution, programs write control-flow information into the
control-flow hashing map. Block IDs are used to determine
which byte in the hashing map is updated when the corre-
sponding control-flow transfer happens.
Synchronized dual-compilation mode. There is however
an issue in applying AFL’s compiler instrumentation—since
the randomized block IDs are generated during compilation,
and EXPOZZER requires compiling the source code twice to
have two variants with different stack layouts, the block
IDs are different for the same block in two variants, which
leads to false positives. To solve this issue, we introduce
dual-compilation mode for compiling variants. In the dual-
compilation model, the compilation processes are also syn-
chronized, so that same block in variants will always have
the same ID to eliminate false positives.

4.4.2 Data-Flow Divergence
Control-flow divergence detection by itself is not sufficient
to expose various classes of bugs. Occasionally, bugs do not
change control-flow at all but still have severe effects on
programs such as information leak. Therefore, supporting
data-flow divergence detection can detect these kinds of
bugs. However, supporting data-flow divergence detection is
non-trivial. The most challenging problem is the performance
overhead of data-flow tracking. Traditional data-flow track-
ing methods combine static analysis and runtime tracking.

Static analysis is performed before execution to identify
legitimate sources of data-flow for a pointer or variable.
Runtime tracking and checking record data-flow information,
can identify if the current source is legal. There are inherent
problems with this scheme. First, static analysis cannot
guarantee the soundness or completeness of identifying
all the legitimate sources of data-flow. Second, to enforce
this scheme, the tracking and checking need to be done at
the instruction level. That is, we need to intercept memory
read and write instructions and invoke the cross-variant
comparison for each of the instructions, which will certainly
introduce unacceptable runtime performance overhead.

EXPOZZER therefore employs system-call level checking
to detect divergent data flow. Although system-call level
divergence checking is not as fine-grained as instruction
level, we believe it is adequate to detect critical bugs resulting
data-flow divergences. First, the rationale behind this design
choice is that critical operations are typically performed
through system calls on modern operating systems, thus
critical bugs are expected to trigger divergences in arguments
of system calls. Bugs that do not involve system calls are
hard to exploit to cause critical impacts. Second, based on our
evaluation of 105 CVE-assigned vulnerabilities, EXPOZZER
did not introduce any false negative caused by the system-
call level (instead of instruction level) divergence checking.
To the best of our knowledge, system-call level checking not
only reduces the performance overhead (Table IV in [33])
of divergence checking for data flow, but also preserves the

effectiveness of detecting exploitable bugs for most real-wold
programs.

To estimate the performance overhead, we measure the
average number of memory-related instructions and system
calls. Table 3 shows the percentage of memory-related
instructions and system calls in our random sample of
five real-world programs. We use Intel SDE and run these
programs three times with different inputs. The empirical
numbers suggest that implementing an instruction-level
synchronization can introduce a high performance overhead
in testing for real-world programs.

TABLE 3: Percentage of memory related instructions and
system calls in a random sample of real world programs

Program %read %write %Sys calls Total instructions
base64 24.2 8.7 0.0003 305024
ffmpeg 29.1 21.2 0.00002 177062602
md5sum 23.3 8.1 0.0002 266824
objdump 24.1 19.7 0.0001 189940436
readelf 22.8 13.2 0.0003 11858122

4.5 Bug Confirmation
Once a divergence is detected, EXPOZZER continues to con-
firm the actual bugs. In the testing phase, when divergences
are detected, the corresponding inputs are saved. EXPOZZER
thus employs existing tools for bug confirmation. EXPOZZER
divides bug confirmation phase into two steps: the first step is
EXPOZZER feeds input saved during the fuzzing phase to the
target program running under Valgrind and check for error
output; then EXPOZZER feeds the same input to the target
program compiled with AddressSanitizer. Valgrind [34] can
detect memory bugs in heap with very low false positive and
false negative rates. Due to its high performance overhead, it
is not feasible to use Valgrind in the real-time fuzzing phase.
We use Valgrind as the confirmation tool to avoid its high
performance overhead but benefit from its accuracy offline.
We use Valgrind to detect heap related bugs and UUM on the
stack. We employ AddressSanitizer to complement Valgrind
for bugs involving stack overflow and bugs on the heap.

5 IMPLEMENTATION

We present interesting implementation details of EXPOZZER
in this section. We first introduce the implementation details
of integrating the dual-execution system with fuzzers, then
cover some interesting details such as system-call divergence
detection, non-determinism handling, dual forkserver, and
dual compilation.

