
Understanding and Detecting Disordered Error Handling
with Precise Function Pairing

Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu
University of Minnesota

Abstract
Software programs may frequently encounter various errors
such as allocation failures. Error handling aims to gracefully
deal with the errors to avoid security and reliability issues,
thus it is prevalent and vital. However, because of its complex-
ity and corner cases, error handling itself is often erroneous,
and prior research has primarily focused on finding bugs in
the handling part, such as incorrect error-code returning or
missing error propagation.

In this paper, we propose and investigate a class of bugs in
error-handling code from a different perspective. In particu-
lar, we find that programs often perform “cleanup” operations
before the actual error handling, such as freeing memory or
decreasing refcount. Critical bugs occur when these opera-
tions are performed (1) in an incorrect order, (2) redundantly,
or (3) inadequately. We refer to such bugs as Disordered
Error Handling (DiEH). Our investigation reveals that DiEH
bugs are not only common but can also cause security prob-
lems such as privilege escalation, memory corruption, and
denial-of-service. Based on the findings from the investiga-
tion, we then develop a system, HERO (Handling ERrors
Orderly), to automatically detect DiEH. The core of HERO
is a novel technique that precisely pairs both common and
custom functions based on the unique error-handling struc-
tures, which allows us to infer expected cleanup functions.
With HERO, we found 239 DiEH bugs in the Linux kernel,
the FreeBSD kernel, and OpenSSL, which can cause security
and reliability issues. The evaluation results show that DiEH
is critical and widely exists in system software, and HERO is
effective in detecting DiEH. We also believe that the precise
function pairing is of independent interest in other research
areas such as temporal-rule inference and race detection.

1 Introduction

A program may encounter various errors at runtime, including
hardware errors (e.g., disk corruption), software errors (e.g.,
an unlock without a lock), and invalid inputs. To avoid crashes

and insecure operations, the error-handling mechanisms cap-
ture and gracefully deal with errors. As such, error handling
plays a key role in ensuring the security and reliability of
programs. Also, error-handling code is very prevalent; for
example, according to our study, there are more than 400K
occurrences of error handling in about 18K source files in the
Linux kernel.

Unfortunately, error-handling code itself is often erroneous.
In particular, EIO [18] even shows that error-handling code
is “occasionally” correct. After checking the latest 100 CVE-
assigned vulnerabilities [41] in the Linux kernel, we also
found that at least 34% of them are related to incorrect error
handling. Critically, erroneous error handling may result in
many security issues such as use-after-free [11], information
leakage [10], and denial-of-service [9].

The error-prone nature of error-handling code stems from
several reasons. First, the error-handling code often deals with
corner cases that are less likely to occur during normal execu-
tion. This results in two problems: Bugs in the error-handling
code are often not triggered or noticed, and developers tend
to overlook such rare cases. We argue that, in adversarial
scenarios, attackers can intentionally trigger error-handling
code through techniques like memory exhaustion [60] and
fault injection [44]. Thus the bugs can be equally critical to
the ones in normal code. Second, traditional dynamic test-
ing, such as fuzzing, cannot adequately cover the majority
of error-handling code because errors are hard to trigger in
fuzzing. Third, error handling often involves special and com-
plicated logic, which poses significant challenges to correct
implementation.

Developers in low-level languages mainly use four error-
handling primitives. (1) Terminating execution. When an
error is critical, the error handling terminates the execution
to avoid attacks or data/file corruption. (2) Printing error
messages. The code prints out the details about the error
for users to investigate further. In this case, the error is less
critical, so that the execution can continue. (3) Passing error
upstream. The function encountering the error passes the
error back to the callers and expects the callers to handle it

further. (4) Fixing errors. When the error is fixable, the error
handling can directly fix it (e.g., resetting the size value) and
continue.

Prior research thus has primarily focused on detecting
bugs only in the “handling.” For example, Rubio-González
et al. [45] and EIO [18] proposed static-analysis approaches
to detect error-propagation bugs in file systems, i.e., if error
codes are passed correctly. APEx [20], ErrDoc [53], and
EPEx [19] also check if errors are identified and handled in
the callers. Although a few previous works attempted to check
the operations before the handling, they are limited to only
missing-operation cases. For example, Hector [48] detects
missing memory release, and RID [28] detects missing ref-
count decrease. To the best of our knowledge, none of them
could detect other bugs associated with the operations in error
paths before handling, such as cases in which the operations
are present but in an incorrect order or redundant. To fill this
blank area, in this work, we aim to systematically study and
detect the bugs of problematic operations in error paths.

1.1 Contributions
In this paper, we first propose a class of error-handling bugs
from a different perspective and then develop an effective
detection system with multiple new techniques.
Proposing DiEH bugs. While prior research primarily fo-
cused on the “handling” part, we find that, in the error paths,
programs often perform “cleanup” operations before actu-
ally handling the errors. For the example shown in Figure 1,
when the function video_register_device() (line 13) en-
counters an error, the code releases the pointer vfd (line 24)
and unregisters the device (line 26) before passing the er-
ror to its caller. As the cleanup operations, these functions
must be called correctly; otherwise, the program is vulnerable
to bugs such as use-after-free. Buggy cases include calling
cleanup functions (1) in an incorrect order, (2) redundantly,
and (3) inadequately. We refer to such bugs as Disordered
Error Handling (DiEH). While prior research studied inade-
quate error handling such as missing memory release [48] and
missing refcount release [28], redundant and incorrect-order
error-handling problems are unexplored.
An in-depth study of DiEH. Although the impacts and re-
sults of DiEH are known types of bugs like double-free and
memory leak, it represents the root causes of a wide class of
error-handling bugs from a different perspective, so we first
define it and conduct an in-depth study of DiEH in multiple
aspects: causes, commonness, categories, and criticalness.
Specifically, DiEH is hard to avoid because (1) cleanup func-
tions are often custom and are hard to use correctly, and
(2) the error-handling code can be highly complex and in-
volve corner cases. As a result, DiEH bugs are a common
occurrence in complex programs like OS kernels. DiEH bugs
can cause multiple types of security impacts, such as privi-
lege escalation, memory corruption, information leakage, and

denial-of-service, as will be detailed in §2.2.5.
Precise function pairing analysis. Our study also shows
that the key to detecting DiEH is to precisely determine which
cleanup functions should be called to handle the correspond-
ing functions in the normal paths, i.e., to identify function
pairs. However, function pairing is a challenging problem
because such functions are abundant, diverse, and highly
customizable. Moreover, the pairing rules are typically un-
documented, so pairing is hard for even manual analysis. To
address this problem, we propose a new technique so-called
delta-based pairing (see §4) that precisely identifies both
common and custom functions that should appear pairwise by
exploiting unique error-handling structures. We believe our
pairing analysis is of independent interest in other research
areas such as temporal-rule inference and race detection.
An effective detection system—HERO. Based on our em-
pirical study of DiEH bugs, we identify three challenges in
their detection. First, DiEH represents the root causes of
a wide class of semantic bugs in error-handling code from
a different perspective, so the detecting rules are undefined
yet. Second, a DiEH case may not be harmful, so we need
to distinguish and remove harmless cases. Third, by nature,
code paths containing DiEH bugs often involve path condi-
tions (e.g., return-value checks), so path-feasibility testing is
required to ensure that the paths are valid. To address these
problems, we model DiEH and propose HERO ((Handling
ERrors Orderly)). HERO is equipped with multiple tech-
niques such as scalable symbolic summaries for eliminat-
ing infeasible paths and dependency reasoning for removing
harmless incorrect-order DiEH cases. HERO also provides
rankings to facilitate the final manual confirmation for DiEH
bugs.
Open-source implementation and new bugs. We imple-
mented HERO on top of LLVM-10 and plan to open-source
it. HERO is scalable and effective. By applying it to the
Linux kernel, the FreeBSD kernel, and the OpenSSL library,
we found 239 new DiEH bugs, most of which can cause
critical security issues to billions of devices running these
applications. We reported these bugs and fixed most of them
by working with the maintainers. The results confirm that
DiEH bugs are indeed common and security-critical.

2 Background and Study

In this section, we discuss the unique structures of error han-
dling and present our study of DiEH.

2.1 Error handling and function pairs
In case of an error, functions usually first clean up or han-
dle the previous operations, e.g., releasing memory, before
actually handling the error (e.g., returning an error code to
their callers). Unwinding previous operations is however

1 /* drivers/media/platform/s5p-g2d/g2d.c */
2 static int g2d_probe(struct platform_device *pdev) {
3 ...
4 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
5 if (ret)
6 goto unprep_clk_gate;
7 vfd = video_device_alloc();
8 if (!vfd) {
9 ret = -ENOMEM;

10 goto unreg_v4l2_dev;
11 }
12 ...
13 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
14 if (ret)
15 goto rel_vdev;
16 ...
17 dev->m2m_dev = v4l2_m2m_init(&g2d_m2m_ops);
18 if (IS_ERR(dev->m2m_dev))
19 goto unreg_video_dev;
20 ..
21 unreg_video_dev:
22 video_unregister_device(dev->vfd);
23 rel_vdev:
24 video_device_release(vfd);
25 unreg_v4l2_dev:
26 v4l2_device_unregister(&dev->v4l2_dev);
27 unprep_clk_gate:
28 ...
29 }

Figure 1: Example of the error-handling structure.

error-prone. To understand the characteristics of the han-
dling of previous operations, we introduce the idea of leader
and follower functions and use an example to describe the
error-handling structure.
Leader and follower functions. Resources such as memory
and locks are limited. As such, an operation against a
resource, such as memory allocation, is typically accom-
panied by another operation that balances or recovers the
resource. We define a function as a leader function if it
initiates an operation against a resource. The operation
typically either acquires or changes the state of the resource.
Correspondingly, we define a function as a follower function
if it recovers the resource. The leader function and the
corresponding follower function constitute a function pair.
Common function pairs include allocation/deallocation,
lock/unlock, refcount increase/decrease, etc. As an example,
Figure 1 shows three pairs of functions. The first pair is
v4l2_device_register() and v4l2_device_unregister(),
which initializes and cleans up the related objects
such as refcounts and locks. The second pair is
video_device_alloc() and video_device_release(),
which allocates and releases the memory for video de-
vices. The third pair is video_register_device() and
video_unregister_device() whose functionality is similar
to the first function pair.
Unique error-handling structure—EH stacks and deltas.
We identify a unique and common error-handling structure
and refer to it as EH stacks and deltas. We use the example in
Figure 1 to illustrate the structure. In the error paths, follower
functions are called to handle leader functions in a “stack”
manner (i.e., the last follower corresponds to the first leader).

In EH stacks, we use unfilled circles to represent the functions
in the normal paths, gray-filled circles to show the functions
in the error paths, and black-filled circles to indicate the errors
or error checks. In the example, v4l2_device_register(),
video_device_alloc(), and video_register_device() are
leader functions and are called sequentially: 4 – 7 – 13 . In
case of an error in v4l2_m2m_init(), 17 , the error path is 22 –
24 – 26 . In the path, the corresponding follower functions are
called in reverse order, hence we call the structure EH stack.
Due to the complexity of error handling and the poor design
of certain follower functions, in practice, the structure may
not be honored, leading to DiEH.

In this example, there are multiple EH stacks, two of which
are: 4 – 7 – 26 (path 1) and 4 – 7 – 13 – 24 – 26 (path 2).
When we compare the unfilled lines and gray-filled lines in
these two EH stacks, we can obtain the difference which is
7 – 24 . We call the difference an EH delta. In this partic-

ular case, the delta consists of only one leader function and
one follower function. As such, we can infer that functions
video_device_alloc() and video_device_release() are a
function pair. The inference does not require any domain
knowledge or understanding semantic structure, thus it can be
automated. In HERO, we will leverage EH stacks and deltas
to precisely pair functions.

7

26

3 4 28

3 4 7 26 28

26 283 74 13 2424

17133 7 22 24 26 28413 22

EHS
-

4

Nodes in NP Nodes in EP

#
1

2

3

4

Figure 2: The EH stacks of the function in Figure 1. EHS = EH
stack, EP = error path, NP = normal path, ∆ = the EH delta of EHSi
and EHSi−1 where the EH stacks are numbered in the “#” column.

2.2 Disordered Error Handling
In this subsection, we present the definition, categorization,
causes, and security impacts of DiEH.

2.2.1 Definition of DiEH
DiEH represents cases in which the follower functions are
called in an incorrect order, redundantly, or inadequately.
Thus, a DiEH case occurs if it satisfies the three conditions:
(1) a function contains at least one error paths, (2) the function
has at least one leader functions, and (3) in some error paths,
the corresponding follower functions are not called in order,
exactly once, or adequately. Informally, we define a DiEH
case as follows.

Definition 1 Let EP be an error path in a function, [LD] be
the list of leader functions in EP, [FL] be the actual list of

follower functions in EP. Suppose [FL]′ is the expected list of
follower functions to appear in EP based on the foreknowl-
edge of function pairs, then:

∃DiEH ∈ EP, if [FL] ̸= [FL]′

Specifically, [FL] ̸= [FL]′ can occur due to three situations.
(1) [FL] and [FL]′ contain the same set of follower functions
but in different orders. (2) One or more follower functions are
in [FL]′ but not in [FL]. (3) One or more follower functions
are in [FL] but not in [FL]′. Based on the definition, we
identify the key challenge in detecting DiEH as collecting
[FL]′, which requires the foreknowledge of function pairs. In
§4, we describe our new technique, which precisely identifies
function pairs.

1 /* drivers/media/platform/rockchip/rga/rga.c */
2 static int rga_probe(struct platform_device *pdev) {
3 ...
4 pm_runtime_enable(rga->dev);
5 ...
6 ret = v4l2_device_register(&pdev->dev, &rga->v4l2_dev);
7 if (ret)
8 goto err_put_clk;
9 vfd = video_device_alloc();

10 if (!vfd) {
11 ...
12 goto unreg_v4l2_dev;
13 }
14 ...
15 rga->vfd = vfd;
16 ...
17 rga->m2m_dev = v4l2_m2m_init(&rga_m2m_ops);
18 if (IS_ERR(rga->m2m_dev)) {
19 ...
20 goto unreg_video_dev;
21 }
22 ...
23 /* Create CMD buffer */
24 rga->cmdbuf_virt = dma_alloc_attrs(...);
25 rga->src_mmu_pages = (unsigned int *)__get_free_pages(...);
26 rga->dst_mmu_pages = (unsigned int *)__get_free_pages(...);
27

28 ret = video_register_device(vfd, VFL_TYPE_VIDEO, -1);
29 if (ret) {
30 v4l2_err(&rga->v4l2_dev, "Failed to ...");
31 goto rel_vdev;
32 }
33 ...
34 return 0;
35

36 rel_vdev:
37 video_device_release(vfd);
38 unreg_video_dev:
39 video_unregister_device(rga->vfd);
40 unreg_v4l2_dev:
41 v4l2_device_unregister(&rga->v4l2_dev);
42 err_put_clk:
43 pm_runtime_disable(rga->dev);
44 return ret;
45 }

Figure 3: An example showing various new DiEH bugs, found by
HERO, in a single function in the Linux kernel.

2.2.2 Classification of DiEH bugs

In §2.2.1, we present three situations that result in [FL] ̸=
[FL]′. In this section, we present concrete cases for them.
Incorrect-order follower functions. Using correct fol-
lower functions but in an incorrect order can cause secu-

rity bugs. For example, Figure 3 contains a use-after-
free bug caused by using the follower functions in an
incorrect order. The function video_device_alloc() is
called in line 9, which is before the function call of
video_register_device() in line 28. Thus, the correspond-
ing follower function video_device_release() should be
called after video_unregister_device(). However, the er-
ror path starting from line 31 calls video_device_release()
before video_unregister_device(). This incorrect-order
DiEH results in a use-after-free because rga->vfd is an alias
of vfd (line 15), and line 39 uses rga->vfd which uses the
memory freed by line 37.
Redundant follower functions. Follower functions of a
leader function might be called redundantly. This can hap-
pen when either multiple follower functions are called by
mistake, or a follower can actually correspond to multiple
leader functions, which confuses developers. For example, in
Figure 3, the follower function video_unregister_device()
(line 39) is called even when the call of its leader function
video_register_device() (line 28) returns an error, which
is unnecessary, leading to a redundant DiEH bug. A correct
case is to call video_unregister_device() only when its
leader function video_register_device() succeeds. Com-
mon issues resulting from redundant DiEH include double
free, double unlock, double refcount, etc.
Inadequate follower functions. This situation refers to
that necessary follower functions are missing. Com-
mon cases include missing release, missing unlock, miss-
ing refcount decrease, etc. For example, Figure 3
also contains several missing-release bugs. When the
call of the function video_register_device() failed (line
28), pointers rga->cmdbuf_virt, rga->src_mmu_pages, and
rga->dst_mmu_pages are not released, which are allocated in
lines 24, 25, and 26. These bugs are common, and the Linux
kernel has more than two thousand patches to fix inadequate
follower functions. Prior research has studied such inadequate
follower functions like missing resource release [48]; how-
ever, the other two situations, incorrect-order and redundant
follower functions remain unexplored.

2.2.3 Causes of DiEH

In this section, we summarize three major causes of DiEH
based on our empirical analysis, which are hard to avoid.
Poor design of follower functions. Different programmers
have various programming habits. Some follower functions
are hard to use if they do not follow the programming conven-
tion. For example, functions pm_runtime_get_sync() and
kobject_init_and_add() are called many times in the Linux
kernel, but they are actually poorly designed. Both of these
functions would increase the kernel refcount, even when they
failed, violating good design practice. Some Linux maintain-
ers we interacted with even complained that “if you follow the
common convention, you will get it wrong.” Though patterns

and anti-patterns in API design are widely discussed [46],
factors such as a need for backward compatibility and a large
developer base makes API design a challenge.
Complexity and dependency of cleanup operations. Error
paths are prevalent in a large program, and each may contain
various cleanup operations (follower functions). Our analysis
shows that, in the Linux kernel, there are more than 120K
intra-procedural error paths, and 61.6% of them include at
least one follower function, and on average, there are 2.46
follower functions per error path. The most complex error
path contains 143 follower functions. More critically, some
follower functions are dependent on each other, e.g., a pa-
rameter of a memory-release function is a nested field of a
parameter of another function. The dependency requires the
follower functions to be called in a specific order.
Custom follower functions. Different modules employ dif-
ferent leader and follower functions. We determined that
about 80% of function pairs in the Linux kernel are custom
(§7.1). These function pairs are defined and used within a spe-
cific module such as a driver. Avoiding DiEH bugs requires
programmers to be knowledgeable about all the custom func-
tions, which is a burden.

2.2.4 Prevalence of DiEH

It is hard to avoid DiEH due to the causes mentioned in §2.2.3.
After manually checking 100 CVE-assigned vulnerabilities in
2019 from the Linux kernel, we found that DiEH causes 22
of them. Further, after checking the patches over the past two
years from the Linux kernel, we found 42% of memory leaks
and 45% of double-free bugs are due to DiEH. These results
indicate that DiEH bugs are prevalent in the OS kernels, and
can cause a wide range of security impacts. By employing a
systematic detection, we expect to find many DiEH bugs.

2.2.5 Security Impacts of DiEH

Most DiEH bugs can cause severe security impacts, depend-
ing on their contexts. Common security impacts of DiEH in-
clude use-after-free, double-free, NULL-pointer dereference,
deadlock, memory leak, refcount leak, etc. In the following,
we showcase how DiEH leads to critical security issues.
Memory corruption. DiEH bugs often cause critical mem-
ory corruption such as use-after-free, double free, and NULL-
pointer dereference. In Figure 3, we have shown how an
incorrect-order DiEH leads to a use-after-free. Also, redun-
dant and inadequate DiEH can lead to memory corruption.
For example, CVE-2019-15504 [32] is a double-free vulner-
ability in the Linux kernel caused by redundant DiEH. This
vulnerability has the highest CVSS score (10), which may be
exploited remotely to compromise the system. CVE-2019-
15292 [31] is a use-after-free vulnerability in the Linux kernel
caused by inadequate DiEH. This vulnerability also has the

highest CVSS score (10), which can compromise the confi-
dentiality, integrity, and availability of the system. Further,
DiEH is a source for NULL-pointer dereference. For example,
CVE-2019-15923 [34] is a NULL-pointer dereference vul-
nerability in the Linux kernel, which is caused by inadequate
DiEH.
Privilege escalation. DiEH can cause privilege escalation,
which is considered one of the most critical security problems.
CVE-2019-5607 [37] and CVE-2016-0728 [30] are refcount-
leak bugs found in FreeBSD and the Linux kernel. Both bugs
can cause privilege escalation because an overflowing refer-
ence count triggers a use-after-free. Similarly, CVE-2019-
0685 [29, 39] is a refcount-leak vulnerability in Windows,
which can be exploited to launch privilege-elevation attacks.
These results show that DiEH can also compromise the confi-
dentiality and integrity of OS systems.
Denial-of-Service. The most common security impact of in-
adequate follower functions is resource leak such as memory
leak and refcount leak. Memory leaks in the OS kernels are
considered critical because they can crash the whole system
and lead to Denial-of-Service (DoS) [33, 35]. Figure 3 is vul-
nerable to a memory leak in case video_register_device()
fails.

3 Overview

Based on the study, we develop an effective detection system
for DiEH bugs. In this section, we first discuss the challenges
in identifying DiEH, and then outline our solutions.

3.1 Challenges in Identifying DiEH

While prior research [28, 48] attempted to detect cases of
inadequate follower functions, cases of incorrect-order and
redundant follower functions remain unexplored. Systemati-
cally detecting DiEH bugs involves three major challenges.
Analysis of error-handling structures. HERO first needs
to analyze the error-handling structures, so as to extract EH
stacks and deltas, which will be leveraged to identify function
pairs. In particular, HERO needs to: (1) identify the normal
paths (e.g., 4 , 7 , and 13 in Figure 1) and error paths (e.g.,
22 , 24 , and 26 in Figure 1) in a function, (2) identify the
leader and follower functions in the normal and error paths.

Normal and error paths are often interleaved in the program.
Thus, to identify and distinguish them, we need to know their
demarcation points, which is a non-trivial task. In a function,
there may be many normal and error paths, but only some of
them should be associated together. Thus, we should map
the normal paths to their corresponding error-paths. Further,
numerous functions are called in normal and error paths, but
not all of them should be called in pairs. Therefore, we need
to extract the leader functions from normal paths and follower

EHS1

EHS2

EHS3

EHS5

EHS6

EHS4

Collecting & Ranking

Building EHGPrep environments

CFG Extract

Source code LLVM IRs

IRCompile

Analys
is

FPL
FP1
FP2
...

Bug detectionPair detection

FFLF-

Delta pairing
CG

1.Symbolic summary

EHS
LF1()
LF2()

...
FF1()

Detecting

NP

31 2 11 12

21 12EHS2
EHS3

EP DiEH cases
LFB() - ???
LFC() - FFC()
LFC() - FFC'()

?
...

BUG1
DiEH bugs

BUG2
...

2.Dependency reasoning

3.Cross-validation
EHS calibration

Figure 4: An overview of HERO. It has four steps; by taking the source code of a program, it automatically reports ranked DiEH bugs. CFG =
Control flow graph, CG = call graph, EHG = error-handling graph, EHS = error-handling stack, LF = leader function, FF = follower function,
FPL = function-pair list, Sym sum = symbolic summary.

functions from the corresponding error paths. More impor-
tantly, as we will describe in §4, the pairing of a leader and a
follower function can be either conditional or unconditional.
A precise pairing analysis requires distinguishing them, which
is hard.