5.1 The Dual-Execution Engine
There are four components in the dual-execution system:
monitor, interceptor, synchronization engine, and divergence
checker.
The monitor. The monitor is responsible for managing the
dual-execution system. After the initial stage of EXPOZZER,
the fuzzer forks the monitor instead of the forkserver of the
target program. The monitor sets up execution environment
for the dual-execution system. It first creates shared memory
regions for recording control-flow information for variants.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 8

Then it creates and initializes shared memory regions for
saving dual-execution related information for variants. After
setting up necessary shared memory regions, the monitor
pre-loads the interceptor, forks forkservers and the syn-
chronization engine for them. Except for initialization, the
monitor also sets up communication to variants and the
synchronization engine.
The interceptor. The interceptor is in charge of intercepting
system calls, and communicating between variants and the
synchronization engine. During the execution of variants,
when system calls are encountered, variants trap into the
interceptor. The interceptor copies system call arguments
and related execution information into the shared memory
region between the variant and the synchronization engine.
After saving the information, the interceptor notifies the syn-
chronization engine that a system call in the corresponding
variant has already been invoked and waits for the engine.
The interceptor forwards the return value of system calls
from the synchronization to the variant so that the execution
can be continued.
The synchronization engine. The synchronization engine
synchronizes variants on system calls and performs diver-
gence detection. In the engine, one thread is responsible
for communicating with one variant. Upon system call, the
interceptor saves information and notifies the engine. When
the engine receives the notification, it fetches system call
information from shared memory regions and performs
divergence detection.
The divergence checker for system calls. There are two
ways to compare corresponding arguments from variants:
memory check (i.e., non-pointer type arguments) and address
check (i.e., pointer type arguments). To pass the address
check, two arguments must be both non-null or null. Because
two variants have different memory layouts, blindly com-
paring pointer values from different variants leads to false
positives. On the other hand, the memory check compares
the concrete value pointed to by the arguments. We design a
flexible divergence detection component inside the engine
to avoid hard-coding comparison policies into source code.
At the initialization phase of the engine, a configuration file
containing comparison policies is read. After the divergence
detection in system call arguments, if there is no divergences
in arguments, the engine executes the system call requested
by variants and passes the return value back to variants.
If any divergences are detected in arguments, the engine
notifies the monitor. The monitor saves snapshots of variants
and related execution information in shared memory regions.
After saving these information, the engine proceeds in a way
similar to the case when no divergence is detected. Note that
the divergence checking for control-flow hashes is at the end
of the current execution.

5.2 Identifying and Handling Non-Determinisms

As mentioned in §4, there are three sources of non-
determinisms: system calls, library function calls, and
instructions. We have a conservative strategy for find-
ing the non-determinisms. For library function calls, we
summarize potential sources of non-determinisms in li-
brary function calls into two categories: time/date, e.g.

gettimeofday(), clock_gettime(), time(); process in-
formation, e.g. getpid(). Similar to library functions, we
identify two kinds of nondeterministic instructions: time,
e.g. rdtsc; random number, e.g. rdrand. For system calls,
except the ones related to memory layout such as mmap, all
other systems calls are selected for synchronization.

Once we identify the non-determinism sources, we inter-
cept them and force them to return the same values to the
two variants. Our interception employs different approaches
to intercept system calls, library calls, and instructions. For
system calls, we choose to temporarily patch the syscall table
using a kernel module. This way, extra context switches can
be avoided to improve performance. For library calls, we
choose to patch the GOTPLT table that contains the entries
to these library calls. For non-deterministic instructions such
as rdtsc and rdrand, we replace them with an one-byte
interrupt instruction (e.g., INT3) which allows us to perform
the normalization by handling the interrupt.

5.3 Dual Compilation
Since EXPOZZER employs control-flow hashing for control-
flow divergence detection, the random number generation
process in control-flow hashing must be taken care of. In AFL
instrumentation, each basic block is assigned an ID so that the
write location in the hashmap can be determined by IDs of
the current basic block and previous basic blocks. The block
ID assignment is done through random number generation
during compilation: for a source code file, a random seed is
first generated based on (1) the pid of the compiler and (2)
the current time. Then the seed is used to generate a series of
random number used as block IDs. To avoid false positives
in control-flow divergence detection, we must make sure that
the same basic blocks in different variants must be assigned
the same block ID. We solve this problem by synchronizing
the random seed generation in compilation in EXPOZZER, so
that false positives in control flow divergence detection are
avoided.