Function-pair identification. According to our definition
of DiEH (§2.2.1), the detection of DiEH is essentially check-
ing [FL] ̸= [FL]′, which requires the foreknowledge of
leader-follower function pairs. This would previously re-
quire domain knowledge or manual efforts, and its automa-
tion is a significant challenge. In particular, programs tend
to extensively use custom functions—defined and used in a
specific module. Such functions have a limited number of
uses, so existing mining-based inferences may not work. In
fact, our study estimates that 80% of follower functions in
the Linux kernel are custom. Moreover, there are a num-
ber of different classes of leader-follower pairs, such as al-
location/deallocation, lock/unlock, getter/putter, and regis-
ter/unregister. As a result, previous works (e.g., [15, 61])
either assume that function pairs are provided or only target a
specific class of common pairs.

Elimination of harmless DiEH cases. The checking of
“[FL] ̸= [FL]′” returns DiEH cases which may not be harmful,
i.e., false positives. There are two major causes of harm-
less DiEH cases. First, by nature, the path of an EH stack
often involves path constraints (i.e., return-value check). A
path is infeasible if conflicting constraints exist. The intu-
itive solution, symbolic execution, may not work in complex
programs. Second, for the incorrect-order DiEH cases if the
follower functions are independent, their order does not mat-
ter. Therefore, for these incorrect order DiEH cases, we need
to understand the potentially complicated data dependencies
among different follower functions to determine potential
bugs. Note that redundant and inadequate DiEH cases do not
have this challenge because they are independent of ordering.

3.2 HERO Techniques

To address the challenges, we propose multiple new tech-
niques. In this section, we briefly introduce them.

Understanding error-handling structures. To identify
function pairs, HERO first automatically understands the
error-handling structures and represents them with a graph.
This technique starts with identifying error checks. An error
check is basically an if statement that checks whether a func-
tion returns an error code. For example, lines 5, 8, 14, and 15
are error checks in Figure 1. With the identified error checks,
we can identify normal paths and error paths—the code path
prior to the error check is the normal path, while the taken
path (as opposed to the fall-through) of the error check is the
error path. This technique also identifies leader and follower
functions on the normal and error paths by removing irrele-
vant functions (e.g., via dependency analysis), and stores all
the information in a graph, referred to as the error-handling
graph or EHG. We will present details of the technique in
§4.1.

Pairing functions with EH deltas. To identify function
pairs in a program, we propose delta-based analysis, which
can precisely pair functions even when they are custom (i.e.,
only with a small number of occurrences). The key insight is
that follower functions in the error path are called in a spe-
cific (reverse) order, corresponding to the leader functions
in the normal path, which constitutes EH stacks, as shown
in Figure 2. More importantly, when we compare two ad-
jacent EH stacks, we naturally obtain the EH delta, which
oftentimes has only one leader function and one follower
function—therefore, we can infer that this follower function
is paired to the specific leader function. For example, by
comparing EH stacks 1 and 2 in Figure 2, we obtain the EH
delta, 4 – 26 , which constitutes a function pair. Similarly,
EH stacks 2 and 3 generate the EH delta, 7 – 24 , forming an-
other function pair. To further improve the pairing precision,
we propose EH-stack calibration to distinguish conditional
and unconditional pairs. Details are presented in §4.

Detecting DiEH bugs with identified pairs. To detect
DiEH bugs, we first detect DiEH cases, and then remove
infeasible and harmless cases to report DiEH bugs. HERO
detects DiEH cases by comparing the follower function list
[FL] with the expected follower function list [FL]′. To re-
move infeasible DiEH cases, we propose a scalable symbolic
summary for conflicting constraints, which helps eliminate
infeasible paths. In addition, to remove harmless incorrect-
order DiEH cases, we propose follower-dependency reason-
ing, which finds independent follower functions whose order
does not matter. Finally, we provide a ranking of detected
DiEH bugs to facilitate manual confirmation. More design
details will appear in §5.

3.3 The HERO Framework
We now briefly introduce the workflow of HERO, shown
in Figure 4. HERO consists of four steps. (1) Preparing
the analysis environment. HERO first prepares the analysis
environments by compiling the source code to LLVM IRs
(bitcode files), and building the control-flow graph (CFG)
and call-graph (CG) for the program. (2) Constructing error-
handling graph. Second, HERO analyzes the unique error-
handling structures to extract errors and EH stacks for each
function. After that, the HERO constructs an EHG to record
all the information. (3) Leader-follower pairing. Third, based
on the EH stacks, the HERO computes the EH deltas and
leverages them to pair functions. (4) DiEH detection. Finally,
based on function pairs and the EHG, HERO detects DiEH
bugs in the program. As a result, HERO reports the DiEH
bugs. The reports include details such as disordered situations
and suggested fixes.

4 Delta-Based Precise Function Pairing

A key challenge to detect DiEH bugs involves identifying
function pairs including custom ones. We propose a novel
technique that leverages the unique error-handling structure—
EH stacks and deltas—to precisely pair functions. In this
section, we present the design of the pairing analysis.

4.1 Extracting Error-Handling Structures

Identifying error checks, normal and error paths. To ex-
tract EH stacks of a function, we first identify error checks to
collect normal paths and error paths. To identify error checks,
we collect common error codes such as ENOMEM, and common
error-handling functions such as pr_err() and panic(); §6
presents more details. Such error codes and error-handling
functions are typically uniformly defined in dedicated header
files. HERO regards a path as an error path if it returns an
error code or a NULL pointer, or calls at least one error-
handling functions. This design is consistent with existing
works [19, 20, 27, 48].With the identified error checks, we

naturally collect both normal paths and error paths of each
error check. A path is represented with a list of code blocks,
and a function can potentially contain a large number of paths.
Filtering follower functions by removing noises. Not all
the functions in the normal and error paths should be paired,
e.g., kprintf(). Therefore, we want to remove irrelevant
functions. We first remove noisy functions in the error paths,
i.e., filtering follower functions. We observe that unlike nor-
mal paths, error paths tend to be much simpler, in which irrel-
evant functions are typically commonly used error-messaging
(e.g., dev_err()) and exiting (e.g., panic()) functions. There-
fore, we remove such functions, and details are presented in
§6.
Filtering leader functions through data dependency.
Compared to error paths, normal paths are more complicated,
which call diverse functions. As such, we instead employ
data dependency to filter potential leader functions, given that
we have already selected potential follower functions men-
tioned above. The insight is that follower functions clean
up resources obtained by or operations performed by leader
functions; a leader function and the corresponding follower
function should be connected through variables. For exam-
ple, kfree() takes the pointer returned by kmalloc() as the
parameter. With the insight, we select potential leader func-
tions based on data dependencies on the selected follower
functions. Specifically, if the return value or a parameter of
a function is used by a follower function, we select it as a
potential leader function. To be conservative, our dependency
analysis is field-insensitive. That is, different fields of an
object are also considered dependent.
Constructing EH stacks. With the potential leader and
follower functions collected, we next construct EH stacks.
An EH stack consists of three parts: <ERROR, [LD], [FL]>.
Here, [LD] is a non-empty list of leader functions, which
are in the normal path; [FL] is a non-empty list of follower
functions, which are in the error path; ERROR is the call-site
to the error-generating function corresponding to the error
check. We bypass the path-explosion problem by collecting
EH stacks using intra-procedural analysis.

CFG EHG

ROOT

EHS1

EHS2

EHS3

EHS4

3
4-5
7-8
12

13-14

16

17-18

...

EH Stacks

3
4
7
26

28

3
4
28

Construct

Figure 5: Constructing the EHG for the function in Figure 1. EHS
= EH stack. With the EHG, we can quickly find adjacent EH stacks
to compute EH deltas.

Building error-handling graph. To record all the identified
error-handling information for a function, we then build an
error-handling graph (EHG). Another purpose of building
EHG is to also capture the adjacency of EH stacks, which
facilitates the pairing analysis. The nodes of the EHG are EH
stacks. Edges are added to connect the EH stacks based on
the control-flow dependencies of the error checks associated
with the EH stacks.

Specifically, given a function, to build the EHG, HERO
first constructs the nodes by identifying all the basic blocks
that include an error check. Then from a selected basic block
and its error check, HERO collects all the EH stacks associ-
ated with this error, and further records these EH stacks into
the nodes of EHG. After that, HERO traverses the CFG and
connects these nodes in the EHG based on their control-flow
relationship. Figure 5 shows an example of creating the EHG
based on the control-flow graph (CFG) of the function in Fig-
ure 1. Four shadow nodes, which mark lines 4-5, 7-8, 13-14,
and 17-18 in the CFG, indicate the code blocks containing
error checks.

4.2 Delta-Based Pairing Analysis

In §4.1, we extract EH stacks and build the EHG. In this
section, we present how we perform the delta-based pair-
ing analysis, which computes EH deltas by comparing two
adjacent EH stacks to precisely identify function pairs.
Computing EH deltas. As already described in §3.2, we
leverage EH deltas to precisely identify function pairs because
EH deltas often precisely capture an extra leader function and
the extra follower function. To compute the EH deltas, we
pick each two adjacent EH stacks from the EHG and compare
them to generate the delta. In less than 5% of cases, an EH
delta contains more than one leader or follower functions; in
this case, we still try to pair them but in reverse order with the
help of data-dependency analysis. That is, for the last follower
function, it will be paired to the first leader function if they
have data dependencies; otherwise, we would try to pair it
with the second leader function. Following this order, and if
finally, this follower cannot be paired with any leader function,
we would further calibrate the EH stack (shown in the next
paragraph) and try to pair it with the error-generating function.
HERO would drop the leader or follower functions if they
eventually cannot be paired, which is uncommon. Note that
HERO may pair one leader to multiple follower functions,
and vice versa, which means that the pairing output is “many-
to-many” mapping between leader and follower functions.

1 2 3 6 7 8

21 8
EHS#

1

2

EHS after calibrating

1 2 3 6 7 8C3

Figure 6: Calibrating EH stack. EHS = EH stack.

Calibrating EH stacks. Before we present the pairing algo-
rithm, we first describe the challenge. We divide function
pairs into two categories – conditional pair and unconditional
pair. In most cases, function pairs are conditional. That is,
a follower function is necessary only when the leader func-
tion succeeds. For example, if kmalloc() fails, kfree() is
unnecessary. However, there are also some unconditional
pairs. That is, despite the failure of the leader function, the
corresponding follower function is still required. For example,
as mentioned in [6], when kobject_init_and_add() fails, its
follower function kobject_put() is still required to clean up
the related objects. To correctly construct EH stacks, we
must distinguish conditional and unconditional function pairs;
otherwise, the pairing results would be unreliable.

We propose to calibrate the EH stacks, which identifies
unconditional pairs and adjusts EH stacks. The idea is based
on an observation that an unconditional pair will result in an
extra follower function in the EH delta of two adjacent EH
stacks. Therefore, we detect unconditional pairs based on
such extra follower functions. Once unconditional pairs are
detected, we adjust EH stacks by extending their normal paths
to contain the error-generating functions. We use Figure 6 to
illustrate the calibration. EHS1 and EHS2 are adjacent in the
EHG. By comparing them, we find that the leader function
2 , and two follower functions 6 and 7 show up on the EH
delta, in which an extra follower exists. After checking the
data dependencies between 3 and 6 , we deem that 3 is
an unconditional leader function, and functions 3 and 6
constitute an unconditional pair. We thus calibrate EHS2 by
including 3 in its normal path. This way, HERO effectively
eliminates noises introduced by unconditional pairs.
The pairing algorithm. Putting the steps together, HERO
first traverses the EHG to get each EH stack and its successor
in the EHG; these are two adjacent EH stacks. Specifically,
HERO analyzes every path and differentiates error paths
from normal ones to collect adjacent EH stacks. As such,
HERO handles conditionals—if there is a conditional state-
ment, HERO will simply collect two paths. Then, HERO
calculates their EH delta. If the EH delta indicates an uncon-
ditional pair, HERO calibrates the EH stack and re-calculates
the EH delta. Using the EH deltas, HERO collects the func-
tion pairs. The output of this algorithm is a list of potential
function pairs. Note that this algorithm also includes a rank-
ing mechanism that will be presented in §6.

5 Detection of Disordered Error Handling

With the identified function pairs and constructed EHG,
HERO automatically detects DiEH bugs. The detection
works with two phases: detecting DiEH cases, and reporting
DiEH bugs by removing infeasible and harmless cases.
Detecting DiEH cases. HERO employs an intra-procedural,
flow-sensitive static analysis to check each path and its cor-

responding EH stack in functions. At a high level, each EH
stack contains a list of leader functions [LD] as well as a list
of follower functions [FL]; after that, HERO computes the
expected list of follower functions [FL]′ and compares it with
[FL]. HERO reports cases in which [FL] ̸= [FL]′ as DiEH
cases. HERO also categorizes the DiEH into incorrect-order,
redundant, and inadequate cases based on the classification
rules presented in §2.2.3.

5.1 From DiEH Cases to DiEH Bugs
A DiEH case can be infeasible or harmless. In this section,
we present our techniques for eliminating such cases to con-
firm DiEH bugs. We also provide a ranking mechanism to
prioritize DiEH cases.
Eliminating infeasible paths by detecting conflicts.
HERO statically finds normal and error paths to detect DiEH.
If a path is infeasible (i.e., containing conflicting path con-
straints), the detected DiEH would be a false positive. To
remove such false positives, we aim to eliminate infeasible
paths. An intuitive strategy is to employ traditional symbolic
execution, which is not scalable and can easily lead to path
explosion, not to mention that our target programs are com-
plex. To address this problem, we propose a scalable symbolic
summary for each function, which intra-procedurally captures
conflicting constraints among the variables such as, condi-
tional variables and return values. When a path contains such
conflicting constraints, we deem it infeasible.

Specifically, the symbolic summary consists of two steps:
(1) collecting constraints from the path under analysis,
(2) checking the existence of conflicting constraints. In
the first step, HERO analyzes the current path and col-
lects constraints from every conditional statement, such
as if (flag == True). Further, HERO extracts changes
against the variables of collected constraints that we are cer-
tain about, such as constant assignment like flag = false. If
a change is uncertain, e.g., assigned with an unknown variable,
we regard the case as an uncertain constraint. In the second
step, HERO checks collected constraints, and treats the path
as infeasible if it has conflicting constraints. (e.g., the first
constraint is flag == false and then the second constraint
is flag == True.) The symbolic summary conservatively re-
gards all the uncertain constraints as solvable, ensuring the
precision of the removal of infeasible paths. This simple
approach can quickly and reliably (i.e., the infeasibility is
determined) remove infeasible paths without handling com-
plicated uncertain constraints, which is a lightweight version
of under-constrained symbolic execution.

Figure 7 shows an example of conflicting constraints
causing a false positive in detecting DiEH. For this
case, without the symbolic summary, HERO would de-
tect a missing-follower DiEH case—the release function,
kfree(max3421_hcd->rx), is missing in path 3 – 4 – 7 –
11 – 12 – 13 – 15 – 16 – 19 . This is however a false positive

because constraints if(!hcd) (line 4) and if(hcd) (line 16)
are conflicting in the path. With the symbolic summary, when
analyzing this path, HERO will first collect the constraint
hcd != NULL from line 4 and the constraint hcd == NULL
from line 16. Then, HERO determines that the constraints
are conflicting, and thus the path is infeasible. In addition
to checking conflicting constraints from a called function,
our technique will check the ones from the current function
and use them to eliminate infeasible paths. To collect more
conflicting constraints, we also employ alias analysis, which
is based on the LLVM alias analysis infrastructure [43] to
map the variables involved in the constraints.

1 /* drivers/usb/host/max3421-hcd.c */
2 static int max3421_probe(struct spi_device *spi) {
3 hcd = usb_create_hcd(...);
4 if (!hcd)
5 goto error;
6 ...
7 max3421_hcd->rx = kmalloc(...);
8 if (!max3421_hcd->rx)
9 goto error;

10

11 max3421_hcd->spi_thread = kthread_run(...);
12 if (max3421_hcd->spi_thread == ERR_PTR(-ENOMEM))
13 goto error;
14 ...
15 error:
16 if (hcd)
17 kfree(max3421_hcd->rx);
18 ...
19 return retval;
20 }

Figure 7: Example of the conflicting constraints.

Our evaluation shows that our solution is effective, and it
reduces about half of the false positives cases without intro-
ducing additional false negatives, which makes the results
manageable for manual analysis. Nevertheless, our symbolic
summary is based on intraprocedural analysis and only con-
sidering the most intuitive conflict constraints, and thus it
still cannot handle the false positives caused by complicated
conditions. The evaluation results in §7.3.1 show that, finally,
for bug detection, 23% of false positives are caused by com-
plex conditions, which cannot be handled by the symbolic
summary. However, our intra-procedural symbolic summary
and feasibility testing are highly scalable, with no noticeable
slowdown in the analysis.

In general, we can compare the symbolic summary with
the symbolic execution from the following aspects: (1) both
do not have false-positive in theory, (2) the symbolic sum-
mary has false-negatives due to the intraprocedural analysis
and also missing handling complex constraints, and (3) the
symbolic summary performance is much better than symbolic
execution because the front one would not suffer from com-
plex constraint solving or copying state for the forked process,
which only simply compares the must conflict constraints in
a given path.
Eliminating harmless cases via dependency reasoning.
HERO reports any incorrect-order follower functions as po-

tential DiEH. However, we observe that if two follower func-
tions are independent, it is typically harmless to call them in
staggered order. Therefore, we eliminate such independent
cases. Specifically, we employ dependency reasoning to find
independent follower functions. To be precise, we employ
MustAlias analysis [43] and field-sensitive analysis. We ap-
ply the data-dependency analysis to the parameters and return
values of the follower functions. If data dependency is found,
we keep the DiEH cases. This technique can effectively re-
move the harmless incorrect-order DiEH cases.
Ranking reported bugs through cross-validation. To alle-
viate the manual effort in confirming DiEH bugs, HERO fur-
ther ranks reported cases by employing cross-validation [14]
across the cases. HERO calculates the percentage of error
paths that encounter this problem. A lower percentage indi-
cates that the DiEH case is an outlier and is more likely a
bug. HERO then ranks the bugs based on the percentage in
ascending order, for each category.

6 Implementation of HERO

We implement HERO based on LLVM-10 as multiple passes
that identify error-handling structures, construct the EHG,
perform delta-based pairing analysis, and detect DiEH bugs.
We also implement multiple Python scripts for pairing and
bug ranking. HERO is implemented with 5.5K lines of code
in C++ and 800 lines of code in Python. In this section, we
present some interesting implementation details.
Removing irrelevant functions in error paths. Compared
to normal paths, error paths are often simple. Typically, ir-
relevant functions can be either (1) error-logging functions
(e.g., dev_err), which log error messages, or (2) exit func-
tions (panic), which terminate the execution. We employ two
methods to eliminate such functions. First, we find that error-
logging functions have clear patterns, e.g., having variadic
and format parameters. We identify such functions by using
pattern-matching. Second, to collect terminating functions,
we identify wrapper functions that internally call primitive
ones like panic(), abort(), and exit(). In total, we collect
537 irrelevant functions that are excluded from the pairing.
Ranking function pairs. The pairing analysis is precise for
most cases but still has some false positives (see Figure 8)
due to limitations with static analysis. We thus also provide a
ranking mechanism against the pairs. The key insight is that
for a true function pair, the occurrences of the leader func-
tion should close to the occurrences of the follower function.
Given a function pair, we count the total occurrences of a
leader function as LT and the total occurrences of its follower
function as FT. Then, we count the frequency of function pair
occurrence in the program as PT. Finally, we define the paired
rate (PR) as PR = PT 2

FT∗LT and use it to rank the pairs in de-
scending order. If PR approaches one the leader function and
follower function are always used together; on the other hand,

if PR approaches zero, the leader and the follower are rarely
paired. Our evaluation (see §7.2) shows that such ranking can
effectively squeeze most of the false positives into the bottom
of the list, which can be eliminated easily.

7 Evaluation

We conduct our experiments on an Intel Xeon CPU server
that has 48-cores and 256GB RAM, and runs Ubuntu-18.04
OS. All experiments use -O2 optimization to generate bit-
code (LLVM IR) files. We evaluate HERO on both sys-
tem and application software, including Linux (commit #:
4d856f72c10) and FreeBSD (commit #: c54c07625bd) ker-
nels, and OpenSSL library (commit #: 7821585206).
Analysis time and program complexity. Table 1 shows the
analysis time for each component across different systems.
Even for the Linux kernel, which has 17.7 million lines of
code, the pairing finishes within one hour, and the detection
finishes in about 10 hours. The results confirm that HERO is
efficient and can scale to large programs. Note that HERO is
currently single-threaded; multithreading can further improve
its efficiency.

Target program Lines of IR Time for Detection
Code files pairing time

Linux kernel v5.3 17.7M 18,071 48 min 10 h 16 min
FreeBSD v12.1 4.8M 1,483 10 min 2 h 28 min
OpenSSL 450K 1,902 53 sec 11min

Table 1: Analysis time of HERO and the complexity of programs.

Preparing pair sets. To evaluate our delta-based pairing, we
prepare two sets of function pairs. The first set is the reported
pair set, which includes 150 randomly selected unranked
functions pairs identified by HERO. As will be detailed in
§7.2, 89 of them are true pairs, while 61 are false pairs. The
second set is the ground-truth pair set, which includes 86
function pairs of various types. We collected this set from 15
random source files across different subsystems of the Linux
kernel; these files contain 26K lines of source code.

7.1 Characteristics of Identified Pairs

HERO detects more than 7.5K, 416, and 323 potential func-
tion pairs in the Linux kernel, OpenSSL, and FreeBSD, re-
spectively. To further characterize these pairs, we pick the
Linux kernel because it is the most complex. We first use
script code to statistically select common keywords in the
names of paired functions, and use the keywords to empiri-
cally classify pairs. The common keywords and the classifica-
tion are summarized in Table 2. Interestingly, the keywords
of a pair usually have the opposite meaning, indicating the
paired operations, e.g., alloc/dealloc and increase/decrease.

Classes (Proportion) LF Operations FF Operations

Resource alloc, new, request, free, release, erase,

acquisition (50.2%) create destroy, remove
init fini, finish, deinit, uninit

Lock (4.4%) lock, down unlock, up
Refcount (12.5%) get, inc put, dec

Device related (18.2%) register unregister, deregister
charge, on, enable uncharge, off, disable

Bit operation (0.7%) set clear
apply, pin, assert revert, unpin, deassert
join, add, map leave, remove, unmap

Others (33%) reserve delete, del
begin, start, open end, finish, stop, exit, close
setup clean, cleanup

Table 2: Common classes of function pairs in the Linux kernel. LF
and FF are leader and follower functions, respectively.

Custom function pairs. A strength of our delta-based pair-
ing analysis is that it does not require a large number of occur-
rences of pairs for inference or mining. As a result, HERO
is capable of identifying function pairs that are composed of
custom leader and follower functions, and thus it can identify
a significantly larger number of pairs. To confirm that, we
identify custom pairs from the 89 true pairs in the aforemen-
tioned reported pair set. We find that 71 are defined and used
in specific modules, thus are custom. Therefore, the result
shows that 79.8% of them are custom.