5.4 Integrating Fuzzers
In EXPOZZER, we combine three different fuzzers with
EXPOZZER to find bugs: AFL, FairFuzz, and AFLPP. Al-
though they are different fuzzers, they all use basic AFL
execution model. When fuzzing with AFL, the forkserver of
the target program is forked by AFL. After being forked, the
forkserver performs all the initialization work, stops at the
beginning of main() function, and waits for the commands
from AFL. To start a new round of testing, the forkserver
spawns itself and starts running. EXPOZZER follows the
same execution model when integrating dual-execution and
other fuzzers. Note that for performance comparison with
sanitizers, we specifically use AFLPP, and the details are
presented in §6.4.

6 EVALUATION

We evaluate EXPOZZER in the following perspectives.
1) False negatives. We evaluate if EXPOZZER may miss

valid bugs due to its divergence-based detection.
2) Effectiveness. We evaluate if EXPOZZER can detect

known and previously unknown bugs.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 9

3) False positives. We evaluate if bugs detected by
EXPOZZER can be false positives.

4) Performance. Performance is important for fuzzers
to test more inputs within a given time budget. We
compare the performance of EXPOZZER with sanitizers.

Experiments are conducted on a machine equipped with
two Intel Xeon Platinum 8268 CPUs; each CPU has 24
physical cores. The machine has 256 GB physical memory and
Ubuntu 18.04 LTS as the installed OS. To evaluate EXPOZZER
on real programs, we test each program within a virtual
machine. The virtual machine has 4 GB memory and 2 CPU
cores.

6.1 False Negatives
To evaluate the false negatives of EXPOZZER, we perform
two sets of experiments. We test if EXPOZZER can detect
both CVE-assigned vulnerabilities and bugs injected by
LAVA [35].
Testing with CVE-assigned bugs. To test the false negative
rate of EXPOZZER, we first collected 117 CVE-assigned
vulnerabilities that were detected using sanitizers. Repro-
ducing previously reported CVEs is non-trivial. To speed up
the process and increase the chance of reproducing CVEs,
we extract all the CVEs related to binutils. The programs
represent the most common categories encountered in real
world: terminal programs, encoding/decoding programs,
and encryption/decryption programs. We picked binutils,
as the code is self-contained, and its dependencies include
the basic libc libraries. This increases the probability of
reproducing the vulnerabilities. More importantly, they are
extensively used in other fuzzing research papers; focusing
on such programs would allow us to test if EXPOZZER can
find bugs in even well-tested programs and compare it with
other fuzzers.

As of the paper submission, there are a total of 180
CVEs related to binutils, according to the CVE website [36].
In addition to the binutils-related CVEs, we also obtained
the list of CVEs from [37], [38]. After exhausting the CVE
reports from the two lists, we finally manually reproduced
117 CVEs covering all major categories of memory bugs
including: global/stack/heap buffer overflow, use-after-free,
null pointer dereference, etc. The number of real programs
used in evaluation is reasonably comparable to other fuzzing
works. The reproducing work is actually laborious. There
are many reasons for not being able to reproduce, such
as requiring special inputs, a specific system configuration,
a specific thread interleavings, etc. It is worth noting that
the reproduction is manual, which is independent of the
EXPOZZER or any other fuzzers.

In the experiment, we found that 12 of the CVEs are non-
exploitable. These non-exploitable bugs out-of-bound read or
write buffers with a very small number of bytes. We carefully
reviewed the source code involved by these bugs. One can
confirm the bugs to be non-exploitable as the over-written
part does not target critical data and is never used, or the
over-read data is never used.

For the remaining 105 cases, we found that EXPOZZER
can reliably detect 98 of them and detect 7 (6.7%) of them at
random. We looked into the probabilistic cases and found
that they are bugs that write to the heap out-of-bound. In

these bugs, the write does not change any important variable
or data structures on heap, thus failing to cause a divergence
during execution. A divergence is triggered if other heap
objects are allocated close to the overflow object. Note that
we can further reduce the number of probabilistic cases by
enforcing other diversification schemes, as we will discuss in
§7.2.
Testing with LAVA. We further evaluated the false negatives
of EXPOZZER with the LAVA-1 dataset [35]. The LAVA-1
dataset contains 69 bugs inserted into the file program in
coreutils. We successfully reproduced 68 out of 69 synthetic
bugs. We tested these 68 bugs with the given PoC in
EXPOZZER, and the results show that EXPOZZER can capture
all of the 68 bugs. Based on this experiment, EXPOZZER
does not have any false negative in normal crash-based bug
detection. The bug we failed to reproduce was not triggered
with given PoC when compiled using clang with vanilla
AFL’s instrumentation(without EXPOZZER’s instrumentation)
on various versions of Ubuntu OS. We believe that the failure
is not caused by EXPOZZER’s instrumentation.