7.2 Precision and Recall of Delta-Based Pair-
ing

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of ranked results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pr
ec

isi
on

 an
d r

ec
all

Precission = TP/(FP+TP)
Recall = TP/(TP+FN)

Figure 8: Precision rate and recall rate of pairing results. TP = True
positives, FP = False positives; FN = False negatives.

Precision of the pairing. We first evaluate the precision
rate (i.e., TP / (FP + TP)) of the pairing and the ranking
mechanism. Manually confirming all the detected pairs is im-
practical, so we reuse the “reported pair set” which contains
150 unranked function pairs. In particular, we manually con-
firm the pairs through their names, semantics, functionalities,
and usage by reading the code and comments. We found that

functions names are very helpful in the confirmation because
they contain opposite keywords (e.g., alloc/dealloc) and fol-
low similar structures. Our confirmation shows that 89 are
true function pairs. Automatically pairing the functions in
large programs like Linux, where custom functions are preva-
lent, is very challenging. We believe the precision is already
promising. However, to further improve the precision, we also
provide a ranking mechanism, as shown in §6. The evaluation
results show that the ranking mechanism can help exclude
most of the false positives caused by irrelevant functions. As
we discussed in §6, besides the 537 error-handling functions
such as warn() , HERO treats all other functions as potential
leader/follower functions. Thus other irrelevant functions can
still incur noises. However, the false positives caused by these
irrelevant functions can be further filtered out by the “paired
rate,” which is based on the fact that the irrelevant functions
are often not paired to its leader or follower functions. For
example, the function __memcpy() is an irrelevant function
for functions pairs, but HERO still paired __memcpy() and
kfree() twice in the Linux kernel. Nevertheless, __memcpy()
is called more than 27K times, and kfree() is called more
than 30K times in the linux kernel. Thus, the paired rate for
function __memcpy() and kfree() is nearly 0, which means
that they are not really a function pair. Figure 8 shows the
precision evaluation for ranked pairs: For the top 30% of
ranked pairs, the precision is 100%, and even for the 75% of
the ranked pairs, the precision is about 70%.

We summarize three major causes of false positives. First,
irrelevant functions still exist in EH stacks, introducing noises
in the pairing. Second, function pairs may not appear in the
same function but across different functions. The current im-
plementation of HERO employs an intra-procedural analysis
which would miss such pairs. Third, the detection of error
paths, which is based on error codes, may misidentify nor-
mal paths and error paths of custom error codes are involved,
leading to false positives as well.

Recall of the pairing. We also evaluate the recall rate (i.e.,
TP / (TP + FN)) of the pairing and the ranking mechanism
using the aforementioned ground-truth pair set. The set con-
tains 86 true function pairs; we find that HERO can detect
61 of them, leading to a recall rate of 0.71. Furthermore,
Figure 8 shows the recall rate for the ranked pairs. Similar to
the causes of false positives, false negatives are also mainly
caused by (1) incorrect error-path identification and (2) noises
in delta analysis.

PF-Miner PairMiner HERO HERO (30%)

Linux - 94.7 303.3 128.2
Android 50.5 - - -

Table 3: Comparison with the closest pairing tools PF-Miner [23]
and PairMiner [24]: Number of function pairs per million lines of
source code. The top 30% of pairs identified by HERO are precise.

7.2.1 Comparison with Previous Pairing Analyses

We aim to compare HERO with related works on function
pairing. We identify the following most relevant and recent
works: PairMiner [24] and PF-Miner [23]. RID [28] also
pairs functions; however, it focuses only on refcount-related
ones and uses simple string matching (e.g., *_inc/*_dec),
so we exclude it from the comparison. PF-Miner [23] first
employs string matching (e.g., new/delete and alloc/free)
to collect functions. Then, equipped with a mining algorithm,
it statistically pairs the functions that often show up pairwise
in the normal and error paths. After analyzing the C source
code of the Android kernel, PF-Miner identifies 546 paired
functions. PairMiner [24] shares similar approaches because
it is built on top of PF-Miner. PairMiner identifies 1023 paired
functions in the Linux kernel.

We compare HERO with these tools in how many func-
tion pairs are identified. Unfortunately, we cannot compare
precision values because neither tool provided such numbers.
Note that PF-Miner and PairMiner both employ simple min-
ing (i.e., statistical counting) to collect pairs, we believe they
inherently suffer from precision issues and could not support
custom functions. Table 3 presents the details of the compari-
son. Specifically, HERO is agnostic to types of function pairs
and supports custom functions. HERO also identifies signifi-
cantly more pairs. Even if we select the top 30% of ranked
function pairs, the number is significantly higher compared
to either PF-Miner or PairMiner. We attribute HERO’s effec-
tiveness to its delta-based pairing analysis, which is precise
and can support custom functions.
Evaluation against dependency-based pairing. WYSI-
WIB [22] employs data dependencies to pair alloc/dealloc
function pairs. To compare HERO to such pairing, we extend
the dependency analysis to all functions in the normal and
error paths. As a result, such pairing reports about 200% more
function pairs; however, we found the majority of them are
false positives (wrong pairs), disqualifying it for the DiEH
detection. This result shows that delta-based analysis can sig-
nificantly reduce false function pairs and make results more
precise.

7.3 Bug Detection

Based on the precision and recall trade-off shown in Figure 8,
we choose the top 43.2% of function pairs for detecting DiEH
bugs because it achieves a high precision (92.5%) and a rea-
sonably good recall (60.4%). We then apply HERO to three
target programs, the Linux kernel, the FreeBSD kernel, and
the OpenSSL library, with corresponding 3276, 94, and 123
function pairs detected.

Based on these function pairs, HERO finally identifies 234,
2, and 3 DiEH bugs from the Linux kernel, FreeBSD, and
OpenSSL library. The details of the identified bugs are shown
in Appendix A. Among these detected DiEH bugs, 72% are

caused by inadequate follower functions, 25% are caused
by incorrect-order follower functions, and 3% are caused
by redundant follower functions. Further, we found that the
drivers of the Linux kernel are buggier than its core kernel.
In the Linux kernel, the driver code accounts for 62% of the
whole code-base; however, 87.6% of the found DiEH bugs
come from the driver code, which means the bug density of
the driver code vs. the core kernel is 4.3 : 1. We believe
this is due to the following reasons: (1) drivers contain more
custom functions, which are harder to be analyzed by previous
static-analysis approaches; (2) many functions in drivers are
used to support outdated devices and thus infrequently used
or tested, and (3) compared to the core kernel, the drivers are
less tested because existing dynamic-analysis tools require
hardware devices or their emulation [4]. In the rest part of
this section, we will present the causes of false positives and
some interesting findings. For simplicity, we focus on the
Linux kernel because it is the largest and the most complex.

7.3.1 False-Positive Analysis

HERO in total reports 454 potential DiEH cases in the Linux
kernel, with 170 for incorrect-order, 40 for redundant, and
244 for inadequate DiEH cases. We manually check all these
cases and regard a case as a true bug if it meets both of the
following conditions: (1) the case is an actual DiEH case, and
(2) the case would introduce at least one security issue. We
confirmed 234 (thus, the false-positive rate is 48%) of them as
true positives, with 58, 7, and 169 for incorrect-order, redun-
dant, and inadequate DiEH bugs, respectively. To manually
confirm these bugs, three researchers spent about a total of
16 man-hours. We believe the precision is reasonably good
for static analysis–based detection against complex programs,
and the manual effort for the confirmation is very manageable.
Further, we patched and reported 230 bugs to the maintainers.
The remaining 4 cases are removed in the latest version of the
kernel. As of the submission of this paper, 125 of them have
been accepted, and 105 have not received a response yet. We
further analyzed the major causes of false positives.

First, we find that 23% of false positives are caused by
complex path conditions that were missed by our under-
constrained path-feasibility testing. We can mitigate these
false positives by collecting more constraints from the com-
plex path conditions.

Second, although some DiEH cases indeed exist, their im-
pacts are prevented by some security operations such as en-
forcing a NULL check for a released pointer. Such cases
contribute about 7% of false positives, and removing such
false positives requires understanding the security operations.
Third, our pairing analysis still misses the follower functions
for some leader functions. This causes 18% of false positives.
The remaining false positives are caused by other issues such
as the aliasing problem in the static analysis, or incorrect
detection of error paths.

7.3.2 Maintainer Feedback

During the bug confirmation and reporting, we found that
function pairs are often used incorrectly. First, 8.2% of
DiEH bugs are introduced by previous patches that in-
correctly fixed error-handling bugs. For example, the
patch (6e5da6f7d824 [2]) in the Linux kernel fixed a DiEH
bug caused by inadequate follower function. However,
when this patch calls function pm_runtime_get_sync(), it
still misses pm_runtime_put() when the call of function
pm_runtime_get_sync() fails, which results in the bug.
Second, even experienced Linux maintainers are not fa-
miliar with some follower functions, particularly custom
ones. For example, few maintainers were aware that
kobject_put(P->kobj) releases pointers P and P->kobj.
These results are consistent with our previous findings in
§2.2.3—cleanup operations are common, complex, and diffi-
cult to get right.

7.4 Security Impact Analysis

We not only confirm DiEH bugs but also empirically deter-
mine the impact of confirmed bugs. The impact is based on
the involved variables and the contexts of each bug. Our de-
termination is conservative—if a case is too complicated to
analyze, we exclude it from the bugs. We reported the rest of
the bugs to maintainers.

Type of bugs Prop Causes CWE-ID [8]

Refcount leak 85.8% IFL (75.6%), CWE-911IOF (24.4%)

Memory leak 9.2% IFL (77.3%), CWE-401IFO (22.7%)

UAF/DF 1.7% RFL CWE-416,
CWE-415

Double unlock 1.3% RFL CWE-765

Table 4: Most common security impacts of bugs found by HERO.
CWE = common weakness enumeration. IOF = incorrect order
of follower function, IFL = Inadequate follower functions, RFL =
redundant follower function.

We summarize the impacts of the confirmed bugs in Table 4.
98.0% of the bugs would cause at least one of the security
impacts mentioned in the table. Specifically, 3.0% of DiEH
bugs would lead to use-after-free, double-free, or double-
unlock, and all of them are caused by redundant follower
functions. As we discussed in §2.2.5, these DiEH bugs can
lead to critical security issues like memory corruption, DoS,
privilege escalation.

Further, 85.8% of DiEH bugs would lead to refcount leak,
with 75.6% of them caused by inadequate DiEH and 24.4%
caused by incorrect-order DiEH. People often regard refcount
leaks as general bugs but not security-critical ones. However,
we argue that refcount leaks can also cause memory corrup-
tion. When a refcount field, especially the one with only 16

or less bits, is repeatedly incremented, it will finally overflow
to zero, triggering a free and finally causing a use-after-free.
As we discuss in §2.2.5, CVE-2016-0728 [30] is such an
example. Moreover, there are many examples of exploiting
refcount leaks for privilege escalation (e.g., CVE-2016-0728,
CVE-2014-2851) and DoS (e.g., CVE-2019-9857). DoS, like
crashing in the kernel, is security-critical for long-running
servers.

Also, 9.2% of DiEH bugs would lead to memory leaks, with
77.2% of them caused by inadequate DiEH and 22.7% caused
by incorrect-order DiEH. Memory leaks in the kernel can also
be critical because they may result in DoS of the whole system.
Assigned CVEs of kernel memory leaks include CVE-2020-
15393 [40], CVE-2019-8980 [38], CVE-2019-5023 [36].

Type of entry points Number of reachable bugs

System calls 180 (76.9%)
ioctl handlers 190 (81.2%)
IRQ handlers 185 (79.1%)
Total 199 (85.0%)

Table 5: The numbers of DiEH bugs that can be triggered from
system calls, ioctl handlers, and IRQ handlers.

Triggerability analysis for detected bugs. To further un-
derstand the security impacts of bugs identified by HERO,
we also tested the triggerability of them. Automatically con-
firming the triggerability of kernel bugs is still considered a
challenging research problem. Dynamic analysis tools like
OS fuzzers [7, 49, 51] have a low false-positive rate but suffer
from performance issues and many false negatives. Therefore,
similar to previous works such as SID [55], this evaluation fo-
cuses on identifying triggerable call stacks from the adversary-
reachable entry points (e.g., system calls, ioctl handlers, and
IRQs handlers) to the functions containing DiEH bugs. More
details about the entry points are shown in Section VI.D of
the SID paper [55]. Specifically, we analyze all the call in-
structions in the Linux kernel and leverage the state-of-the-art
technique MLTA [25, 27] to handle the indirect calls, and
finally build a complete call graph of the Linux kernel. Based
on this call graph, given a vulnerable function that includes a
DiEH bug, we traverse every entry-point function and extract
the shortest path from each of them to the vulnerable function.
If there is no path between a vulnerable function to all the
entry points, we will mark the bug as non-reachable.

Table 5 shows the results of our triggerability analysis.
85.0% of DiEH bugs identified by HERO can be reached
from at least one of the entry points, which means that it is
possible for adversaries to intentionally trigger these bugs by
constructing a specific input. Among these cases, 76.9% of
them can be triggered through system calls, which means that
they are relatively easier to be triggered by attackers and thus
have a higher impact. The last column in Table 7 shows the
specific triggerability information for each bug.

8 Discussion

Flow-sensitive vs. Path-sensitive. HERO is flow-sensitive
and partially path-sensitive. Being path-sensitive can signifi-
cantly improve the precision in both pairing and bug detection.
However, full path-sensitive analysis cannot scale to large pro-
grams such as OS kernel yet. To eliminate the infeasible paths,
§5.1 showed that HERO employed the symbolic summary
to scalably identify conflicting path conditions, and further
remove infeasible paths.

Generality. In the evaluation, we applied HERO to both
kernels and a userspace program. The evaluation shows that
applying HERO to a new program does not require extra
manual effort. However, the precision of pairing analysis
and DiEH detection slightly varies on different programs. In
general, the detection precision for the Linux kernel is better
than it for the FreeBSD and the OpenSSL library. We believe
this is due to the reason that the error codes in the Linux
kernel are well defined and used. Thus, HERO can better
identify error paths and build the EHG.

HERO can be potentially extended also to analyze pro-
grams written in other languages or using other error-handling
mechanisms. HERO detects DiEH bugs based on two fac-
tors (1) capturing errors and (2) analyzing the error-handling
code. The logic of developers performing cleanups in error
handling is mainly independent of the languages. However,
factor (1) is dependent on the languages. To extend HERO,
we need to instruct it to identify the errors and error-capturing
mechanisms dependent on languages. For example, C++ typi-
cally uses the “try-catch” blocks, so HERO needs to further
recognize the corresponding patterns in LLVM IR.

Exploitability of detected bugs. To further explore the se-
curity impacts of identified DiEH bugs, we need to determine
the exploitability of these bugs. However, in this paper, we
focus on detecting DiEH bugs instead of exploiting them. We
believe that bug exploitation is a separate research topic and
is out of our scope. To exploit DiEH bugs, the key is to trigger
the corresponding errors, so that the error paths can be exe-
cuted, which has been demonstrated by the previous works
such as fault injection [44] and memory exhaustion [60].
Memory leak and refcount leak bugs can already cause the
DoS problem if they can be steadily triggered through these
techniques. For other DiEH bugs, after being triggered, adver-
saries can reuse existing attack techniques such as memory
collision attacks [56] to generate the exploits.

Suggestions for avoiding DiEH. Based on our interactions
with the kernel maintainers, we suggest several ways to avoid
DiEH bugs. First, program developers should try to separate
the cleanup operations from normal executions and handle the
errors uniformly with a standardized error-handling structure.
As shown in Figure 1, all the cleanup functions are called after
the jump target unreg_video_dev.In contrast, in some cases,
only parts of follower functions are used with a standardized

error-handling approach, like this example, but other follower
functions are called directly after the errors. This inconsistent
error-handling often makes the code hard to maintain and can
further lead to DiEH bugs. Second, API developers should
follow the programming convention and provide clear instruc-
tions. For example, [6] shows the source code of function
kobject_init_and_add(). In the latest version of the kernel,
the comments clearly emphasize that “If this function returns
an error, kobject_put() must be called to properly clean up
the memory associated with the object,” which, however, is
missed before v5.2 and further incur lots of API misuse errors.
This information can guide API users to correctly use this
API. Third, API users should read instructions to understand
how to use the API, instead of assuming its usage. At last,
API users can cross-check the usages of API by looking into
how other caller functions use the API. Fourth, checking the
related patches of this API (e.g., through git log) is also
helpful to know the common mistakes.
More applications of pairing analysis. Pairing analysis can
be used in other areas, such as helping API users check func-
tion usage and bug detectors identify other types of bugs.
For example, by identifying the lock/unlock function pairs,
we can infer the functions that can execute concurrently and
further detecting potential race conditions. These function
pairs can be used to detect temporal bugs based on different
temporal rules.

9 Related Work

Function pairs detection. As we compared in §7.2, several
previous works also try to identify function pairs in large pro-
grams. In particular, Mao et al. [28] focused on identifying
refcount-related bugs by comparing the inconsistent paths. To
this end, they collected 800 pairs of refcount-related APIs
by simply string-matching function names, e.g., *_inc and
*_dec. WYSIWIB [22] analyzes the data dependencies of
pointers to collect 304 pairs of allocation and deallocation
functions. Compared to these works, HERO is not limited to
a specific type of pair, and its delta-based pairing is more pre-
cise. PF-Miner [23] and PairMiner [24] have been introduced
in §7.2, which employ data mining and string matching. To
the best of our knowledge, PairMiner represents the state-of-
the-art in automatically detecting various types of function
pairs. Compared to HERO, since PF-Miner and PairMiner
employ simple mining to collect pairs, we believe that the
tools cannot support custom functions and are likely to suffer
from precision issues, although they do not evaluate preci-
sion. Different from these static analysis tools, Bai et al. [3]
employed dynamic tracing to collect 81 function pairs in four
device drivers in Linux, which is not representative of the
whole kernel.
Error-handling analysis. Many previous works also analyze
error-handling code to detect bugs in software like OpenSSL

and OS kernels. Rubio-González et al. [45] and EIO [18]
detect error-propagation bugs in file systems. APEx [20],
ErrDoc [53], and EPEx [19] reason about the error-code prop-
agation in open-source SSL implementations, either automat-
ically or via user definitions. Saha et al. [47] proposed an
automatic approach, which can transform the coding style
and structure of the error-handling code to a goto-based stan-
dardized error-handling strategy. Tang [50] proposed a tool to
detect error code misuses in system programs. EESI [13] is a
static analysis tool, which can infer C program function-error
specifications through return-code idiom. EESI can identify
inadequate and inverted error-checks, and also incomplete er-
ror handling bugs. An inherent difference is that these works
focus on reasoning about the “handling” itself—if an error
code is returned, passed, or handled in callers—instead of the
cleanup operations before the handling.

Unlike previous works that aim to make error handling
sufficient, EeCatch [42] instead detects exaggerated (or ex-
cessive) error handling which often causes crashes. EeCatch
employs spatial and temporal cross-checking to identify irreg-
ular and over-severe error handling as potential exaggerated
error-handling bugs. HERO differs from EeCatch in both re-
search goals and approaches. First, HERO aims to detect the
ordering issues in the error-handling code, instead of the in-
correct severity level of error handling. DiEH causes not only
crashes but also memory corruption. Second, HERO’s key
technique is the precise function pairing while EeCatch fea-
tures the spatial and temporal cross-checking. To explore the
structure of error-handling code, Thummalapenta et al. [52]
proposed a mining algorithm, which mining sequence asso-
ciation rules and rule violations of function calls in a large
number of the normal and error paths. Different from this
work, HERO can precisely identify function pairs based on
delta analysis, which can handle the custom functions.

Bug detection in error paths. There is also a line of research
that focuses on finding bugs in cleanup operations in error
paths. In particular, Saha et al. [48] proposed Hector, which
identifies missing resource-release functions in the systems
software. Hector assumes the pointer-returning functions are
allocation functions, and the last pointer-usage function is
a deallocation function. They identify the missing-release
bugs by comparing the inconsistencies in different error paths.
Mao et al. [28] implemented RID, which can identify ref-
count related bugs by analyzing the inconsistent paths in the
function; oftentimes, the bugs are in error paths. Lawall et
al. [21] proposed a tool to detect error-handling bugs in the
Linux kernel and OpenSSL, which are related to API usage
protocols. GUEB [16] and CRED [58] are static-analysis
tools that can identify use-after-free bugs. All these works
focus on a specific type of error-handling bugs, such as miss-
ing release. To the best of our knowledge, none of the tools
could detect incorrect-order and redundant DiEH bugs, which
requires precise and comprehensive identification of function
pairs.

Bug detection with rules inference. Some previous works
also identified bugs though rules inference based on code se-
mantics. APISan [59] detects API misuses by analyzing rich
symbolic contexts. Acharya et al. [1] proposed a mining tech-
nique to check the partial-order rules of API usages and detect
related rules violation bugs. Gruska et al. [17] presented a
tool to mine API usage rules across different projects. Simi-
larly, some previous works [5, 12, 26, 54, 57] detect different
types of bugs in a program through a mining approach to gen-
erate rules and detect violations. Different from these works,
HERO does not rely on unknown-rule mining to detect bugs,
thus it can support custom functions; instead, HERO takes
advantage of the unique structures of the error-handling code.

10 Conclusion

Large programs such as OS kernels usually have compli-
cated error-handling and code-cleanup mechanisms, which
are buggy because they are less tested and hard to implement.
Prior research attempted to detect the bugs, but mainly on
the “handling” part instead of the cleanup mechanisms. This
paper proposed DiEH bugs, a class of error-handling bugs that
are caused by improper cleanup operations—incorrect-order,
redundant, and inadequate cleanups. Through a study, we
show that DiEH is hard to avoid and thus is prevalent; it also
causes critical security problems such as memory corruption
and privilege escalation. This paper then presented a new
detection system, HERO. At its core is a precise function
pairing technique that leverages the unique error-handling
structures in low-level languages. We evaluate HERO on
two OS kernels and the OpenSSL library. The results show
that HERO can precisely identify a large number of function
pairs including custom ones, and can detect 239 critical DiEH
bugs, most of which were confirmed by maintainers. HERO
is generic, and its precise pairing analysis can be applied to
benefit other research such as race detection and temporal-rule
inferences.

11 Acknowledgment

We thank our shepherd, Mathias Payer, and the anonymous
reviewers for their helpful suggestions and comments. We are
grateful to Linux maintainers for providing prompt feedback
on patching the Linux kernel. The authors also thank Peng
Le for helping implement function pairing. This research
was supported in part by the NSF awards CNS-1815621 and
CNS-1931208. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.

References

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns as partial
orders from source code: from usage scenarios to specifications. In
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 25–34, 2007.

[2] B. Andersson. Linux kernel patch log, 2020. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0.

[3] J.-J. Bai, H.-Q. Liu, Y.-P. Wang, and S.-M. Hu. Runtime checking for
paired functions in device drivers. In 2014 21st Asia-Pacific Software
Engineering Conference, volume 1, pages 407–414. IEEE, 2014.

[4] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46,
2005.

[5] P. Bian, B. Liang, Y. Zhang, C. Yang, W. Shi, and Y. Cai. Detecting
bugs by discovering expectations and their violations. IEEE Transac-
tions on Software Engineering, 45(10):984–1001, 2018.

[6] Bootlin-Community. Linux kernel: kobject_init_and_add(),
2020. https://elixir.bootlin.com/linux/v5.7-rc7/
source/lib/kobject.c#L464.