6.2 Detecting New Bugs on Real Programs

TABLE 4: New bugs found by EXPOZZER in real programs.
UU = Uninitialized use, HO = Heap overflow, NPD = Null-
pointer dereference, SO = Stack overflow.

Program Total UU HO NPD SO
mysofa2json 7 1 5 1 0
ffmpeg 1 1 0 0 0
readelf 1 1 0 0 0
bento4 13 8 3 1 1
cjpeg 2 2 0 0 0

To validate the effectiveness of EXPOZZER, we run it
on well tested programs. We run EXPOZZER in virtual
machines; each virtual machine is set to have 2 cores and 4
GB memory, we run the experiments in only 24 hours and
then stop them. The tested programs are shown in Table 5.
In total, 24 new bugs are found during the test, as shown in
Table 4. Categories of bugs detected by EXPOZZER include
uninitialized use, heap overflow, invalid memory access,
and null pointer dereference. We are confident to conclude
that EXPOZZER is able to find different categories of bugs in
real-world well tested programs.

6.3 False Positives
As shown in §6.1 and §6.2, we have applied EXPOZZER to
detect known and new bugs in widely tested programs.
During the course of the evaluation, we did not observe
any false positives, which confirms that, by handling the
non-determinisms, EXPOZZER can faithfully and precisely
expose bugs. As shown in Table 5, some tested programs are
multi-threaded; during the evaluation, EXPOZZER does not
report any false positives as well and successfully detects a
bug in ffmpeg.

6.4 Performance Comparison with ASAN and MSAN
We run EXPOZZER, ASAN, and MSAN with same compi-
lation parameters on same target programs, and monitor

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 10

TABLE 5: Command line parameters to invoke target pro-
grams. *: Multi-threading programs.

Program Command Line

readelf readelf -a @@

objdump objdump -D @@

size size -t @@

nm-new nm-new -A -D @@

objcopy objcopy @@ test

speexenc speexenc @@ -

ffmpeg* ffmpeg -hide banner -loglevel quiet
-i @@ -f null /dev/null

avplay* avplay -loglevel quiet @@

mysofa2json mysofa2json @@

djpeg djpeg @@

cjpeg cjpeg @@

mp4info mp4info –verbose –show-layout
–show-samples –show-sample-data @@

mp4decrypt mp4decrypt @@ /dev/null

mp4dump mp4dump –verbosity 3 @@

avcinfo avcinfo –verbose @@

the fuzzing throughput of these three detection methods in
executions per second. The reason we compare EXPOZZER to
ASAN and MSAN is that they are the de-facto bug “exposors”
used together with fuzzers. It is worth noting that EXPOZZER
is for exposing bugs instead of for exploring program
states. Bug exposing and program state exploration are two
paralleled research fields in fuzzing. We can choose any
possible combination of exposing and exploration methods,
which only incurs engineering efforts.

For EXPOZZER, we use the dual-execution environment.
However, for ASAN and MSAN, we use the single-execution
environment, e.g., the traditional sanitizer-based fuzzing
settings. The fuzzer we use for throughput testing is AFLPP,
the results are shown in Table 6. It is clear from the table that
the throughput of EXPOZZER is close to ASAN. However,
EXPOZZER is at least 10 times faster than MSAN in most
target programs. Considering the fact that in real-world test-
ing, to cover common memory bugs, testers must combine
ASAN and MSAN together, EXPOZZER would significantly
outperform the combination of ASAN and MSAN.

The only targets that ASAN outperforms EXPOZZER
significantly is readelf. The reason for the bad performance
in readelf is that readelf issues too many system calls
(typically more than 2,000) when the fuzzer mutates the
inputs. The invalid inputs cause readelf to constantly find
marker bytes using the system call lseek(). Because system
call synchronization is the most time consuming operation
in EXPOZZER, the frequent system calls lead to the bad
performance in the case of readelf.

7 DISCUSSION

Although EXPOZZER is effective in finding exploitable bugs,
we discuss the strengths and limitations of our current
implementation in this section. Moreover, we also propose

TABLE 6: Throughput comparison, in terms of executions
per second (e/s), across vanilla AFL, ASAN, MSAN, and
EXPOZZER. Except that EXPOZZER uses the dual-execution
environment, the other cases use a single-execution environ-
ment.

Target Vanilla AFL ASAN MSAN EXPOZZER
(e/s) (e/s) (e/s) (e/s)

readelf 381 137 34 32
size 800 420 37 520
objcopy 1000 350 34 280
objdump 70 35 18 35
nm 900 400 36 460
djpeg 1100 500 37 400
cjpeg 3000 840 37 720
pngfix 1600 730 37 600
tiffdump 3150 1350 38 1020

Average (%) 100% 42.2% 6.1% 37.0%

solutions for the identified limitations for potential future
work directions.

7.1 Uninitialized Use Detection
We noticed that unitialized use of memory(UUM) bugs are
prevalent among bugs found by EXPOZZER. After carefully
analyzing and comparing EXPOZZER with existing tech-
niques on detecting UUM bugs, we think EXPOZZER has
advantages over other approaches especially comparing to
MSAN and Valgrind. First, MSAN is hard to use in real
testing [13] because in order to eliminate false positives,
testers need to compile all the dependencies of the target
program, which may not be a trivial task especially when
the target program has complicated dependencies. This can
prevent testers from using MSAN in real testing. Second, the
performance of MSAN and Valgrind are not satisfying. In
§6.4, we have shown that MSAN introduces more than 10
times slow down for real programs even if the programs
are simple. Valgrind has worse performance as it usually
introduces a slow down between 10x - 50x, and it could be
even worse when testing multi-threaded programs.

Another advantage of EXPOZZER compared to MSAN
is, the divergence based bug detection methodology can
be deployed without requiring the source code. The source
code of the test program is required to deploy MSAN in real
testing, not to mention that testers also need to prepare the
source code of any dependencies the target program has. The
source code preparation may be hard or even impossible
when testing commercial software. EXPOZZER’s divergence-
based methodology can be used without source code. The
tool already utilizes heap randomization without source code,
and could potentially achieve stack randomization without
source code by modifying QEMU and enabling AFL’s binary
fuzzing mode.

7.2 Reducing Probabilistic and False-Negative Cases
In EXPOZZER, memory layouts are diversified to cause diver-
gences when there is a memory bug during the execution.
Although effective in its current form, it is possible to
further diversify memory layouts to increase the sensitivity of
divergences. EXPOZZER’s current randomization technique
does not perform well in heap/global out-of-bound write.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 11

Allocations of heap objects are dynamic, if the out-of-bound
write on the heap does not overwrite any important data
structures, no divergences will be introduced, leading to false
negatives. To improve the detection ability of EXPOZZER,
especially on out-of-bound write on heap, more random-
ization techniques could be used. For example, to detect
heap out-of-bound write, EXPOZZER could introduces more
randomization on heap, e.g., allocating memory regions close
to each other while they have different orders on heap, so that
when out-of-bound write happens, it will overwrite different
data on heap to cause divergence. Similar techniques could
also be used in global data segment.

7.3 More Diversification Schemes
Another possibility for EXPOZZER is to introduce more
randomization other than memory layouts. For example,
scheduler can be randomized to detect concurrency bugs in
multi-threaded programs. After the scheduler is randomized,
EXPOZZER may need to change synchronization mechanism:
enforcing strict system call synchronization and comparison
may cause a large number of false positives and introduce
problems for dual-execution. To eliminate false positives
introduced by schedule randomization, EXPOZZER may
need to loosen the system call synchronization and perform
comparison until the execution is finished.

A more aggressive diversification technique involves
mutating the program to detect semantic bugs. EXPOZZER
could first run static analysis on the target program and
identify critical parts, e.g. parts with security checks or
configurations. Then EXPOZZER changes one variant by
deleting or adding one critical part. After the mutation,
EXPOZZER could perform fuzzing on the target program
and check if any divergence is detected. If a divergence is
detected between the normal variant and the mutated variant,
it could indicate a semantic bug, e.g. missing security check
or mis-configurations.

7.4 Integrating More Fuzzers
Although the evaluation shows that EXPOZZER is very
effective on detect memory-related bugs through divergence
occurs in control-flow and data-flow, its detection ability is
limited by the fuzzers integrated in. During the experiment,
we observed that the coverage of our existing fuzzers
is not good; this causes EXPOZZER to unable to explore
many interesting paths in the target program. This can be
solved by integrating a better fuzzer into EXPOZZER. To
integrate a fuzzer with advanced techniques such as concolic
execution, the dual-execution model may need to be changed
accordingly.

7.5 Supporting More Types of Bugs
The security community tends to define vulnerabilities based
on the impacts of semantic errors (or bugs). For example, a
missing bound-check bug is about the semantic error (i.e., the
root cause), and a buffer overflow can be the impact of the
missing bound-check bug. Memory errors are a broad class
of security-critical vulnerabilities, which are defined based
on the impacts instead of the root semantic errors. EXPOZZER
has been able to expose the broad class of memory errors,

including buffer overflows, use-after-free, and uninitialized
uses, regardless of the root semantics errors. That is, no
matter what types of the bugs are, as long as they lead to
the memory errors, EXPOZZER can detect them. In fact, the
core idea of EXPOZZER is to expose bugs based on their
unexpected behaviors or incorrect results. This generally
holds for most types of bugs because by their nature, bugs
tend to result in unexpected or incorrect results. Therefore,
EXPOZZER can be further extended to expose more types of
non-memory bugs by checking the corresponding behaviors
and results.

7.6 Use EXPOZZER as Fuzzing Feedback
A fuzzing framework consists of two orthogonal parts:
exploration and bug exposing. EXPOZZER focuses on the
exposing part. Existing fuzzers mainly use code coverage
as a feedback to guide the exploration. Indeed EXPOZZER
offers extra dimensions other than code coverage, such as
internal data flows and outputting results, that can indicate
if the fuzzer is making progress. We would like to keep the
use of EXPOZZER for fuzzing feedback for future work.

7.7 Further Exploitability Assessment
Developers can further investigate the exploitability of a
bug by looking into the report generated by EXPOZZER.
EXPOZZER’s report tells developers how many divergences
are detected during the execution in system calls and if
there is control- or data-flow divergences. Developers can
know what system calls are involved in divergences by
manually look into coredumps generated by EXPOZZER and
the error reports generated by our customized debugger.
Further severity and exploitability of detected bugs can
be determined by the investigation. For example, in the
investigation, if developers found out that the heap out-of-
bound read or uninitialized bytes are used in system calls
such as being used as the buffer in write(), it can indicate a
potential information leakage on heap, or if the bug-related
bytes are used to determine the control-flow, or used as
the length parameter in write(), it could cause an arbitrary
memory read.

8 RELATED WORK

In this section, we compare EXPOZZER to research works
involving multi-variant execution, software diversification,
and bug detection.
Multi-Variant Execution System. Cox et al. [39] proposed N-
Variant system and define multi-execution system as a com-
bination of a polygrapher and a monitor. The polygrapher
diversifies variants while the monitor performs the checking
during the execution. Basile et al. [40] implemented replicated
execution of multi-threaded application by using a loose
synchronization algorithm, eliminating non-determinism,
while still preserving the concurrency of the original program.
ReMon [31] improves the performance of multi-variant
execution system by adopting cross-checking method for
security critical system calls and releases the monitoring
for other system calls. GHUMVEE [41] can handle real
world multi-threaded programs by spawning for every
set of threads during multi-variant execution. It intercepts

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 12

the user-space synchronization operations and solves the
synchronization of threads, thereby avoiding deadlocks.

Software Diversification. Cohen et al [42] employed 14
diversification techniques such as replacing instructions with
equivalent ones, instruction reordering, variable substitution,
adding and removing jumps to make the protected software
more secure. Forrest et al. [43] argued that there are many
unnecessary consistencies existing in modern computer sys-
tems, thus proposed dead-code elimination/insertion, code
reordering, stack frame padding/location randomization,
runtime-check randomization etc. to protect software. They
also disrupt buffer overflow attacks by adopting stack frame
allocation randomization.

Pappas et al. [44] applied various code randomization
techniques such as atomic instruction substitution, instruc-
tion reordering, register reassignment to protect software
from ROP attacks. Larsen et al. [45] systematically studied
existing diversification solutions, and generalized properties
of diversification techniques into: what to diversify, when
to diversify and the impact of diversity. These research
works are orthogonal to EXPOZZER. It is always possible to
implement more diversification techniques into EXPOZZER;
the result presented in 6 has already shown that effective
memory diversification can expose many bugs. We argue
that further diversification can enhance EXPOZZER’s ability
to expose more bugs.

Differential Testing. One of the most recent published
research work on differential testing is TimePlayer, a dif-
ferential testing system working on binaries that can detect
uninitialized variables in Windows by leveraging record &
replay, differential testing and symbolic taint analysis [46].
EXPOZZER detects extra kinds of memory bugs except
uninitialized use of memory by providing more kinds of ran-
domizations and employs simpler confirmation techniques
since EXPOZZER is a source-code based testing system. There
some other differential testing systems except TimePlayer,
such as [47], [48], [49], [50], [51], [52]. All of the research
works target specific applications e.g. compilers and crypto
implementations. EXPOZZER is different from them as it is
targeting memory corruptions bugs.

Exploit generation. Mayhem [18] employs hybrid symbolic
execution to automatically detect exploitable bugs. Hybrid
symbolic execution leverages both online and offline execu-
tion so that memory is not exhausted. Mayhem uses index-
based memory model to better reason about the memory
status. CRAX [20] performs concolic execution on software
following the failure directed path. Several techniques are
integrated into CRAX to improve accuracy and speed such as
whole system environment emulation. FUZE [23] determines
exploitability of use-after-free vulnerabilities in kernel by
combining fuzzing and symbolic execution.

Revery [22] leverages the layout-contributor digraph
and fuzzing to search for exploits. SLAKE [21] employs
both static and dynamic program analysis techniques to
generate exploitation for kernel vulnerabilities. All of the
research works listed above rely on heavyweight program
analysis techniques using a combination of static, dynamic
analysis, and symbolic execution, which may introduce
unacceptable performance overhead or introduce potential
false positives. Different from these works, EXPOZZER can

report the exploitability of a given bug by capturing the
divergence in control-flow and data-flow between diversified
variants, with a low performance overhead.

9 CONCLUSION

Existing sanitizers for fuzzing have multiple inherent lim-
itations. In particular, they conflict to each other and in-
troduce significant slowdown. In this paper, we designed
and implemented EXPOZZER, a comprehensive, efficient,
and faithful bug exposer for fuzzers. EXPOZZER uses dual-
execution to detect bugs that can trigger divergences in
data flow or control flow thus are exploitable. EXPOZZER
incorporates an efficient co-design for dual-execution and
fuzzers and multiple techniques to ensure the effectiveness
of bug exposing. To show the effectiveness and efficiency
of EXPOZZER on detecting common categories of memory
bugs, we conduct experiments of applying EXPOZZER to
real world programs and also compare EXPOZZER with two
major sanitizers: ASAN and MSAN. The results show that
EXPOZZER is effective in detecting both known and new
memory bugs, and outperforms the combination of ASAN
and MSAN in fuzzing throughput by at a factor of 10.

REFERENCES

[1] Google, “Oss-fuzz - continuous fuzzing of open source software.”
https://github.com/google/oss-fuzz.

[2] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16,
no. 2016, 2016, pp. 1–16.

[3] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[4] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
745–761.

[5] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, L. Lu
et al., “Savior: Towards bug-driven hybrid testing,” arXiv preprint
arXiv:1906.07327, 2019.

[6] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 711–725.

[7] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 679–696.

[8] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by
program transformation,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 697–710.

[9] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“Mopt: Optimized mutation scheduling for fuzzers,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 1949–
1966.

[10] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2329–2344.

[11] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and
B. Liang, “Semfuzz: Semantics-based automatic generation of
proof-of-concept exploits,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2139–2154.

[12] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in Presented as part of
the 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC}
12), 2012, pp. 309–318.

[13] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector
of uninitialized memory use in c++,” in Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society, 2015, pp. 46–55.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. YY, NO. X, MONTH 20ZZ 13

[14] Google, “Addresssanitizer,” https://github.com/google/sanitizers/wiki/
AddressSanitizer.

[15] LLVM, “Clang 10 documentation memorysanitizer,”
https://clang.llvm.org/docs/MemorySanitizer.html.

[16] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP), May 2019, pp. 1275–1295.

[17] Google, “msan: False positive with libaio?”
https://github.com/google/sanitizers/issues/688.

[18] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 380–394.

[19] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “Aeg:
Automatic exploit generation,” 2011.

[20] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu, and C.-W. Lai,
“Software crash analysis for automatic exploit generation on binary
programs,” IEEE Transactions on Reliability, vol. 63, no. 1, pp. 270–
289, 2014.

[21] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2019, pp. 1707–1722.

[22] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to ex-
ploitable,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1914–1927.

[23] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “{FUZE}:
Towards facilitating exploit generation for kernel use-after-free
vulnerabilities,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 781–797.

[24] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in 24th {USENIX} Security
Symposium ({USENIX} Security 15), 2015, pp. 177–192.

[25] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 969–986.

[26] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats.” in USENIX Security Symposium,
vol. 5, 2005.

[27] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), 2014,
pp. 147–163.

[28] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic
process groups in dos.” in OSDI, vol. 10, 2010, pp. 177–192.

[29] K. Koning, H. Bos, and C. Giuffrida, “Secure and efficient multi-
variant execution using hardware-assisted process virtualization,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2016, pp. 431–442.

[30] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos, and
C. Giuffrida, “kmvx: Detecting kernel information leaks with multi-
variant execution,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 559–572.

[31] S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu, P. Larsen,
B. De Sutter, and M. Franz, “Secure and efficient application
monitoring and replication,” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016, pp. 167–179.

[32] P. Hosek and C. Cadar, “Varan the unbelievable: An efficient n-
version execution framework,” in ACM SIGPLAN Notices, vol. 50,
no. 4. ACM, 2015, pp. 339–353.

[33] A. Limaye and T. Adegbija, “A workload characterization of
the spec cpu2017 benchmark suite,” in 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2018, pp. 149–158.

[34] N. Nethercote and J. Seward, “Valgrind: a framework for heavy-
weight dynamic binary instrumentation,” ACM Sigplan notices,
vol. 42, no. 6, pp. 89–100, 2007.

[35] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti,
W. Robertson, F. Ulrich, and R. Whelan, “Lava: Large-scale auto-
mated vulnerability addition,” in 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 2016, pp. 110–121.

[36] “Binutils cves,” 2019, https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=binutils.

[37] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security

vulnerabilities,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 919–936.

[38] “Linuxflaw,” 2019, https://github.com/mudongliang/LinuxFlaw.
[39] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,

J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A
secretless framework for security through diversity.” in USENIX
Security Symposium, 2006, pp. 105–120.

[40] C. Basile, Z. Kalbarczyk, and R. K. Iyer, “Active replication
of multithreaded applications,” IEEE transactions on parallel and
distributed systems, vol. 17, no. 5, pp. 448–465, 2006.

[41] S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere,
“Ghumvee: efficient, effective, and flexible replication,” in Inter-
national Symposium on Foundations and Practice of Security. Springer,
2012, pp. 261–277.

[42] F. B. Cohen, “Operating system protection through program
evolution.” Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[43] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse
computer systems,” in Proceedings. The Sixth Workshop on Hot Topics
in Operating Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

[44] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Practical
software diversification using in-place code randomization,” in
Moving Target Defense II. Springer, 2013, pp. 175–202.

[45] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Auto-
mated software diversity,” in 2014 IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 276–291.

[46] M. Cao, X. Hou, T. Wang, H. Qu, Y. Zhou, X. Bai, and F. Wang,
“Different is good: Detecting the use of uninitialized variables
through differential replay,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 1883–
1897.

[47] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for c compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and
Implementation, 2012, pp. 335–346.

[48] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov,
“Using frankencerts for automated adversarial testing of certificate
validation in ssl/tls implementations,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 114–129.

[49] Y. Chen and Z. Su, “Guided differential testing of certificate
validation in ssl/tls implementations,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, 2015, pp.
793–804.

[50] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha:
Efficient domain-independent differential testing,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 615–632.

[51] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2016, pp. 85–99.

[52] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov, “A
security policy oracle: Detecting security holes using multiple api
implementations,” ACM SIGPLAN Notices, vol. 46, no. 6, pp. 343–
354, 2011.

Bowen Wang is a PhD student in the Computer Science & Engineering
department at the University of Minnesota. He is advised by Professor
Stephen McCamant and his research interests include includes bug
detection and system security.
Kangjie Lu is an Assistant Professor in the Computer Science &
Engineering Department of the University of Minnesota-Twin Cities. He
received the Ph.D. degree in Computer Science from Georgia Institute of
Technology. His current research aims to secure computer systems by
hardening code and design, finding vulnerabilities, and detecting privacy
leaks.
Qiushi Wu is a PhD student in the Computer Science & Engineering
department at the University of Minnesota. He is advised by Professor
Kangjie Lu and his research interests include systems security, patch
analysis and bug finding.
Aditya Pakki is a PhD candidate in the Computer Science & Engineering
department at the University of Minnesota. He is advised by Professor
Kangjie Lu and his research interests include systems security, operating
systems, and bug finding.

	Introduction
	Background and Motivation
	Pitfalls of Sanitizers
	Exploitability Reasoning

	Overview
	The Workflow of Expozzer
	A Co-Design of Dual-Execution and Fuzzer
	Key Techniques

	Components Design of Expozzer
	Practical and Easy-to-Use Dual-Execution
	Synchronization
	Handling Non-Determinism
	Continuous Fuzzing

	Efficient Dual Forkserver
	Bug-Sensitive Randomization
	Comprehensive Divergence Coverage
	Control-Flow Divergence
	Data-Flow Divergence

	Bug Confirmation

	Implementation
	The Dual-Execution Engine
	Identifying and Handling Non-Determinisms
	Dual Compilation
	Integrating Fuzzers

	Evaluation
	False Negatives
	Detecting New Bugs on Real Programs
	False Positives
	Performance Comparison with ASAN and MSAN

	Discussion
	Uninitialized Use Detection
	Reducing Probabilistic and False-Negative Cases
	More Diversification Schemes
	Integrating More Fuzzers
	Supporting More Types of Bugs
	Use Expozzer as Fuzzing Feedback
	Further Exploitability Assessment

	Related Work
	Conclusion
	References
	Biographies
	Bowen Wang