[7] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2123–2138. ACM, 2017.

[8] M. Corporation. Common weakness enumeration (cwe), 2020. https:
//cwe.mitre.org/.

[9] M. Corporation. Owasp top ten 2004 category a9 - denial of service,
2020. https://cwe.mitre.org/data/definitions/730.html.

[10] M. Corporation. Cwe-200: Exposure of sensitive information to
an unauthorized actor, 2020. https://cwe.mitre.org/data/
definitions/200.html.

[11] M. Corporation. Cwe-416: Use after free, 2020. https://cwe.
mitre.org/data/definitions/416.html.

[12] D. DeFreez, A. V. Thakur, and C. Rubio-González. Path-based function
embedding and its application to specification mining. arXiv preprint
arXiv:1802.07779, 2018.

[13] D. DeFreez, H. M. Baldwin, C. Rubio-González, and A. V. Thakur.
Effective error-specification inference via domain-knowledge expan-
sion. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 466–476, 2019.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review, 35(5):57–72, 2001.

[15] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang. Smoke:
scalable path-sensitive memory leak detection for millions of lines of
code. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 72–82. IEEE, 2019.

[16] J. Feist, L. Mounier, and M.-L. Potet. Statically detecting use after free
on binary code. Journal of Computer Virology and Hacking Techniques,
10(3):211–217, 2014.

[17] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000
projects: lightweight cross-project anomaly detection. In Proceedings
of the 19th international symposium on Software testing and analysis,
pages 119–130, 2010.

[18] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and B. Liblit. Eio: Error handling is occasionally
correct. In FAST, volume 8, pages 1–16, 2008.

[19] S. Jana, Y. J. Kang, S. Roth, and B. Ray. Automatically detecting
error handling bugs using error specifications. In USENIX Security

Symposium, pages 345–362, 2016.

[20] Y. Kang, B. Ray, and S. Jana. Apex: Automated inference of error
specifications for c apis. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 472–482.
ACM, 2016.

[21] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller. Finding
error handling bugs in openssl using coccinelle. In 2010 European
Dependable Computing Conference, pages 191–196. IEEE, 2010.

[22] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and G. Muller.
Wysiwib: A declarative approach to finding api protocols and bugs in
linux code. In 2009 IEEE/IFIP International Conference on Depend-
able Systems & Networks, pages 43–52. IEEE, 2009.

[23] H. Liu, Y. Wang, L. Jiang, and S. Hu. Pf-miner: A new paired functions
mining method for android kernel in error paths. In 2014 IEEE 38th
Annual Computer Software and Applications Conference, pages 33–42.
IEEE, 2014.

[24] H.-Q. Liu, J.-J. Bai, Y.-P. Wang, Z. Bian, and S.-M. Hu. Pairminer:
mining for paired functions in kernel extensions. In 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 93–101. IEEE, 2015.

[25] K. Lu and H. Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1867–
1881, 2019.

[26] K. Lu, A. Pakki, and Q. Wu. Automatically identifying security checks
for detecting kernel semantic bugs. In K. Sako, S. Schneider, and
P. Y. A. Ryan, editors, Computer Security – ESORICS 2019, pages
3–25, Cham, 2019. Springer International Publishing.

[27] K. Lu, A. Pakki, and Q. Wu. Detecting missing-check bugs via
semantic- and context-aware criticalness and constraints inferences.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1769–1786. USENIX Association, 2019.

[28] J. Mao, Y. Chen, Q. Xiao, and Y. Shi. Rid: finding refcount bugs with
inconsistent path pair checking. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 531–544, 2016.

[29] C. Minyard and T. Hellstrom. Cve-2019-0685: A refcount
leak vulnerability., 2004. https://sigpwn.io/blog/2020/5/7/
cve-2019-0685-win32k-reference-count-leak.

[30] MITRE-CVE. A refcount leak vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2016-0728/.

[31] MITRE-CVE. A use-after-free in the linux kernel, 2019. https:
//www.cvedetails.com/cve/CVE-2019-15292/.

[32] MITRE-CVE. A double-free in the linux kernel, 2019. https:
//www.cvedetails.com/cve/CVE-2019-15504/.

[33] MITRE-CVE. A deadlock vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2019-15538/.

[34] MITRE-CVE. A null dereference vulnerability in the linux kernel,
2019. https://www.cvedetails.com/cve/CVE-2019-15923/.

[35] MITRE-CVE. A memory leak vulnerability in the linux kernel, 2019.
https://www.cvedetails.com/cve/CVE-2019-16994/.

[36] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-5023.

[37] MITRE-CVE. A refcount leak vulnerability in the freebsd, 2019.
https://www.cvedetails.com/cve/CVE-2019-5607/.

[38] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-8980.

[39] MITRE-CVE. Cve-2019-0685, 2020. ttps://www.cvedetails.
com/cve/CVE-2019-0685/.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e5da6f7d82474e94c2d4a38cf9ca4edbb3e03a0
https://elixir.bootlin.com/linux/v5.7-rc7/source/lib/kobject.c#L464
https://elixir.bootlin.com/linux/v5.7-rc7/source/lib/kobject.c#L464
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/730.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://sigpwn.io/blog/2020/5/7/cve-2019-0685-win32k-reference-count-leak
https://sigpwn.io/blog/2020/5/7/cve-2019-0685-win32k-reference-count-leak
https://www.cvedetails.com/cve/CVE-2016-0728/
https://www.cvedetails.com/cve/CVE-2019-15292/
https://www.cvedetails.com/cve/CVE-2019-15292/
https://www.cvedetails.com/cve/CVE-2019-15504/
https://www.cvedetails.com/cve/CVE-2019-15504/
https://www.cvedetails.com/cve/CVE-2019-15538/
https://www.cvedetails.com/cve/CVE-2019-15923/
https://www.cvedetails.com/cve/CVE-2019-16994/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5023
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5023
 https://www.cvedetails.com/cve/CVE-2019-5607/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980
ttps://www.cvedetails.com/cve/CVE-2019-0685/
ttps://www.cvedetails.com/cve/CVE-2019-0685/

[40] MITRE-CVE. A memory leak vulnerability in the linux kernel,
2020. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-15393.

[41] MITRE-CVE. Cvedetils, 2020. https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html.

[42] A. Pakki and K. Lu. Exaggerated Error Handling Hurts! An In-Depth
Study and Context-Aware Detection. In 27th ACM Conference on
Computer and Communications Security (CCS). ACM, 2020.

[43] L. project community. Llvm alias analysis infrastructure, 2020. https:
//llvm.org/docs/AliasAnalysis.html.

[44] H. A. Rosenberg and K. G. Shin. Software fault injection and
its application in distributed systems. In FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing, pages 208–217.
IEEE, 1993.

[45] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau,
and A. C. Arpaci-Dusseau. Error propagation analysis for file systems.
In ACM Sigplan Notices, volume 44, pages 270–280. ACM, 2009.

[46] R. Russell. What if I don’t actually like my users?, Apr. 2008. https:
//ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html.

[47] S. Saha, J. Lawall, and G. Muller. An approach to improving the
structure of error-handling code in the linux kernel. In Proceedings of
the 2011 SIGPLAN/SIGBED conference on Languages, compilers and
tools for embedded systems, pages 41–50, 2011.

[48] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hector:
Detecting resource-release omission faults in error-handling code for
systems software. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–12.
IEEE, 2013.

[49] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In NDSS, 2019.

[50] W. Tang. Identifying error code misuses in complex system. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 428–432, 2019.

[51] Thgarnie. Syzkaller, 2019. https://github.com/google/
syzkaller.

[52] S. Thummalapenta and T. Xie. Mining exception-handling rules as se-
quence association rules. In 2009 IEEE 31st International Conference
on Software Engineering, pages 496–506. IEEE, 2009.

[53] Y. Tian and B. Ray. Automatically diagnosing and repairing error
handling bugs in c. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 752–762. ACM, 2017.

[54] W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 461–476. Springer, 2005.

[55] Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely characterizing
security impact in a flood of patches via symbolic rule comparison. In
Network and Distributed System Security Symposium (NDSS), 2020.

[56] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 414–425. ACM, 2015.

[57] H. Yan, Y. Sui, S. Chen, and J. Xue. Machine-learning-guided typestate
analysis for static use-after-free detection. In Proceedings of the
33rd Annual Computer Security Applications Conference, pages 42–54,
2017.

[58] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 327–337. IEEE, 2018.

[59] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik. Apisan: Sanitizing
{API} usages through semantic cross-checking. In 25th {USENIX}

Security Symposium ({USENIX} Security 16), pages 363–378, 2016.

[60] H. Zhang, D. She, and Z. Qian. Android ion hazard: The curse of
customizable memory management system. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1663–1674, 2016.

[61] S. Zhang, J. Zhu, A. Liu, W. Wang, C. Guo, and J. Xu. A novel
memory leak classification for evaluating the applicability of static
analysis tools. In 2018 IEEE International Conference on Progress in
Informatics and Computing (PIC), pages 351–356. IEEE, 2018.

A Appendix

Program File Line# Impact Category

crypto/x509/v3_crld.c 85 ML D3
OpenSSL crypto/cms/cms_sd.c 326 ML D3

crypto/store/loader_file.c 406 DF D2

FreeBSD lib/libkiconv/kiconv_sysctl.c 50 ML D3
lib/libkiconv/kiconv_sysctl.c 75 ML D3

Table 6: DiEH bugs found in OpenSSL and FreeBSD. D1, D2,
D3 denote incorrect-order, redundant, and inadequate DiEH bugs,
respectively. Column “Line#” is the line number, and Column 4
indicates impact of bug. ML = memory leak, DF = double-free.

Buggy func name Imp Cat. S R

add_mdev_supported_type RL D1 A
dmi_sysfs_register_handle RL D3 S SIQ
kfd_topology_update_sysfs RL D3 S IQ
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
kfd_build_sysfs_node_entry RL D3 S
fimc_md_register_sensor_entities RL D3 S SIQ
NILFS_DEV_INT_GROUP_FNS RL D3 C
power_supply_add_hwmon_sysfs ML D3 A SIQ
intel_gtt_setup_scratch_page ML D3 A IQ
nilfs_sysfs_create_snapshot_group RL D3 A
acpi_cppc_processor_probe RL D3 A SIQ
edac_device_register_sysfs_main_kobj RL D3 A SIQ
netdev_queue_add_kobject RL D3 C SIQ
nilfs_sysfs_create_snapshot_group RL D3 C
bq24190_charger_get_property RL D3 S SIQ
bq24190_charger_set_property RL D3 S SIQ
bq24190_battery_get_property RL D3 S SIQ
bq24190_battery_set_property RL D3 S SIQ
stm32_mdma_alloc_chan_resources RL D3 C SIQ
stm32_dma_alloc_chan_resources RL D3 S SIQ
tegra_adma_alloc_chan_resources RL D3 C SIQ
stm32_dmamux_route_allocate RL D3 S IQ

Table 7: Summary of DiEH bugs detected by HERO in Linux kernel
v5.3. Column(Col) 1 denotes functions containing DiEH bug. Col 2
(Imp) indicates the impact of the bug. ML = memory leak, UAF =
use-after-free/double-free, DU = double-unlock, RL = refcount leak.
Col 3 (Cat.) indicates the category of DiEH bugs with D1 = incorrect
order, D2 = redundant, D3 = inadequate follower function. Col 4
(S) indicates the status of the patch with S, A, C, and - indicating
submitted, accepted, confirmed, and file not existing in the latest
version, respectively. Col 5 (R) indicates the bug’s reachability from
system calls (S), I/O control handlers (I), and IRQ handlers (Q).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15393
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15393
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://llvm.org/docs/AliasAnalysis.html
https://llvm.org/docs/AliasAnalysis.html
https://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
https://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller

Buggy func name Imp Cat. S R Buggy func name Imp Cat. S R Buggy func name Imp Cat. S R

aspeed_video_probe ML D3 C SIQ stm32f7_i2c_xfer RL D3 S SIQ rcar_pcie_probe RL D1 C SIQ
nfp_abm_vnic_set_mac ML D3 A stm32f7_i2c_reg_slave RL D3 S SIQ xcan_probe RL D1 S SIQ
mlx4_opreq_action - D3 A nv50_mstc_detect RL D3 C SIQ xcan_open RL D1 S SIQ
rxkad_verify_response ML D3 A nouveau_fbcon_open RL D3 S SIQ fec_enet_mdio_read RL D1 C SIQ
siw_create_qp ML D3 C nouveau_drm_ioctl RL D3 S SIQ macb_mdio_read RL D1 C SIQ
cas_init_one ML D3 A SIQ radeon_drm_ioctl RL D3 C SIQ macb_mdio_write RL D1 C SIQ
mlx4_opreq_action ML D3 A radeon_crtc_set_config RL D3 C omap4_keypad_probe RL D1 S SIQ
add_port ML D3 A SIQ cdns_dsi_transfer RL D3 C SIQ mic_pre_enable RL D1 C SIQ
img_i2s_in_probe RL D3 A SIQ v3d_get_param_ioctl RL D3 S SI img_spdif_in_probe RL D1 C SIQ
iommu_group_alloc RL D3 A SIQ v3d_v3d_debugfs_ident RL D3 S S nouveau_drm_open RL D1 S IQ
pblk_sysfs_init RL D3 C v3d_measure_clock RL D3 S S radeon_dp_detect RL D1 S
configfs_rmdir RL D3 C SIQ v3d_job_init RL D3 S radeon_vga_detect RL D1 S
f2fs_init_sysfs RL D3 C SIQ dss_runtime_get RL D3 S SIQ radeon_tv_detect RL D1 S
f2fs_register_sysfs RL D3 C S dsi_runtime_get RL D3 S SIQ radeon_lvds_detect RL D1 S
pci_create_slot RL D3 A SIQ venc_runtime_get RL D3 S SIQ bdisp_probe RL D1 S SIQ
bond_sysfs_slave_add RL D3 A SIQ hdmi_runtime_get RL D3 S SIQ bdisp_start_streaming RL D1 S SIQ
iscsi_boot_create_kobj RL D3 A SIQ hdmi_runtime_get RL D3 S SIQ hva_hw_probe RL D1 C SIQ
rx_queue_add_kobject RL D3 C SIQ dispc_runtime_get RL D3 S SIQ hva_hw_get_ip_version RL D1 S SIQ
img_spdif_out_probe RL D3 C SIQ clk_pm_runtime_get RL D3 C SIQ coda_open RL D1 C SIQ
rvt_create_qp ML D3 A musb_irq_work RL D3 C SIQ fimc_is_probe RL D1 C SIQ
gfs2_create_inode RL D3 C SIQ usb_port_resume RL D3 S SIQ fimc_lite_open RL D1 S SIQ
ath10k_sta_state RL D3 C SIQ ina3221_write_enable RL D3 S S dcmi_start_streaming RL D1 S SIQ
ccp_run_sha_cmd ML D3 C gpmi_nfc_exec_op RL D3 C SIQ s3c_camif_probe RL D1 C SIQ
rockchip_pdm_resume RL D3 A SIQ bch_set_geometry RL D3 C SIQ img_i2s_in_probe RL D1 C SIQ
tegra30_ahub_resume RL D3 A SIQ delta_get_sync RL D3 S SIQ venc_open RL D1 C SIQ
tegra30_i2s_resume RL D3 A SIQ hva_hw_dump_regs RL D3 S S vfe_get RL D1 S SIQ
img_i2s_out_set_fmt RL D3 C I stm32f7_i2c_reg_slave RL D3 S SIQ exynos_trng_probe RL D1 C SIQ
img_i2c_xfer RL D3 C SIQ isp_video_open RL D3 C SIQ rvin_open RL D1 C SIQ
configfs_rmdir RL D3 C SIQ s5pcsis_s_stream RL D3 S SIQ rvt_create_qp ML D1 A
img_prl_out_set_fmt RL D3 A I fimc_capture_open RL D3 C SIQ rawsock_connect RL D1 S SIQ
ethoc_probe ML D3 S SIQ vpe_runtime_get RL D3 S SIQ lpi2c_imx_master_enable RL D3 S SIQ
img_i2s_out_probe RL D3 C SIQ xiic_xfer RL D3 S SIQ panfrost_job_hw_submit RL D3 S SIQ
img_i2c_init RL D3 C SIQ s3c_camif_open RL D3 C SIQ vc4_dsi_encoder_enable RL D3 S SIQ
img_i2c_xfer RL D3 C SIQ s5p_mfc_power_on RL D3 S SIQ vc4_vec_encoder_enable RL D3 S SIQ
display_init_sysfs RL D3 A SIQ img_i2s_in_set_fmt RL D3 C I cpuidle_add_state_sysfs RL D3 A IQ
bq24190_sysfs_show RL D3 S SIQ csid_set_power RL D3 C SIQ efivar_create_sysfs_entry RL D3 C SIQ
bq24190_sysfs_store RL D3 S S ispif_set_power RL D3 C SIQ esre_create_sysfs_entry RL D3 A SIQ
img_pwm_remove RL D3 S SIQ csiphy_set_power RL D3 S SIQ stm32f7_i2c_smbus_xfer RL D3 S SIQ
img_pwm_config RL D3 S SIQ vsp1_probe RL D3 C SIQ dwc3_pci_resume_work RL D3 C SIQ
ti_qspi_setup RL D3 C SIQ rcar_fcp_enable RL D3 S SIQ cdns_dsi_bridge_enable RL D3 C SIQ
tegra_sflash_resume RL D3 C SIQ __vxlan_dev_create ML D3 C Q nfc_genl_llc_set_params UAF D2 C IQ
tegra_spi_setup RL D3 S SIQ cpuidle_add_sysfs RL D3 A SIQ wlcore_regdomain_config RL D3 C IQ
tegra_spi_resume RL D3 S SIQ fw_cfg_register_file RL D3 S SIQ radeon_driver_open_kms RL D3 C
sprd_spi_remove RL D3 C SIQ edd_device_register RL D3 S SIQ nouveau_crtc_set_config RL D3 - SIQ
tegra_slink_setup RL D3 C SIQ dmi_system_event_log RL D3 S IQ rga_buf_start_streaming RL D3 C
tegra_slink_resume RL D3 C SIQ mc13xxx_rtc_probe DU D2 A SIQ s5p_jpeg_start_streaming RL D3 S SIQ
img_spfi_resume RL D3 S SIQ m66592_probe DF D2 A SIQ stm32f7_i2c_smbus_xfer RL D3 S SIQ
edma_probe RL D3 C SIQ cros_ec_ishtp_probe DU D2 S SIQ mtk_jpeg_start_streaming RL D3 S SIQ
rcar_dmac_probe RL D3 S SIQ punch_hole DU D2 - SIQ stm32f7_i2c_unreg_slave RL D3 S SIQ
sprd_dma_remove RL D3 S SIQ nfc_genl_llc_sdreq UAF D2 C IQ fimc_isp_subdev_s_power RL D3 S SIQ
zpa2326_resume RL D3 C SIQ qcom_pcie_probe - D2 S SIQ nouveau_gem_object_del RL D3 S
arizona_clk32k_enable RL D3 A SIQ s3c_camif_probe - D1 A SIQ panfrost_perfcnt_enable_locked RL D3 S
gpio_rcar_request RL D3 C SIQ tegra_adma_probe - D1 C SIQ etnaviv_gpu_recover_hang RL D3 S SIQ
arizona_gpio_get RL D3 A SIQ i915_gem_init ML D1 C IQ arizona_gpio_direction_out RL D3 A SIQ
sata_rcar_resume RL D3 A SIQ pvrdma_pci_probe - D1 A SIQ vc4_hdmi_encoder_enable RL D3 S SIQ
sata_rcar_restore RL D3 A SIQ qib_create_port_files RL D1 A amdgpu_display_crtc_set_config RL D3 S
cdns_pcie_host_probe RL D3 S SIQ add_port RL D1 A SIQ nouveau_connector_detect RL D3 S SIQ
cdns_pcie_ep_probe RL D3 - SIQ i915_gem_init ML D1 - IQ nv50_disp_atomic_commit RL D3 C SIQ
xcan_get_berr_counter RL D3 S SIQ test_hints_case RL D1 A SIQ edac_pci_main_kobj_setup RL D3 A IQ
fec_enet_open RL D3 C SIQ gfs2_create_inode RL D1 C SIQ nouveau_gem_object_open RL D3 C
fec_enet_mdio_write RL D3 C SIQ rocker_dma_rings_init ML D1 A SIQ nouveau_debugfs_pstate_set RL D3 C SIQ
bma150_open RL D3 S SIQ tegra_spi_probe RL D1 S SIQ nouveau_debugfs_strap_peek RL D3 S S
stmfts_input_open RL D3 S IQ tegra_slink_probe RL D1 C SIQ amdgpu_connector_dp_detect RL D1 S
stm32f7_i2c_xfer RL D3 S SIQ tegra_adma_probe RL D1 C SIQ amdgpu_connector_vga_detect RL D1 S
arizona_extcon_probe RL D3 C SIQ usb_dmac_probe RL D1 S SIQ amdgpu_connector_lvds_detect RL D1 S
etnaviv_gpu_init RL D3 S SIQ sprd_dma_probe RL D1 S SIQ amdgpu_driver_open_kms RL D1 S
etnaviv_gpu_debugfs RL D3 S sata_rcar_probe RL D1 A SIQ tegra_vde_ioctl_decode_h264 RL D1 C SI
etnaviv_gpu_bind RL D3 S SIQ tegra_pcie_probe RL D1 S SIQ qlcnic_83xx_interrupt_test ML D1 A I
vc4_v3d_pm_get RL D3 S SI qcom_pcie_probe RL D1 S SIQ acpi_sysfs_add_hotplug_profile RL D1 A IQ
amdgpu_drm_ioctl RL D3 S SIQ dra7xx_pcie_probe RL D1 S SIQ nilfs_sysfs_create_device_group RL D1 C S

Table 8: Summary of DiEH bugs detected by HERO in Linux kernel v5.3. Column(Col) 1 denotes functions containing DiEH bug. Col 2
(Imp) indicates the impact of the bug. ML = memory leak, UAF = use-after-free/double-free, DU = double-unlock, RL = refcount leak. Col 3
(Cat.) indicates the category of DiEH bugs with D1 = incorrect order, D2 = redundant, D3 = inadequate follower function. Col 4 (S) indicates
the status of the patch with S, A, C, and - indicating submitted, accepted, confirmed, and file not existing in the latest version, respectively. Col
5 (R) indicates the bug’s reachability from system calls (S), I/O control handlers (I), and IRQ handlers (Q).

	Introduction
	Contributions

	Background and Study
	Error handling and function pairs
	Disordered Error Handling
	Definition of DiEH
	Classification of DiEH bugs
	Causes of DiEH
	Prevalence of DiEH
	Security Impacts of DiEH

	Overview
	Challenges in Identifying DiEH
	HERO Techniques
	The HERO Framework

	Delta-Based Precise Function Pairing
	Extracting Error-Handling Structures
	Delta-Based Pairing Analysis

	Detection of Disordered Error Handling
	From DiEH Cases to DiEH Bugs

	Implementation of HERO
	Evaluation
	Characteristics of Identified Pairs
	Precision and Recall of Delta-Based Pairing
	Comparison with Previous Pairing Analyses

	Bug Detection
	False-Positive Analysis
	Maintainer Feedback

	Security Impact Analysis

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix

