
Check It Again: Detecting Lacking-Recheck Bugs in OS Kernels
Wenwen Wang, Kangjie Lu, and Pen-Chung Yew

University of Minnesota, Twin Cities

ABSTRACT
Operating system kernels carry a large number of security checks
to validate security-sensitive variables and operations. For example,
a security check should be embedded in a code to ensure that a
user-supplied pointer does not point to the kernel space. Using
security-checked variables is typically safe. However, in reality,
security-checked variables are often subject to modification after
the check. If a recheck is lacking after a modification, security
issues may arise, e.g., adversaries can control the checked variable
to launch critical attacks such as out-of-bound memory access or
privilege escalation. We call such cases lacking-recheck (LRC) bugs,
a subclass of TOCTTOU bugs, which have not been explored yet.

In this paper, we present the first in-depth study of LRC bugs
and develop LRSan, a static analysis system that systematically
detects LRC bugs in OS kernels. Using an inter-procedural analysis
and multiple new techniques, LRSan first automatically identifies
security checks, critical variables, and uses of the checked variables,
and then reasons about whether a modification is present after
a security check. A case in which a modification is present but
a recheck is lacking is an LRC bug. We apply LRSan to the latest
Linux kernel and evaluate the effectiveness of LRSan. LRSan reports
thousands of potential LRC cases, and we have confirmed 19 new
LRC bugs. We also discuss patching strategies of LRC bugs based
on our study and bug-fixing experience.

CCS CONCEPTS
• Security and privacy→ Operating systems security;

KEYWORDS
OSKernel Bug;Missing Check; Lacking-Recheck; Error Code; TOCT-
TOU; Static Analysis
ACM Reference Format:
Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check It Again:
Detecting Lacking-Recheck Bugs in OS Kernels. In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3243734.3243844

1 INTRODUCTION
Operating system (OS) kernels, as the core of computer systems,
play a critical role in managing hardware and system resources.
They also provide services in the form of system calls to user-space

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243844

code. In order to safely manage resources and to stop attacks from
the user space, OS kernels carry a large number of security checks
that validate key variables and operations. For instance, when the
Linux kernel fetches a data pointer, ptr, from the user space for
a memory write, it uses access_ok(VERIFY_WRITE, ptr, size) to
check if both ptr and ptr+size point to the user space. If the check
fails, OS kernels typically return an error code and stop executing
the current function. Such a check is critical because it ensures that
a memory write from the user space will not overwrite kernel data.
Common security checks in OS kernels include permission checks,
bound checks, return-value checks, NULL-pointer checks, etc.

A security-checked variable should not be modified before being
used. Otherwise, the security check is rendered ineffective. How-
ever, in practice, due to the existence of unusual execution flows
and implicit modification, a checked variable may be further modi-
fied unintentionally because of developers’ ignorance of such an
occurrence. If a recheck is not enforced after the modification, po-
tential violation against the security check may occur, leading to
critical security issues such as out-of-bound memory access and
privilege escalation. We define such a case as an LRC bug—a vari-
able is modified after being security checked, but it lacks a recheck
after the modification. In other words, an LRC bug exists when two
conditions are satisfied: (1) the execution has a sequence of three
operations—security checking a variable, modifying the variable,
and using the variable; (2) a recheck does not exist between the
modification and a use of the variable.

LRC bugs can be considered a subclass of time-of-check-to-time-
of-use (TOCTTOU) bugs because both of them refer to the ab-
stract concept of modification after check but before use. How-
ever, LRC bugs differ from traditional bugs such as missing-check
bugs [35, 47], double-fetch bugs [16, 33, 41, 46], and atomicity-
violation bugs [14, 15, 20, 27, 42]. Inherently, LRC bugs are different
from missing-check bugs [35, 47]. A check is completely absent in
a missing-check bug, which by definition will not be identified as
an LRC bug. For LRC bugs, checks are not “missing” at all. Existing
missing-check detection [35, 47] does not warn against modifica-
tions to checked variables—so long as at least a check has been
performed. We also differentiate LRC bugs from double-fetch bugs.
Double fetching is a common programming practice for perfor-
mance reason. It is not a bug by itself if recheck is enforced after
the second copy. By contrast, LRC bugs are actual check-bypassing
bugs that violate security checks.Moreover, LRC bugs target general
critical data, not just the one from the user space. To compare with
atomicity-violation bugs that exist in only concurrent programs, an
LRC bug can exist in a single-threaded program—a thread itself may
modify a security-checked variable. We will discuss in detail about
the characteristics of LRC bugs by comparing them to traditional
bugs in §8.

We find that LRC bugs are common in OS kernels for several
reasons. First, execution paths from a security check of a variable to
a use of this variable can be fairly long and complicated, especially

https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1145/3243734.3243844

when involving multiple variables in both user and kernel spaces.
It is extremely difficult, if not impossible, for kernel developers
to reason about all possible execution flows on these paths, espe-
cially when multiple threads are involved. Therefore, the checked
variables could be modified unintentionally when developers are
not aware of such modifications. Second, harmful modifications to
checked variables can occur in several common scenarios. (1) Ker-
nel race: As the central resource manager, an OS kernel maintains
many shared data structures (e.g., global variables and heap objects)
for threads and processes. It is hard to ensure that various threads
will never modify checked variables of those shared data structures
and objects. (2) User race: Fetching data incrementally with multi-
ple batches is common for performance reason. The security check
is often performed only on the first batch, but ignored in the later
batches. In practice, malicious user-space code can race to control
the data in the later batches. This case shares a similar scenario
to that of double-fetch bugs [41, 46]. (3) Logic errors: The thread
itself may also incorrectly modify a security-checked variable due
to logic errors. Such logic errors may be latent if the execution path
can only be triggered with special inputs. (4) Semantic errors: Se-
mantic errors such as type casting and integer overflow can violate
a security-checked variable as well.

LRC bugs can cause critical security issues because the security
checks are no longer respected. Depending on the purposes of
the security checks, the security impact of LRC bugs varies. For
example, if the security check is for a privilege validation, an LRC
bug may succumb to a privilege escalation attack. Other common
security impacts include out-of-bound memory access, arbitrary
kernel memory read/write, information leaks, denial of service, etc.
Therefore, it is important to detect and patch LRC bugs.

However, detecting LRC bugs in OS kernels is challenging. First,
in order to detect a class of bugs, we need a clear specification of
the bug patterns. LRC bugs usually result from logic errors. Unlike
other bugs such as those caused by memory errors [1, 18, 37, 45],
which have simple and clear patterns, LRC bugs can be complicated,
and involve multiple operations (i.e., security checking a variable,
modifying the security-checked variable, and using the modified
variable). We need to first define and model LRC bugs so that we
can automatically detect them. Second, identifying each operation
constituting an LRC bug is challenging because of the lack of rules.
For example, there is no general and clear rule to decide if a check
is security critical or not. Third, LRC bugs typically span multiple
functions. A more precise inter-procedural analysis is required. Last
but not least, OS kernels are quite complex. For example, the Linux
kernel has more than 22 millions lines of code and is filled with
indirect calls and hand-written assemblies. The detection must not
only be efficient enough to scale to millions lines of code, but also
be capable of handling various challenges and corner cases.

In this paper, we first formally define LRC bugs and perform
the first in-depth study of LRC bugs in the Linux kernel. We then
present LRSan (Lacking-Recheck Sanitizer), an inter-procedural
static analysis system for detecting LRC bugs in OS kernels. LRSan
first automatically identifies security checks using a novel approach.
This approach is based on an observation that if a security check
fails, OS kernels will typically return an error code, or otherwise
continue the execution. We thus define a security check as a check
statement (e.g., if statement) that is followed by two branches, and

one branch will always result in issuing of an error code while the
other must have a possibility of not resulting in issuing of an error
code. This way, LRSan is able to automatically infer security checks.
LRSan then identifies the checked variable(s) as critical variables.
Since the checked variables are typically derived from other vari-
ables, LRSan also employs backward analysis to recursively find
the “source” variables and identifies them as critical variables as
well. After that, LRSan employs a data-flow analysis to find uses of
the critical variable (e.g., using a size variable in kmalloc()). At this
point, check-use chains (e.g., execution paths) from the security
checks to the uses of the critical variables are formed. In the third
step, LRSan traverses these execution paths to find potential modi-
fications of the critical variables. If a modification is found, LRSan
further reasons about if a recheck is enforced between modification
and use. Cases in which recheck is absent are detected as potential
LRC cases. In the final step, we manually confirm LRC cases for
real LRC bugs.

To the best of our knowledge, LRSan is the first system to sys-
tematically detect LRC bugs in OS kernels, which typically contain
a large number (more than 131K in Linux kernel according to our
recent count) of checks. Identifying security-related checks is chal-
lenging because there lacks a general rule to differentiate security
checks from other checks. Finding security checks automatically
thus constitutes a major building block of LRSan in LRC bug de-
tection. We believe such security check identification is beneficial
to future research in OS kernels as well. For example, identifying
security checks can help us find control-dependent values, and by
focusing on such values, fuzzers can significantly improve code
coverage efficiently [2, 28, 29, 34]. In LRSan, we build a static global
call graph and adopt a static inter-procedural analysis, which enable
us to detect LRC bugs across multiple modules. LRSan’s analysis is
also precise, by that we mean its analysis is flow sensitive, context
sensitive, and field sensitive (see §4 for details).

We have implemented LRSan based on LLVM and applied it
to the Linux kernel. LRSan is able to finish the detection within
four hours. The results show that LRSan find 2,808 potential LRC
cases. We then manually validate those cases. At the time of paper
submission, we have confirmed 19 new LRC bugs, most of which
have been fixed with our patches by Linux developers. The results
show that LRC cases are common in OS kernels and that LRSan
is capable of finding LRC bugs effectively. We also perform an in-
depth study on the found LRC cases and bugs. Based on the study,
we summarize causes of LRC bugs, discuss bug-fixing strategies
and possible improvements to the detection of LRC bugs.
Contributions. In summary, we make the following contributions.

• A common class of OS-kernel bugs. We identify and de-
fine LRC bugs, which can cause critical security impact
such as privilege escalation or out-of-bound access. We also
present the first in-depth study of LRC bugs.
• An automated detection system. We develop an auto-
mated system, namely LRSan, for detecting LRC bugs in
OS kernels. LRSan incorporates multiple new static program
analysis techniques dedicated to LRC bug detection. LRSan
serves as the first step towards preventing LRC bugs. We
will open source the implementation.

User space

Var Var

Other threads Thread itself

Var

Security check Modification Use

No
recheck

Figure 1: A sequence of three operations that form an LRC
bug. The modification can come from user space, other
threads, or even the thread itself. A recheck is not enforced
between modification and use.

• Security check identification We develop an automated
technique to identify security checks and critical variables,
which we believe can benefit related research in the future
such as coverage-guided fuzzing [2, 28, 29].
• New LRC bugs. We have implemented LRSan based on
LLVM, and applied it to the whole Linux kernel. LRSan re-
ports thousands of potential LRC cases, and we have con-
firmed 19 new LRC bugs. We also discuss various strategies
to fix LRC bugs.

In the rest of the paper, we present a study of LRC bugs in §2,
the design of LRSan in §3, its implementation in §4, followed by an
evaluation in §5. We also present some bug-fixing strategies in §6.
We discuss its limitations in §7, related work in §8, and conclude
the paper in §9.

2 A STUDY ON LRC BUGS
Security-checked variables should not be further modified before
their uses; otherwise, they should be rechecked. LRC bugs are the
cases that violate this security policy. More specifically, an LRC
bug occurs when a sequence of three operations are performed
on a critical variable as shown in Figure 1. The first operation
checks the validity of a variable, e.g., a range check or an access-
permission check. The checked variable is then modified either
unintentionally or intentionally. The modification may break the
security property enforced in the first operation. If the modified
variable is used without being rechecked, security issues such as
out-of-bound access or privilege escalation may arise.

A real LRC bug is shown in Figure 2. In this example, LRSan
identifies line 10 and 11 as a security check (see §3.2) and identifies
val as a critical variable (see §3.3). At line 16-19, val is modified
by the thread itself. val is used in the later execution. However, a
recheck against the value of val is absent, leading to an LRC bug.
Note that in this example there is no validation for the variables
used to redefine val.

LRC bugs are usually caused by semantic errors. As will be
discussed in §8, LRC bugs are inherently different from traditional
missing-check bugs [35, 47], double-fetch bugs [16, 33, 41, 46], or
atomicity-violation bugs [14, 15, 20, 27, 42]. We now provide a
formal definition of LRC bugs.

1 /* File: net/sctp/socket.c */
2 int min_len, max_len;
3 min_len = SCTP_DEFAULT_MINSEGMENT - af->net_header_len;
4 min_len -= af->ip_options_len(sk);
5 min_len -= sizeof(struct sctphdr) +
6 sizeof(struct sctp_data_chunk);
7 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk);
8
9 /* val is identified as a critival variable */
10 if (val < min_len || val > max_len)
11 return -EINVAL;
12
13 if (asoc) {
14
15 /* val is modified */
16 val = asoc->pathmtu - af->net_header_len;
17 val -= af->ip_options_len(sk);
18 val -= sizeof(struct sctphdr) +
19 sctp_datachk_len(&asoc->stream);
20
21 /* val is used without a recheck */
22 asoc->user_frag = val;
23 }

Figure 2: An LRC example in which a checked variable is
modified and used without a recheck. The code is simplified
for demonstration.

2.1 A Formal Definition of LRC Bugs
While the basic idea of finding LRC bugs is shown in Figure 1, to
automatically and precisely detect LRC bugs through a program
analysis, we need a formal definition of LRC bugs. An LRC bug
exists with the following conditions:

• Having a check-use chain. Execution paths containing a
security check of a variable and a use of the variable (after
the check) exist. In the example of Figure 2, the check-use
chain contains the execution path from line 10 to line 22.
• Being subject to modification. The security-checked vari-
able might be changed in the check-use chain. Lines from
16 to 19, in Figure 2, change the value of the variable var.
• Missing a recheck. Modification to a security-checked vari-
able is safe if a recheck is enforced after the modification.
Thus, missing a recheck is also a condition to form an LRC
bug.

Let us consider a program P . The variable V is in P . V has a set of
possible values, [S]. P has a set of execution paths, [E], and each
execution path has a set of instructions, [I]. With these notations,
we now define the following terms.
Security check. We define a security check as a conditional state-
ment that has the following three properties. (1) It is followed by
two branches (i.e., execution paths) Et and Ec ; (2) ist reads a vari-
able V and splits its value set into Vt and Vc ; and (3) Et is control
dependent on Vt , i.e., Et is taken when the actual value of V falls
in Vt , and Ec is control dependent on Vc .

In general, whether a check is a security check or not is highly
dependent on developers’ logic. However, based on our observation,
security checks act as validators that inspect the value of a target
variable, and if the value is invalid, the execution is terminated (e.g.,
by returning an error code). Therefore, we identify a check as a
security check if Et terminates current execution, and Ec continues
the execution.

1 /* File: drivers/infiniband/hw/qib/qib_file_ops.c */
2 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
3 struct qib_ctxtdata *rcd, unsigned subctxt)
4 {
5 int ret = 0;
6 ...
7 if (len > size) {
8 ret = -EINVAL;
9 goto bail;
10 }
11 ...
12 bail:
13 return ret;
14 }

Figure 3: An example of returning a variable that may con-
tain an error code.Weneed data-flow to tell whether retmay
contain an error code.

Use. We define a use of variable V as an instruction I that takes V
as a “read-only” operand for operations such as changing data and
control flow.
Modification. We define a modification of variable V as a se-
quence of instructions that transform the value set of V into a new
one. That is, after executing the sequence of instructions, the value
set of V becomes [V ′], and [V ′] , [V].
Lacking recheck. We define LRC as cases in which the value set
of V (i.e., [V]) is not a subset of Vc (i.e., the valid value set right
after the security check).

2.2 Security Check and Error Code in Linux
As defined in §2.1, a security check is a check that always results
in a terminating execution path if the check fails. The Linux kernel
incorporates a large number of security checks to validate variables
and return value of functions. As the example in Figure 2 shows,
if val < min_len or val > max_len, the error code -EFAULT will be
returned, and the current execution path is terminated.

In fact, returning an error code upon a check failure is a common
programming convention. Error codes are commonly used to solve
the semi-predicate problem [25] in programs, i.e., to signify that
a routine cannot return its normal result. In the C programming
language, error handling is not provided as a language feature.
Developers are responsible for detecting errors and handling them
properly. As such, a programming convention for error handling is
that, for functions or operations that may encounter an error or a
failure at runtime, an error code is assigned to represent the result
of their execution, so that the program can know if something went
wrong and is able to handle it.

In the Linux kernel, most function calls return a particular error
code when an error occurs. The errno.h and errno-base.h header
files define 133 macros (in the latest Linux kernel) for various error
codes. Figure 3 shows an example of using error codes in Linux. The
error code EINVAL is stored in a variable. This error code indicates
that len is a critical variable that requires a size check. We need
data-flow analysis to tell whether ret may contain an error code
upon return. A more common case is directly returning a constant
error code, such as line 11 in Figure 4.

The idea in our automatic inference of a security check is that
error codes shall come with security checks, i.e., an error code shall
be returned if a security check fails. Security checks serve as several
validation purposes: checking permission and parameters before

1 /* File: net/core/ethtool.c */
2
3 /* If FLOW_RSS was requested then user-space must be using the
4 * new definition, as FLOW_RSS is newer.
5 */
6 /* info.flow_type is identified as a critical variable */
7 if (cmd == ETHTOOL_GRXFH && info.flow_type & FLOW_RSS) {
8 info_size = sizeof(info);
9 /* info.flow_type may be modified by user race */
10 if (copy_from_user(&info, useraddr, info_size))
11 return -EFAULT;
12
13 /* Lacking-recheck: a recheck is not enforced */
14 }
15
16 /* info is used */
17 ...

Figure 4: A simple LRC bug caused by modification from
user race.

executing a function, checking return value or output parameters
after executing a function, and checking the value of a variable
before using it. By identifying error codes and their associated
checks, we are able to automatically find security checks.

To precisely identify security checks based on error codes, we
define the patterns for identifying security checks in Linux.
• There is a conditional statement followed by two branches;
• One branch always returns an error code (condition 1);
• The other branch must have a possibility of not returning
an error code (condition 2).

It is easy to understand condition 1—a check failure should end
up with returning an error code. We define condition 2 based on
our observation that if both branches always return an error code,
current conditional statement is not a security check. In this case,
the actual security check is an earlier conditional statement that has
already decided current conditional statement to return an error
code in its both branches.

2.3 Causes of Modification
In principle, a security-checked variable should not be modified

before being used. However, due to the existence of unusual exe-
cution flows and implicit modification, checked variables may be
modified unintentionally, and thus opens the door for attackers to
bypass security checks via exploiting such variables. In addition, OS
kernels are complex. Semantic and logic errors are likely to happen,
which may lead to unintended modifications to checked variables.
Based on the results reported by LRSan, we study the causes of
modifications and classify them into four categories. While the first
two categories are from passive causes—modifications are issued
by other threads through race conditions, the other two categories
are by active causes—the thread itself issues the modifications due
to semantic or logic errors.
User race. Kernel space frequently exchanges data with user space.
Data resides in user space can be brought into kernel space through
functions such as copy_from_user() and get_user(). Such data can
influence the control flow and data flow, or be used for critical
operations such as memory allocation. Thus, user-supplied data
should be checked. To perform a security check, kernel first copies
the data from user space to kernel space and then inspects its value.
If the data passes the security check, further computation on the
data continues. In practice, for performance reasons, kernel often

1 /* File: drivers/staging/media/atomisp/pci/atomisp2/atomisp_subdev.c */
2
3 /* The critical variable is the return value of atomisp_subdev_get_rect.
4 * It is an address of a shared data in "sd"
5 */
6
7 /* It is security-checked against NULL */
8 if (!atomisp_subdev_get_rect(sd, cfg, which, pad, target))
9 return -EINVAL;
10
11 /* The address of the shared data is obtained again and returned */
12
13 /* At the same time, it is used---memory read. No recheck enforced */
14 *r = *atomisp_subdev_get_rect(sd, cfg, which, pad, target);

Figure 5: An LRC example in which kernel thread can race
to modify a shared data structure.

first peeks into a small portion of the data set instead of copying
the whole data set. As the example shown in Figure 4, a small field
info.flow_type is first copied in for the check. If the check succeeds,
kernel copies the whole object info in. Otherwise, kernel need not
copy the whole object, which can improve performance. A problem
arises if user space races to modify the value between the two
copies. In Figure 4, user-space code can modify data pointed to by
useraddr in user space, which will further modify info.flow_type

through line 10, violating the check at line 7. Our results show that
user race is the most common cause of LRC bugs.
Kernel race. Race conditions in kernel space may also modify
security-checked variables. OS kernels by their nature need to
provide centralized resource management for all users at the same
time. Therefore, in kernel space, data structures and resources are
widely shared between kernel threads/processes.

According to how the shared data or resource is used across
different threads/processes, there are two cases for kernel race to
cause LRC bugs. The first case is similar to the case in user race,
shared data (e.g., global variables and heap objects) may be copied
and checked, and then copied again. The second copy may modify
the checked value. Since the modification source is from the shared
data, other threads/processes can race to inject malicious values to
the shared data. Therefore, the modification may copy the attacker-
controlled value into the security-checked variable, bypassing the
security check. In the second case, kernel code directly security-
checks shared data and later uses it without any copy. In this case,
other threads can also race to modify the shared data to bypass the
security check. As the example shown in Figure 5, object sd is a
shared data structure in kernel space. atomisp_subdev_get_rect()
returns the address of a field in sd, which is immediately checked
against NULL. However, attackers can race to operate sd and force
the function atomisp_subdev_get_rect() to return NULL, bypassing
the security check and causing a NULL dereference.
Logic errors. Modification caused by kernel race and user race is
passive. That is, the security-checked variable is modified by other
threads. By contrast, the thread itself, due to logic errors, may also
issue problematic modification leading to LRC issues. Our study
reveals that common cases include value updating and resetting.
Value updating is a case in which a security-checked variable is
updated (e.g., through arithmetic operations) along the execution
path. If the update has a logic error, it can cause an invalid value
leading to a check bypass. Value resetting is common in kernel. For
example, based on the type of an object, a security-checked value

may be reset to a corresponding value. Example in Figure 2 shows
that when asoc is not NULL, val is set to the value corresponding
to asoc, which may violate the security check in line 10.
Semantic errors. Semantic errors such as type casting (e.g., cast-
ing a 4-byte integer to an 8-byte integer [44]) and integer over-
flow [6, 43] can also cause modification to a security-checked vari-
able. If such a semantic error can only be triggered with special
inputs on particular program paths, it will be hard to expose the
error during normal execution. We have not yet found any LRC bug
caused by such semantic errors. However, we believe it is possible
given the prevalence of such semantic errors in OS kernels.

2.3.1 Lacking rechecks. We do find evidence that kernel developers
enforce rechecks after potential modification. However, modifica-
tion is often latent, e.g., caused by logic semantic errors, and devel-
opers may not be fully aware of potential race conditions. Rechecks
thus are often missed in practice, as confirmed by the detection
results (see §5.1).

2.4 Security Impact of LRC Bugs
The security impact of LRC bugs is clearly “security check by-
pass.” Taking Figure 4 as an example, a malicious user can race
to change flow_type in user space between line 7 and line 10.
This allows the user to bypass the security check at line 7 and
may cause information leakage because the following function
ops->get_rxnfc() (omitted in the figure) will prepare various data
according to flow_type, and copy the data to user space. This bug
has been fixed in latest Linux kernel. Since the associated security
check is rendered ineffective, LRC bugs can potentially have a seri-
ous security impact. This is especially true if the kernel code that
has the bug is reachable by non-superusers, as is the case in Figure 4.
Depending on the purpose of a security check, an LRC bug can
cause various security issues. Our study reveals that common se-
curity checks include: checking permission and parameters before
executing a function, checking return value or output parameters
after executing a function, and checking the value of a variable
before using it (e.g., pointer dereference). Correspondingly, the LRC
bugs can cause privilege escalation, out-of-bound memory access,
arbitrary kernel memory read/write, information leaks, denial of
service, etc. Therefore, developers should be careful about potential
LRC cases, and it is important for us to detect and fix LRC bugs in
OS kernels.

3 LRSAN
LRSan is the first static-analysis system that aims to detect LRC
bugs in OS kernels. LRSan internally incorporates a precise static-
analysis engine, which employs standard data-flow and control-
flow analyses. LRSan’s static-analysis engine is inter-procedural,
flow sensitive, context sensitive, and field sensitive. On top of the
static-analysis engine, we develop multiple new analysis modules
dedicated for detecting LRC bugs. We now present an overview of
LRSan and the design of its key components.

3.1 Overview of LRSan
Figure 6 shows the overview of LRSan’s structure and work-flow.
LRSan takes as input the compiler intermediate representation (IR),

Kernel IR

LRSan

Lacking-
recheck cases

Security-check
identification

Pre-
processing

Critical-variable
identification

Check-use chain
construction

Modification
inference

Bug
reporting

Figure 6: The structure and work-flow of LRSan.

i.e., LLVM IR, compiled from the kernel source code and auto-
matically detects and reports LRC cases. LRSan’s preprocessing
constructs a global call-graph for inter-procedural analysis, and an-
notates error codes (macros) so that it can recognize them in LLVM
IR. Specifically, LRSan includes four key components: (1) security-
check identification; (2) critical-variable inference; (3) check-use
chain construction; and (4) modification inference.

LRSan first employs error code–based inference (see §3.2) to au-
tomatically identify security checks. Variables associated with the
security checks are then recursively identified as critical variables
(see §3.3). After identifying the critical variables, LRSan identifies
check-use chains (see §3.4) by taint-tracking critical variables start-
ing from the security check. A check-use chain is formed once a
use of a critical variable is found, e.g., being used as an array in-
dex or a function parameter. By constructing the check-use chains,
LRSan significantly reduces its analysis scope, which allows LRSan
to perform precise and expensive analysis to find LRC cases along
check-use chains. LRSan’s current design employs a static data-flow
analysis to inspect if a security-checked critical variable is modified
(see §3.5), i.e., updated with other values or overwritten through
memory-related functions such as memcpy() and copy_from_user().
If a modification is found, LRSan also inspects if the security check
is re-enforced after the modification to the critical variable. LRSan
identifies cases without a recheck as LRC cases. LRSan’s bug re-
porting module filters out common false positives, and reports LRC
cases in a pretty format for manual confirmation. Next, we describe
the design of each component in detail.

3.2 Automated Security Check Identification
Given LLVM IR, the first step of LRSan is to identify security checks.
As defined in §2.2, a security check is a conditional statement (e.g.,
if statement) followed by two branches that satisfy two conditions:
(1) one branch always returns an error code in the end; (2) the other
branch must have a possibility of not returning any error code. At a
high level, LRSan identifies security checks as follows. LRSan first
collects all conditional statements (e.g., if statements). Then, LRSan
collects all error codes and constructs an error-code CFG (ECFG)
whose nodes are augmented with information on how they operate
on variables to be returned, e.g., assigning an error code to such
a variable. ECFG helps LRSan quickly figure out if an execution
path will return an error code. With the collected information and
ECFG, LRSan checks if a conditional statement is a security check
by analyzing whether it satisfies the two conditions required to
form a security check or not. A formal description of the work flow

 1: int func() {
 2: int val = 0;
 3:
 4: if (cond1)
 5: val = ENO1;
 6: else if (cond2) {
 7: if (cond3)
 8: val = ENO2;
 9: }
10:
11: return val;
12: }

cond1

cond2

return val

cond3

(a) An example (b) Marked ECFG of the code in (a)

val = ENO1

val = ENO2 val = 0

①

②

③

④

⑤ ⑥

⑦

Figure 7: A simplified example of constructing ECFG.

is shown in Algorithm 1. We now elaborate our design for security
check identification.
Constructing error-codeCFG (ECFG). LRSan identifies security
checks by analyzing if a conditional statement satisfies the two
security check forming conditions. To facilitate such an analysis,
LRSan first constructs an ECFG. The motivation of building an
ECFG is that the analysis procedure requires frequent query on
whether an execution path (in the case that the return value is a
variable rather than a constant) will return an error code or not,
which requires an expensive data-flow analysis. LRSan thus first
summarizes return value–related operations for each node in the
CFG. The summary includes information such as if the node assigns
an error code to a to-be-returned variable. With such a summary,
the following analysis becomes efficient because the expensive
data-flow analysis can be avoided.

Specifically, LRSan employs a standard backward data-flow anal-
ysis starting from a return instruction to find nodes in the CFG that
operate return values. That is, LRSan identifies all nodes that assign
a value to a to-be-returned variable. Further, for each to-be-returned
variable in a node, LRSan marks the node as “Yes” if it assigns an
error code to the variable; otherwise, it marks the node as “No.”
After the construction, each node in ECFG contains a list of pairs
with the form <to-be-returned variable, Yes|No>.

Figure 7 shows an example of a function returning an error code
as a variable and how to construct the corresponding ECFG. In this
example, the to-be-returned variable is assigned with an error code
in nodes 2 and 5 . Thus, the corresponding nodes are marked as
“Yes.” By contrast, the to-be-returned value is assigned with 0 in
node 6 , so it is marked as “No.” All other nodes in the ECFG are
not marked because they do not decide any return value. Note that,
although uncommon, it is possible that a node modifies multiple
return values, and thus has multiple “Yes” or “No” marks.
Identifying security checks. With the ECFG, LRSan continues
the analysis to identify security checks. To achieve this, LRSan
needs to first collect possible execution paths starting from the
conditional statement to a return instruction. Based on the ECFG,
LRSan can quickly determine whether an execution path ends up re-
turning an error code or not. Collecting execution paths is straight-
forward by traversing the ECFG if the target program does not have
loops. For programs with loops, unrolling is necessary. To simplify

Algorithm 1: Identifying Security Checks
Input: The marked error-code CFG ECFG = (N , E)
Output: The set of identified security checks SCSet

1 SCSet ← ∅;
2 MSet ← Collect_Nodes_Assigning_Return_Value (ECFG);
3 NSet ← Collect_Nodes_With_Multiple_Outgoing_Edges (ECFG);
4 for node ∈ NSet do
5 cond1 ← f alse ; // Always return an ERRNO

6 cond2 ← f alse ; // Possible to not return any ERRNO

7 for edдe ∈ Get_Outgoing_Edges (node) do
8 PSet ← Collect_Paths_Starting_From_Edge (edдe , ECFG);
9 p_errno ← true ;

10 for path ∈ PSet do
11 if not Path_Return_ERRNO (path, MSet) then
12 p_errno ← f alse ; break;
13 end
14 end
15 if p_errno then cond1 ← true ;
16 else cond2 ← true ;
17 end
18 if cond1 and cond2 then
19 check ← Extract_Check (node);
20 SCSet ← SCSet

⋃{check };
21 end
22 end

the design, LRSan chooses to unroll loops only once because the
number of unrolling times typically does not affect return value.
For loops with multiple paths inside the loop body, LRSan unrolls
the loop multiple times to cover each of the paths with all possible
orders.

Algorithm 1 shows the details of how LRSan identifies security
checks. For each node that has multiple outgoing edges in ECFG,
LRSan iterates all outgoing edges to check whether the two condi-
tions of a security check are satisfied. To reason about whether an
error code is returned on a specific execution path starting from
an outgoing edge, LRSan only needs to check the last node that is
marked for the variable to be returned on this execution path. If
there is no such marked node in this path, it implies that no error
code will be returned.

Now, let us apply the above algorithm to the example shown in
Figure 7. Three nodes in the ECFG have two outgoing edges: 1 , 3 ,
and 4 , which respectively corresponds to the if statements at line
4, 6, and 7. For 1 , the path starting from the left branch always
returns an error code: 1 → 2 → 7 , as 2 is marked as “Yes.” For
the other branch, one path will not return any error code: 1 → 3
→ 6 → 7 , as 6 is marked as “No.” Therefore, cond1 is identified
as a security check. cond3 can also be identified as a security check
in the same way. By contrast, cond2 is not a security check because
both branches may not return an error code: 3 → 4 → 6 → 7
and 3 → 6 → 7 .

3.3 Recursive Critical Variable Inference
With the identified security check set (SCSet), LRSan then infers
critical variables associated with each security check SC ∈ SCSet .

1 /* File: drivers/virt/vboxguest/vboxguest_linux.c */
2 struct vbg_ioctl_hdr hdr;
3 void *buf;
4
5 if (copy_from_user(&hdr, (void *)arg, sizeof(hdr)))
6 return -EFAULT;
7
8 /*
9 * hdr is identified as a critical variable; *arg is thus also
10 * recursively identified as a critival variable
11 */
12 if (hdr.size_in < sizeof(hdr) ||
13 (hdr.size_out && hdr.size_out < sizeof(hdr)))
14 return -EINVAL;
15 ...
16 buf = kmalloc(size, GFP_KERNEL);
17
18 /* *arg is in user space thus can be modified; *buf is identified
19 * as critical because it is propagated from *arg
20 */
21 if (copy_from_user(buf, (void *)arg, hdr.size_in)) {
22 ret = -EFAULT;
23 goto out;
24 }
25 ...
26 /* Lacking-recheck bug: *buf may have check-violating values */
27 ret = vbg_core_ioctl(session, req, buf);

Figure 8: An LRC example in which a critical variable (*buf)
is identified through LRSan’s recursive inference.

Here, being “critical” means a modification to these variables can po-
tentially invalidate SC , which may lead to an LRC bug if a recheck is
not enforced. One design goal in LRSan is to reduce false negatives.
Therefore, LRSan tries to infer as many critical variables as possible
for SC . Specifically, LRSan employs a standard but precise backward
taint analysis to gather critical variables. The analysis starts with a
critical-variable setCSet , which is initialized with variables directly
used in SC . It then recursively includes their parent variables that
propagate to the current critical variables into CSet .

LRSan’s design of recursive critical-variable inference is also mo-
tivated by a common LRC case, i.e., the modified variable is different
from the security-checked one. However, both are propagated from
the same parent variable. Figure 8 shows such a case. hdr is first
identified as a critical variable. Then, *arg is also identified as a
critical variable because it is the propagation source of hdr. At the
end, *buf is identified as a critical variable as well because it is
propagated from *arg. With such a recursive inference, LRSan is
able to comprehensively recognize critical variables.
Terminating conditions of the inference. As mentioned above,
LRSan recursively collects as many critical variables as possible for
the given SC . While being conservative to include more possible
critical variables helps reduce false negatives, it may significantly
increase false positives if the backward tracking continues with
undecidable cases (e.g., indirect calls). Therefore, LRSan will stop
backward taint tracking when it reaches hard-to-track values such
as global variables, heap objects, or user-space objects. These values
may come from external source or shared data, rendering further
tracking difficult. However, LRSan will include them in CSet .

3.4 Check-Use Chain Construction
In this step, LRSan is given a pair (SC ,CSet), where SC is a security
check and CSet is the critical-variable set associated with SC . The
task of this step is to construct check-use chains for each critical
variable CV ∈ CSet . A check-use chain is defined as a quadruple:

<SC , CV , Iu , PSet>, where Iu is the first use of CV after SC , and
PSet is a set of execution paths that start from SC and end with
Iu . By constructing check-use chains, LRSan can delimit the actual
analysis scopes in detecting LRC bugs. This allows LRSan to use
a precise and expensive static analysis to detect LRC cases. To
construct such a check-use chain, LRSan firstly leverages a taint-
tracking analysis to find Iu and then traverses the CFG to collect
the set of execution paths that start from SC and end with Iu . The
set of execution paths is denoted by PSet .

The check-use chain construction shares the same static analysis
engine as the one used for security check identification (§3.2) and
critical variable identification (§3.3). Besides, LRSan employs alias
analysis in LLVM to catch implicit uses that use critical variables
through their aliases.

3.5 Modification Analysis
With a constructed check-use chain <SC , CV , Iu , PSet>, the last
task of LRSan is to identify potential modifications to CV along
this check-use chain. If a modification is found and no recheck is
enforced, an LRC case is detected by LRSan.
Identifying modifications. Typically, there are two common
types of modifications to CV :

• The memory location of CV is rewritten with a new value
by a regular store instruction;
• The memory location ofCV is modified by a memory-related
function such as memcpy() and copy_from_user().

To identify these modifications, LRSan leverages forward inter-
procedural data-flow analysis. LRSan traverses the CFG starting
from the SC specified in the check-use chain to find potential mod-
ifications. For each store instruction encountered during the CFG
traversal, LRSan checks whether the memory location used in the
store instruction is aliased to the memory location of CV or not. If
yes, this store is treated as a modification to CV . Similarly, for a
reachable memory-related function call, LRSan checks the alias re-
sults between the destination memory location of the function call
and the memory location of CV . If they are aliased, the memory-
related function call is also considered as a modification to CV .
Note that LRSan conservatively assumes modifications to external,
global, and heap objects, even if there is no explicit modification.
Missing a recheck. When a modification is found, LRSan fur-
ther analyzes the code to see whether a recheck is enforced. It is
necessary to do such an analysis because it is a false positive if a
recheck is enforced. We do find multiple cases in which a recheck is
enforced after modification. Existing double-fetch detection [41, 46]
does not consider recheck, leading to false positives. Specifically,
LRSan continues to traverse the CFG from the modification using
a breadth-first search to reason if the modified value is rechecked
by SC . Cases without such recheck are detected as LRC.

4 IMPLEMENTATION
We have implemented LRSan based on the LLVM compiler frame-
work (version 6.0.0). The implementation consists of two separated
LLVM passes (total about 3K lines of code). The first pass collects
and prepares the information required by the static analyses in
LRSan. It includes possible target functions of an indirect call, global

CFG, and alias analysis results in LLVM. The second pass, with the
information provided by the first pass, performs the static analyses
to detect LRC cases. Due to space limitation, the rest of this section
covers only important engineering issues we encountered and our
solutions.
CompilingOS kernels to LLVM IR. The Linux kernel is not fully
compilable under LLVM. We instead compile the Linux source code
module by module. A module is skipped if it cannot be compiled
successfully. The Linux source code is compiled with the “-g -O2”
options. The “-g” option is used to generate debugging information,
which is used to extract the source code location to facilitate the
manual investigation. The “-O2” option is the default optimization
level to compile the Linux kernel. We compiled the Linux kernel
with “allyesconfig”, which includes 16,599modules. We successfully
generate LLVM IR for 16,593modules. That is, only 6 modules were
not complied successfully.
Constructing a global call graph. LRSan relies on the CFG con-
structed on LLVM IR to perform the proposed static analyses. Given
that LRSan’s analyses are inter-procedural, a global call graph is
thus required. In our implementation, we do not statically link all IR
files. Instead, we adopt the iterative pass in KINT [43] to dynamic
build a global call graph. For indirect calls, we use a type-based
analysis [24, 38] to identify all potential targets of an indirect call.
Alias analysis. Our implementation queries the alias analysis re-
sults through the “AliasAnalysis” class in LLVM. This class provides
an interface between the clients of alias analysis information and
the implementations providing it. In LLVM, there are four possible
results for each alias query: “NoAlias”, “MayAlias”, “PartialAlias”,
and “MustAlias”, which are quite easy to understand literally. In
our initial implementation, we conservatively treated two mem-
ory locations as “not aliased” only if the query result is “NoAlias”.
However, the preliminary results show that massive false positives
can be produced due to the inaccuracy and the conservative pol-
icy adopted by the alias analysis in LLVM. We thus consider two
memory locations as aliased only if the query result is “PartialAlias”
or “MustAlias”. Otherwise, the two locations are considered as not
aliased. This significantly cuts down the number of false positives
and makes manual investigation more feasible.
Analysis accuracy. As mentioned before, LRSan is built on a
precise static-analysis engine—LRSan’s analysis is flow-sensitive,
context-sensitive, and field-sensitive. Specifically, detecting LRC
bugsmust use a flow-sensitive analysis because the order of security
check, modification, and use must take place in sequence. LRSan
constructs ECFG and detects LRC sequences by strictly following
the CFG. Thus, its analysis is flow sensitive. LRSan also follows
call-site specific context to facilitate a context-sensitive analysis,
and leverages type information provided by LLVM to implement a
field-sensitive analysis. We also manually model commonly used
functions (e.g., string-related functions and some assembly code)
to improve analysis efficiency and accuracy.
Recognizing error code. To identify security checks, we first
need to collect error codes in LLVM IR. In Linux, error codes are
defined as macros with values ranging from 1 to 133. The lexer
preprocessor will expand error codes into constants. Identifying
error codes in LLVM IR based on their values is hard. To solve
this problem, we instruct the preprocessor to include error code

SC # CV # CUC # LRCC # LRCB

131,504 86,339 99,082 2,808 19

Table 1: Detection statistics of LRSan on the Linux kernel.
SC = security checks; CV = critical variables; CUC = check-
use chains; LRCC = LRC cases; LRCB = found LRC bugs.

information in its metadata. With such metadata, LRSan is able to
tell if a constant value is an error code or not.
Results pruning and reporting. Because modifications some-
times are a part of developers’ logic, manual investigation with
program semantics is required to finally confirm an LRC bug. To
minimize manual effort, we need to reduce false positives without
incurring too many false negatives.

From a security perspective, we heuristically prune three types of
LRC cases that are likely not exploitable under existing techniques.
First, if the source of amodification to a critical variable is a constant,
it is unlikely to be exploitable because attackers cannot control the
modification. Second, if the source of the modification to a critical
variable passes the security check, it is safe to remove such LRC
cases. For instance, a critical variable A is compared to another
critical variable B, and the value of B is assigned toA if they are not
equal. Obviously, there is no need to recheck the value ofA because
B’s value is unchanged. Third, a mutex-style check is extensively
used in OS kernels to ensure that the current state of a device or an
object is updatable before changing it to a new state. Such a state
change is intended, and the check is no longer effective after the
change, so such LRC cases are false positives. Therefore, we need
to filter out such LRC cases. We observe that error code EBUSY is
commonly used for mutex-style check. In current implementation,
we exclude EBUSY in our security check identification to filter out
such false positives.

To facilitate manual investigation, LRSan reports the following
information for each detected LRC case: the identified security
check, the associated critical variable, the use of the critical variable
after the security check, and the modification between the security
check and the use. Given that LRSan works on LLVM IR, all of these
information is reported in the form of instructions at the IR level.
LRSan also reports the source code location of the related IR.

5 EVALUATION
In this section, we apply LRSan to the LLVM IR compiled from the
Linux kernel source code (version 4.17) to evaluate its effectiveness
and efficiency.

5.1 Detection Statistics
Table 1 shows the overall detection statistics of LRSan. In summary,
LRSan identifies 131K security checks. This demonstrates that secu-
rity checks are pervasive in the Linux kernel. It makes sense that OS
kernels, as the core of a computer system, employ massive security
checks to ensure reliability and security. Based on the identified
security checks, LRSan identifies 86K critical variables after prun-
ing. The reason why the number of critical variables is less than
the number of security checks is that a critical variable may prop-
agate to other variables, requiring multiple security checks. This

number demonstrates that critical variables are prevalent, requiring
extensive security checks.

Table 1 also shows that LRSan finds 99K check-use chains for
identified security checks and critical variables. It is worth noting
that a security check and the checked critical variable can form
multiple check-use chains because the critical variable may have
multiple uses after the security check. Finally, with the check-use
chains, LRSan reports 2,808 LRC cases. We then manually verify
these LRC cases for real LRC bugs. At the time of paper submission,
our manual analysis have confirmed 19 new bugs, which are not
reported by any previous bug-detection tools.

These confirmed bugs are relatively simple and thus are more
obvious. There are many complicated ones, especially the ones
with modification from kernel race or the thread itself, which often
involve shared data and indirect calls that requires further manual
investigation. It is expected that more bugs will be confirmed as
our analysis continues. Indeed, as a static analysis system, LRSan
has significant false positives. We will discuss how to reduce false
positives in §7. LRSan is the first system towards detecting LRC
bugs. We expect more improvements in the follow-up work.

5.2 Bug Finding
An important task of LRSan is to find real LRC bugs in OS kernels.
Among the reported LRC cases, we have manually confirmed 19
new bugs. Table 2 shows the details and the statuses of these bugs.
We have reported all of these bugs to Linux kernel developers.
Twelve bugs have been fixed with our patches. Four bugs have been
confirmed by Linux kernel maintainers, and we are working with
them to finalize the patches. Three bugs are still pending for review
and confirmation. Linux kernel maintainers would not fix two of
the four confirmed bugs. For one bug, they believed that it would
not cause security issues thus chose to not fix it for now. For the
other one, it is in a driver that is to be removed in the near future.
Therefore, they chose not to fix it. Most of the LRC bugs found by
LRSan are in drivers. However, LRSan indeed finds four LRC bugs
even in the well-tested core kernel.

Table 2 also shows the source of the modification in each found
bug. 14 bugs have modifications coming from user space, and five
bugs have modifications coming from other threads in the kernel
space or the thread itself. These five bugs cannot be detected by
double-fetch tools. It is worth noting that, compared to bugs with
modification from user space (e.g., through copy_from_user()), bugs
with modification from other threads in kernel space or the thread
itself are much more complicated, often involving arithmetic oper-
ations, shared data among threads, and indirect calls. Confirming
and fixing such bugs require more manual effort.

In addition, Table 2 shows the latent period of each bug. The
average latent period of these bugs is around 5 years, which aligns
with the previous finding in security flaws in the Linux kernel,
i.e., the average time between introduction and fix of a kernel
vulnerability is about 5 years [5]. Some of these bugs even existed
for more than 10 years. This demonstrates that LRC bugs can be
long-existing semantic bugs and hard-to-find. This also shows that
LRSan is effective in finding long-existing LRC bugs in OS kernels.

ID File Function Critical Variable Security Check Modi. Y. Status

1 drivers/.../chtls_main.c do_chtls_setsockopt tmp_crypto_info.version tmp_crypto_info.version !=
TLS_1_2_VERSION U 1 A

2 drivers/.../chtls_main.c do_chtls_setsockopt tmp_crypto_info.cipher_type switch (tmp_crypto_info.cipher_type) U 1 A
3 drivers/.../i2c-core-smbus.c i2c_smbus_xfer_emulated data->block[0] data->block[0] >

I2C_SMBUS_BLOCK_MAX T&I 1 C
4 drivers/.../i2c-core-smbus.c i2c_smbus_xfer_emulated status status != num I 1 A

5 drivers/.../divasmain.c
drivers/.../diva.c

divas_write
diva_xdi_open_adapter
diva_xdi_write

msg.adapter a->controller == (int)msg.adapter U >10 A

6 drivers/scsi/3w-9xxx.c twa_chrdev_ioctl driver_command.buffer_length driver_command.buffer_length >
TW_MAX_SECTORS * 2048 U 2 A

7 drivers/scsi/3w-sas.c twl_chrdev_ioctl driver_command.buffer_length driver_command.buffer_length >
TW_MAX_SECTORS * 2048 U 9 S

8 drivers/scsi/3w-xxxx.c tw_chrdev_ioctl data_buffer_length data_buffer_length >
TW_MAX_IOCTL_SECTORS * 512 U >10 A

9 drivers/scsi/.../mpt3sas_ctl.c _ctl_ioctl_main ioctl_header.ioc_number _ctl_verify_adapter(
ioctl_header.ioc_number) U 6 S

10 drivers/scsi/sg.c sg_write input_size input_size < 0 U >10 C
11 drivers/.../llite/dir.c ll_dir_ioctl lumv3.lmm_magic lumv3.lmm_magic !=

LOV_USER_MAGIC_V3 U 5 A

12 drivers/.../atomisp_subdev.c atomisp_subdev_set_selection atomisp_subdev_get_rect !atomisp_subdev_get_rect(
sd, cfg, which, pad, target) T&I 1 C

13 drivers/.../vboxguest_linux.c vbg_misc_device_ioctl hdr.version hdr.version !=
VBG_IOCTL_HDR_VERSION U 1 A

14 drivers/.../vboxguest_linux.c vbg_misc_device_ioctl hdr.size_in hdr.size_in < sizeof(hdr) U 1 A
15 drivers/.../vboxguest_linux.c vbg_misc_device_ioctl hdr.size_out hdr.size_out &&

hdr.size_out < sizeof(hdr) U 1 A
16 net/core/ethtool.c ethtool_get_rxnfc info.flow_type !(info.flow_type & FLOW_RSS) U 1 A
17 net/sctp/socket.c sctp_setsockopt_maxseg val val < min_len || val > max_len T&I 10 S

18 net/tipc/link.c tipc_link_xmit imp l->backlog[imp].len >=
l->backlog[imp].limit I 3 C

19 sound/core/control_compat.c snd_ctl_elem_add_compat data->type switch(data->type) U >10 A

Table 2: A list of new LRC bugs detected by LRSan. Modi. represents modification source, in which: U is user race, T is kernel
race, and I is the thread itself. Y. indicates the latent period in years. In the Status column, S is submitted, C is confirmed, and
A is patch applied.

5.3 Analysis Time
Our experimental platform is equipped with a Quad-Core 3.5 GHz
Intel Xeon E5-1620 v4 processor. The main memory is 32 GB, and
the operating system is Ubuntu 16.04 with Linux-4.4.0. LRSan fin-
ishes the analysis of the Linux kernel (with “allyesconfig”) within
four hours, which demonstrates the efficiency of LRSan. After in-
vestigating the analysis process, we found that more than 80% time
is consumed by the first pass (i.e., information collection) of LRSan.
This is reasonable because the first pass needs to iteratively build a
global CFG and collect the alias-analysis results. Given that there
is no dependency between these two tasks, it is possible to further
reduce the analysis time by parallelizing them, as multi-core proces-
sors have been broadly available in today’s machines. Alternatively,
the first pass needs to run only once, so we can save the collected
information and reuse it, instead of running it every time.

6 BUG-FIXING STRATEGIES
According to LRSan’s detection results, LRC bugs are common in
OS kernels. To avoid security issues, an LRC bug should be fixed
immediately once it is exposed. Based on our study and experience
in LRC bugs and our communication with Linux kernel maintain-
ers regarding patching the bugs found by LRSan, we summarize
possible bug-fixing strategies against LRC bugs as follows.
Enforcing a recheck. An intuitive fixing strategy is to enforce
a recheck after the identified modification. For example, to fix the
LRC bug in Figure 2, we can re-enforce the security check (line
10-11) right after the modification (line 16-19). Such a fixing strat-
egy is straightforward and particularly effective to cases in which a
checked variable needs to be intentionally updated after the check,

e.g., modification also happens in normal execution. However, such
a fix is to detect the potential security bleach from the modification,
but not to prevent a harmful modification—the root cause of the
bug. The shortcomings of this fixing strategy include: (1) introduc-
ing extra performance overhead; (2) duplicating checks can cause
cleanness concerns, due to which, Linux kernel maintainers may
become reluctant to apply the patch.
Caching checked variable. Another fixing strategy is to render
themodification ineffective by caching and reusing the checked vari-
able. After a security check, we can temporarily cache the checked
value in a separate variable. Later on, to prevent the security im-
pact from a harmful modification, we have two choices: either
immediately overwriting the potentially modified variable with the
cached value or using the cached value whenever the variable is
used. Such a fixing strategy is not applicable to cases in which a
security-checked variable needs to be intentionally updated (e.g.,
increasing an index variable of an array). Moreover, if the security
check and the following uses of a critical variable cross multiple
functions, especially when indirect calls are involved, such a fix
becomes complicated and requires deep understanding of the code.
Avoiding harmful modifications. A more fundamental bug-
fixing strategy is to avoid harmful modifications. For example, in
Figure 4, we can copy thewhole info object in the first place to avoid
the second copy. Such a fixing strategy works for cases in which
there is no need to update the checked variable. Such a fix can be
expensive, especially when copying a large object, and complicated
if refactoring the code is required to avoid the modification.
Using transactional memory. An alternative to prevent harmful
modifications is to use transactional memory, which ensures a

False Positive Cause Description Percentage Elimination Technique
1 Checked modification Value used for modification has been checked before 25% Symbolic execution
2 Satisfiable modification Modification satisfies the security check, e.g., assigning statically-known values 20% Symbolic execution
3 Uncontrollable modification Modification is uncontrollable to attackers, e.g., internal kernel variables 38% Taint analysis
4 Transient check Security check expires because the modified variable is redefined for other purposes 6% N/A
5 Unconfirmed race Source variable of modification may have kernel races, but is hard to confirm manually 9% Race detection
6 Other Inaccurate global call graph, unreachable code, etc 2% Analysis optimization

Table 3: A study of causes of false positives in the detection results of LRSan. Except false positives caused by transient checks,
others can be eliminated or reduced through automatic techniques such as symbolic execution.

group of load and store instructions are executed in an atomic way.
DECAF [33] uses Intel transactional synchronization extensions
(Intel TSX) [12] to implement this fixing strategy, i.e., a transaction
will abort if a modification to the protected variable from other
threads occurs. Such a fixing strategy is expensive, often requires
hardware support and thus only works for special processors.

7 LIMITATIONS AND DISCUSSION
While LRSan has demonstrated the capability to find a large number
of LRC cases and expose real LRC bugs in the Linux kernel, LRSan
does have its own limitations. In this section, we discuss these
limitations as well as potential solutions. We will also discuss about
how to extend LRSan to detect LRC bugs in other software systems
such as web servers and database systems.

7.1 False Positives
As a static analysis system, LRSan inevitably suffers from false
positives. LRSan identifies 2,808 LRC cases for the entire Linux
kernel, which consists of 22+ millions source lines of code. For the
core Linux kernel, LRSan detects only 340 LRC cases. To filter out
false positives, we manually analyzed LRC cases detected by LRSan,
which took two researchers about 40 hours in total. We believe this
effort is moderate and manageable. Our manual analysis considers
an LRC case a false positive if it is safe to perform the modification.
For example, the source value used for the modification may be
checked before, and thus the modification is valid. Note that LRC
cases that are hard to manually confirm are also conservatively
treated as false positives. Table 3 summarizes our study of false
positives. We discuss each category in detail as follows.
Checked modification. Our manual investigation reveals that
many false positives stem from checked modifications in which
the source of the modification is already checked; therefore, the
modification is safe and would not cause an LRC bug. Such false
positives can be eliminated through symbolic execution. By sym-
bolically computing the value of the source of modification, we can
automatically verify whether the modified value will satisfy the
security check.
Satisfiable modification. Another common cause of false pos-
itives is satisfiable modifications. For example, a range-checked
index is incrementally updated in the computation on a list struc-
ture. Such a modification (i.e., updating) is valid as long as its
updated value still satisfies the security check, which is usually
enforced the next time when index is used. Similar to the case of
checked modification, we can also automatically eliminate false pos-
itives caused by satisfiablemodification through symbolic execution—
by symbolically computing the value of the critical variable and
verifying whether it still satisfies its security check.

Uncontrollable modification. LRC cases in which the source
variable of a modification is uncontrollable to attackers are deemed
as false positives because they are not exploitable. For example, the
value of a modification may come from an internal kernel variable.
To eliminate such false positives, existing techniques such as taint
analysis track the source of a modification and figure out whether
it is controllable to the external world. Given that an LRC bug
in the kernel may be invoked only by a superuser and not by an
unprivileged user, which depends on the access control policy of
the target system, inferring exploitability may also require the
knowledge of access control.
Transient check. We also find a few false positives caused by
transient security checks. That is, a security check has a limited
liveness scope, and a modification occurs outside the liveness scope
of the security check. In other words, a variable is redefined (i.e.,
modified) for other purposes, and thus the previous security check
expires. Therefore, further modification to the variable may not
violate the previous security check. Automatically understanding
the purpose of a variable is hard because it is highly dependent on
program developers’ logic. Given that such cases are not common,
we leave the filtering for manual analysis.
Unconfirmed race. If the source variable of a modification is from
a shared variable (e.g., globals), it is extremely hard, if not impos-
sible, for manual analysis to figure out its possible values without
analyzing potential race conditions. As a result, we conservatively
classify such LRC cases as false positives. In the future, we plan to
equip LRSan with existing race detection techniques to understand
how the shared variable can be controlled by other threads.
Other. Some false positives are caused by typical limitations with
static analysis, e.g., inaccurate global call graph. While they are
orthogonal challenges, analysis optimization techniques such as
pointer analysis [10, 11] for finding targets of indirect calls can
further improve the analysis accuracy of LRSan.

7.2 False Negatives
LRSan also has potential false negatives. In current design, LRSan
leverages error codes to infer security checks because a majority of
security checks return an error code upon failures. However, such
an approach may miss some cases where no error code is returned
upon a failed security check. For example, if a size value is larger
than a default maximum number, the kernel code may choose to
reset its value to the default maximum number and does not return
any error code. Our current implementation adopts “MustAlias” (in
contrast to “MayAlias”) results in the taint tracking, which can also
cause false negatives when actual aliases are missed. Moreover, we
do not include kernel modules that cannot be successfully compiled

by LLVM. We manually modeled only commonly used assemblies
but not all. These issues may also cause false negatives.

7.3 Supporting More Systems
The techniques developed in LRSan are not limited to LRC bugs in
the Linux kernel. In fact, the automated security-check identifica-
tion and recursive critical-variable inference do not have specific
assumptions on the target bugs or programs. The only assumption
LRSan makes is the availability of error codes. Some higher-level
programming languages tend to use other error-handling mecha-
nisms. However, the concept of error code is general. For example,
in the C++ programming language, in addition to error codes, ex-
ceptions are also a common mechanism to handle errors. Similar
to error codes, developers define various exception handlers to
handle different kinds of exceptions. Moreover, widely-used system
software such as OS kernels, web servers, and database systems all
have error code–like mechanisms to handle errors and failures. By
specifying how to recognize such “error code,” we can naturally
extend LRSan to detect LRC bugs in other software systems.

8 RELATEDWORK
LRSan employs static program analysis techniques to detect LRC
bugs in OS kernels. In this section, we identify differences between
LRSan and some related work that leverages kernel code analysis
techniques to find semantic bugs including missing-check bugs,
double-fetch bugs, and atomicity-violating bugs.

8.1 Kernel Code Analysis
OS kernels are attractive attack targets. A single vulnerability in
an OS kernel can have a critical and wide-ranging security im-
pact. Recent research on kernel code analysis has been focusing on
improving practicality, accuracy, and soundness.

K-Miner [8] is a new static analysis framework for OS kernels.
Its key idea is to partition the kernel code along separate execu-
tion paths using the system call interface as a starting point. This
way, it significantly reduces the number of relevant paths, allowing
practical inter-procedural data-flow analysis in complex OS kernels.
K-Miner is able to detect memory-corruption vulnerabilities such
as use-after-free. Dr. Checker [21] is also a static analysis tool for
identifying bugs in Linux kernel drivers. It reduces analysis scope
by focusing only on drivers, and improves scalability and precision
by sacrificing soundness in a few cases such as not following calls
into core kernel code. It is able to effectively detect known classes
(e.g., uninitialized data leaks) of vulnerabilities in drivers. Both
K-Miner [8] and Dr.Checker [21] aim to improve practicality and
precision of static kernel analysis by limiting analysis scope, and
they employ traditional bug detection techniques. LRSan instead
aims to detect LRC bugs, a specific class of semantic errors in OS
kernels, which has not been explored before, and to this end, LRSan
incorporates new analysis techniques such as automated security
check identification and recursive critical variable inference. More-
over, LRSan’s analysis scope covers the whole OS kernel, including
both drivers and core kernel modules.

KINT [43] and UniSan [19] both are capable of statically analyz-
ing whole OS kernels. KINT [43] uses taint analysis to find integer
errors in the Linux kernel while UniSan [19] uses taint analysis to

find uninitialized bytes that may be copied from kernel space to
user space. Smatch [3] employs Sparse [39] to construct syntax tree
with type and structure information. It provides lightweight, intra-
procedural static analysis to find shallow bugs such as NULL point-
ers and uninitialized uses. Coccinelle [26] is a pattern-matching
and transformation system for OS kernels. It uses a dedicated lan-
guage SmPL (Semantic Patch Language) to specify patterns and
transformations in C code. Coccinelle is highly scalable because
it does not perform expensive inter-procedural data-flow analysis.
Compared to these analysis tools, LRSan employs whole-kernel
inter-procedural data-flow analysis, which is flow sensitive, context
sensitive, and field sensitive. In addition, we design multiple new
analysis techniques in LRSan to detect LRC bugs.

Symbolic execution [17] “executes” programs using symbolic
values. As well as solving the imprecision in traditional static anal-
ysis, it can cover significantly more execution paths of a program
than dynamic analysis. With the substantial improvement in the
efficiency of symbolic execution, e.g., S2E [4], recent research has
been able to symbolically execute OS kernels. S2E is a platform
used to analyze properties and behaviors of software systems like
OS kernels. It enables selective symbolic execution to automatically
minimize the amount of code that has to be executed symbolically,
and relaxed execution consistency models to trade-off performance
and accuracy. APISan [48] detects API misuses by analyzing func-
tion usage patterns. It utilizes symbolic execution to reason about
program errors caused by API misuses. SymDrive [30] also uses
symbolic execution to verify properties of kernel drivers. LRSan
detects LRC bugs with a principled and general approach. Sym-
bolic execution, an orthogonal technique, can improve the analysis
precision of LRSan. For example, symbolic execution can precisely
reason about whether a modified value still satisfies the constraints
of the security check, which is an interesting research issue.

8.2 Missing-Check Bugs
Security checks validate inputs and operation status to ensure secu-
rity. Missing check, in which a check is completely absent, is a very
related class of bug as LRC. However, they are inherently different.
By definition, cases in which a check is completely missed are not
LRC bugs. On the other hand, in LRC, a security check is actually
present for a variable, and thus, it is not missing-check.

As the first step of detecting missing-check bugs, it is neces-
sary to find some evidence that a security check is required for
a case. While manual auditing is feasible, it is definitely not scal-
able. In order to automatically find such evidence, researchers have
employed static analysis to infer missing-check cases. A previous
approach [7] collects sets of programmer beliefs, which are then
checked for contradictions to detect various types of missing-check
bugs. JIGSAW [40] automatically constructs programmer expecta-
tion on adversarial control at a particular resource access to detect
missing checks. Chucky [47] uses check deviations to infer missing
check. For example, if a length variable is checked in 9 out of 10
functions in a program, it is evident that the last function may miss
the check. Similarly, Juxta [22] automatically infers high-level se-
mantics by comparing multiple existing implementations that obey
latent yet implicit high-level semantics. Deviations are detected as

potential missing checks. RoleCast [35] exploits universal and com-
mon software engineering patterns to infer missing checks in web
applications. MACE [23] identifies horizontal privilege escalation
(HP) vulnerabilities in web applications using program analysis to
check for authorization state consistency.

In addition to focusing on a common class of semantic bugs,
LRSan differs from aforementioned missing-check detectors in that
it can identify security checks without the requirements of multiple
implementations of target systems or manual specifications.

8.3 Double-Fetch Bugs
Recent research has attempted to detect a class of semantic bugs
named double-fetch in OS kernels. A double-fetch bug is a case
in which same user-space data is fetched into kernel space twice.
Since malicious users may race to change the data between the two
fetches, inconsistent data could be fetched. A double fetch itself is
not a security issue but rather just improper programming practice.
Depending on how the fetched data is used and checked, a double-
fetch case may become a security bug. The Bochspwn project [16]
introduced double-fetch bugs for the Windows kernel. Wang et
al. [41] then systematically studied double fetches and employed
patch matching to find successive fetches (e.g., copy_from_user()).
DECAF [33] exposes double fetches through cache side channel in-
formation because double fetches leave cache patterns. All these de-
tectors do not further check if a double-fetch would lead to security
issues, causing significant false positives. Deadline [46] improves
double-fetch detection and detects double-fetch bugs by checking
whether the value may influence control flow or data flow between
the fetches. However, if the value obtained from the second fetch
is rechecked or never used for security-related operations, such
a double fetch is still not a real bug. By contrast, LRSan aims to
detect actual check-bypassing bugs. That is, a critical variable with
check-violating values is used. Moreover, LRSan targets general
critical data (i.e., not just the one from user space) and general
modification (i.e., not just from copy_from_user()). Five new bugs
found by LRSan target non-user data, which by definition cannot
be identified by double-fetch detection.

8.4 Atomicity Bugs
When a modification is coming from another thread, LRC has an
overlap with atomicity violation (by contrast, double-fetch is a class
of race condition, not atomicity violation). Atomicity is a generic
concurrency property that ensures proper synchronization on ac-
cesses from multiple threads to shared data structures. Atomicity
violation has been extensively studied in previous work [14, 15,
20, 27, 42]. In high level, existing detection tools define atomicity-
violation bugs as cases in which a variable is shared by multiple
threads, and one thread has a pair of accesses to this variable while
other threads may potential write to or read from the variable be-
tween the two accesses. Such a detection mechanism is not suitable
for detecting LRC bugs due to several reasons: (1) the variable in
LRC may not be shared but modified locally in the same thread;
(2) the modification may cross user-kernel boundary or come from
global or heap; and (3) the traditional detection pattern is too gen-
eral and thus suffers from significant false positives. In LRSan, we
design multiple dedicated mechanisms to detect LRC bugs. LRSan

focuses on critical variables inferred from identified security checks
and is able to detect modification from local.

More importantly, if the modification is from the thread itself,
an LRC bug is not an atomicity-violation bug. In other words, LRC
bugs can exist in single-threaded programs. Therefore, LRC also
differs from atomicity violation.

8.5 Error-Code Analysis
Prior research works have tried to detect and monitor error-code
propagation [9, 13, 31, 32]. However, they mainly focused on analyz-
ing the completeness and correctness of error-code propagation and
handling, instead of leveraging error codes to infer security checks.
Kenali [36] attempts to infer access controls based on error code
-EACCES. However, it uses a simple pattern-matching approach to
find return -EACCES and treats the closest if statement as the access-
control check. Such an approach misses cases where an error code
is assigned to a to-be-returned variable. Kenali does not support
general error codes nor formally define a security check, suffering
from significant false reports. In comparison, we formally define
security checks. LRSan is capable of systematically and precisely
find security checks using ECFG. LRSan is also able to recursively
find the associated critical variables.

9 CONCLUSION
OS kernels validate external inputs and critical operations through
a large number of security checks. LRSan identifies more than
131K security checks in current Linux kernel. A security-checked
variable should not be modified before being used. Otherwise, the
security check is rendered ineffective. If a recheck is missing after
a modification, various critical security issues may arise. Attackers
can control the security-checked variable to bypass the security
check, causing attacks such as privilege escalation, out-of-bound
access, or denial-of-services. We call such cases LRC bugs, a specific
class of semantic errors that has not been explored before.

This paper presents the first in-depth study of LRC bugs, includ-
ing the formal definition, common causes, and security impact of
such bugs. This paper also describes LRSan, the first automated
static analysis system for detecting LRC cases in OS kernels. LRSan
is equipped with multiple novel techniques such as automated se-
curity check identification and recursive critical-variable inference
to systematically detect LRC cases. LRSan’s static analysis is inter-
procedural, flow sensitive, context sensitive, and field sensitive. We
have implemented LRSan based on LLVM and applied it to the
latest Linux kernel. LRSan is able to finish the detection within
four hours. Detection results show that LRSan finds 2,808 potential
LRC cases. At the time of paper submission, we have found 19 new
LRC bugs, most of which have been confirmed or fixed with our
patches by Linux kernel maintainers. The results show that LRC is
a common class of semantic errors in OS kernels and that LRSan is
capable of finding LRC bugs effectively.

ACKNOWLEDGMENTS
We would like to thank Hayawardh Vijayakumar and the anony-
mous reviewers for their valuable comments and helpful sugges-
tions. This work is supported in part by the National Science Foun-
dation under Grant No. CNS-1514444.

REFERENCES
[1] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Cas-

tro. 2008. Preventing Memory Error Exploits with WIT. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (SP ’08). IEEE Computer Society,
Washington, DC, USA, 263–277. https://doi.org/10.1109/SP.2008.30

[2] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[3] Dan Carpenter. 2009. Smatch - the source matcher. http://smatch.sourceforge.
[4] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,
265–278. https://doi.org/10.1145/1950365.1950396

[5] Kees Cook. 2017. Linux Kernel Self Protection Project. https://outflux.net/slides/
2017/lss/kspp.pdf.

[6] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding In-
teger Overflow in C/C++. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 760–770.
http://dl.acm.org/citation.cfm?id=2337223.2337313

[7] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs As Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the Eighteenth ACM Symposium on Operat-
ing Systems Principles (SOSP ’01). ACM, New York, NY, USA, 57–72. https:
//doi.org/10.1145/502034.502041

[8] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-Miner:
Uncovering Memory Corruption in Linux. In 2018 Network and Distributed System
Security Symposium (NDSS ’18).

[9] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dussea, and Ben Liblit. 2008. EIO: Error Handling is Occasionally Cor-
rect. In Proceedings of the 6th USENIX Conference on File and Storage Technolo-
gies (FAST’08). USENIX Association, Berkeley, CA, USA, Article 14, 16 pages.
http://dl.acm.org/citation.cfm?id=1364813.1364827

[10] BenHardekopf and Calvin Lin. 2007. The Ant and the Grasshopper: Fast and Accu-
rate Pointer Analysis for Millions of Lines of Code. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, New York, NY, USA, 290–299. https://doi.org/10.1145/1250734.1250767

[11] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive Pointer Analysis for Mil-
lions of Lines of Code. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’11). IEEE Computer Soci-
ety, Washington, DC, USA, 289–298. http://dl.acm.org/citation.cfm?id=2190025.
2190075

[12] Intel. June, 2017. Programming with Intel Transactional Synchronization Exten-
sions. In Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
Chapter 16.

[13] Suman Jana, Yuan Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically
Detecting Error Handling Bugs Using Error Specifications. In Proceedings of the
25th USENIX Conference on Security Symposium (SEC’16). USENIX Association,
Berkeley, CA, USA, 345–362. http://dl.acm.org/citation.cfm?id=3241094.3241122

[14] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-violation Fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’11). ACM, New
York, NY, USA, 389–400. https://doi.org/10.1145/1993498.1993544

[15] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. 2012. Auto-
mated Concurrency-bug Fixing. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12). USENIX Association,
Berkeley, CA, USA, 221–236. http://dl.acm.org/citation.cfm?id=2387880.2387902

[16] Mateusz Jurczyk and Gynvael Coldwind. 2013. Bochspwn: Identifying 0-days via
System-wide Memory Access Pattern Analysis. (2013).

[17] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385–394. https://doi.org/10.1145/360248.360252

[18] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
Casting Verification: Stopping an Emerging Attack Vector. In Proceedings of the
24th USENIX Conference on Security Symposium (SEC’15). USENIX Association,
Berkeley, CA, USA, 81–96. http://dl.acm.org/citation.cfm?id=2831143.2831149

[19] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
Kernel Memory Initialization to Eliminate Data Leakages. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (CCS
’16). ACM, New York, NY, USA, 920–932. https://doi.org/10.1145/2976749.2978366

[20] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: Detect-
ing Atomicity Violations via Access Interleaving Invariants. In Proceedings of
the 12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XII). ACM, New York, NY, USA, 37–48.
https://doi.org/10.1145/1168857.1168864

[21] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for

Linux Kernel Drivers. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 1007–1024. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/machiry

[22] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP ’15). ACM, New York, NY, USA, 361–377. https://doi.org/10.1145/
2815400.2815422

[23] Maliheh Monshizadeh, Prasad Naldurg, and V. N. Venkatakrishnan. 2014. MACE:
Detecting Privilege Escalation Vulnerabilities in Web Applications. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14). ACM, New York, NY, USA, 690–701. https://doi.org/10.1145/2660267.
2660337

[24] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 577–587. https:
//doi.org/10.1145/2594291.2594295

[25] Peter Norvig. 1992. The General Problem Solver.
[26] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008.

Documenting and Automating Collateral Evolutions in Linux Device Drivers.
In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008 (Eurosys ’08). ACM, New York, NY, USA, 247–260. https:
//doi.org/10.1145/1352592.1352618

[27] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atom-
icity Violation Bugs from Their Hiding Places. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XIV). ACM, New York, NY, USA, 25–36. https:
//doi.org/10.1145/1508244.1508249

[28] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by pro-
gram transformation. In 2018 IEEE Symposium on Security and Privacy (SP ’18),
Vol. 00. 917–930. https://doi.org/10.1109/SP.2018.00056

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In 2017
Network and Distributed System Security Symposium (NDSS ’17).

[30] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. 2012. SymDrive:
Testing Drivers Without Devices. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI’12). USENIX Association,
Berkeley, CA, USA, 279–292. http://dl.acm.org/citation.cfm?id=2387880.2387908

[31] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau,
and Andrea C. Arpaci-Dusseau. 2009. Error Propagation Analysis for File Sys-
tems. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’09). ACM, New York, NY, USA, 270–280.
https://doi.org/10.1145/1542476.1542506

[32] Cindy Rubio-González and Ben Liblit. 2011. Defective Error/Pointer Interac-
tions in the Linux Kernel. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis (ISSTA ’11). ACM, New York, NY, USA, 111–121.
https://doi.org/10.1145/2001420.2001434

[33] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schus-
ter, Anders Fogh, and Stefan Mangard. 2017. Automated Detection, Exploita-
tion, and Elimination of Double-Fetch Bugs using Modern CPU Features. CoRR
abs/1711.01254 (2017). arXiv:1711.01254 http://arxiv.org/abs/1711.01254

[34] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’16). ACM, New York, NY, USA, 1492–1504. https:
//doi.org/10.1145/2976749.2978411

[35] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2011. RoleCast: Finding
Missing Security Checks when You Do Not Know What Checks Are. In Proceed-
ings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’11). ACM, New York, NY, USA,
1069–1084. https://doi.org/10.1145/2048066.2048146

[36] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo Kim,
and Wenke Lee. 2016. Enforcing Kernel Security Invariants with Data Flow
Integrity. In 2016 Network and Distributed System Security Symposium (NDSS ’16).

[37] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eter-
nal War in Memory. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy (SP ’13). IEEE Computer Society, Washington, DC, USA, 48–62.
https://doi.org/10.1109/SP.2013.13

[38] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-edge Control-
flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Conference on
Security Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, 941–955.
http://dl.acm.org/citation.cfm?id=2671225.2671285

[39] Linus Torvalds. 2006. match - the source matcher. https://sparse.wikii.kernel.
org/index.php/Main_Page.

[40] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. 2014.
JIGSAW: Protecting Resource Access by Inferring Programmer Expectations.
In Proceedings of the 23rd USENIX Conference on Security Symposium (USENIX

https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1145/2976749.2978428
http://smatch.sourceforge
https://doi.org/10.1145/1950365.1950396
https://outflux.net/slides/2017/lss/kspp.pdf
https://outflux.net/slides/2017/lss/kspp.pdf
http://dl.acm.org/citation.cfm?id=2337223.2337313
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/502034.502041
http://dl.acm.org/citation.cfm?id=1364813.1364827
https://doi.org/10.1145/1250734.1250767
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://dl.acm.org/citation.cfm?id=3241094.3241122
https://doi.org/10.1145/1993498.1993544
http://dl.acm.org/citation.cfm?id=2387880.2387902
https://doi.org/10.1145/360248.360252
http://dl.acm.org/citation.cfm?id=2831143.2831149
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/1168857.1168864
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://doi.org/10.1145/2815400.2815422
https://doi.org/10.1145/2815400.2815422
https://doi.org/10.1145/2660267.2660337
https://doi.org/10.1145/2660267.2660337
https://doi.org/10.1145/2594291.2594295
https://doi.org/10.1145/2594291.2594295
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1109/SP.2018.00056
http://dl.acm.org/citation.cfm?id=2387880.2387908
https://doi.org/10.1145/1542476.1542506
https://doi.org/10.1145/2001420.2001434
http://arxiv.org/abs/1711.01254
http://arxiv.org/abs/1711.01254
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1145/2048066.2048146
https://doi.org/10.1109/SP.2013.13
http://dl.acm.org/citation.cfm?id=2671225.2671285
https://sparse.wikii.kernel.org/index.php/Main_Page
https://sparse.wikii.kernel.org/index.php/Main_Page

Security 14). USENIX Association, Berkeley, CA, USA, 973–988. http://dl.acm.
org/citation.cfm?id=2671225.2671287

[41] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How
Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of Dou-
ble Fetches in the Linux Kernel. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 1–16. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei

[42] Wenwen Wang, Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, Xipeng Shen,
Xiang Yuan, Jianjun Li, Xiaobing Feng, and Yong Guan. 2014. Localization of
Concurrency Bugs Using Shared Memory Access Pairs. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering (ASE ’14).
ACM, New York, NY, USA, 611–622. https://doi.org/10.1145/2642937.2642972

[43] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
2012. Improving Integer Security for Systemswith KINT. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation (OSDI’12).
USENIX Association, Berkeley, CA, USA, 163–177. http://dl.acm.org/citation.
cfm?id=2387880.2387897

[44] Christian Wressnegger, Fabian Yamaguchi, Alwin Maier, and Konrad Rieck. 2016.
Twice the Bits, Twice the Trouble: Vulnerabilities Induced by Migrating to 64-
Bit Platforms. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 541–552.

https://doi.org/10.1145/2976749.2978403
[45] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu. 2016.

CREDAL: Towards Locating a Memory Corruption Vulnerability with Your
Core Dump. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 529–540.
https://doi.org/10.1145/2976749.2978340

[46] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. In Proceedings
of the 39th IEEE Symposium on Security and Privacy (Oakland). San Francisco,
CA.

[47] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck.
2013. Chucky: Exposing Missing Checks in Source Code for Vulnerability
Discovery. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’13). ACM, New York, NY, USA, 499–510.
https://doi.org/10.1145/2508859.2516665

[48] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In
25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
Austin, TX, 363–378. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/yun

http://dl.acm.org/citation.cfm?id=2671225.2671287
http://dl.acm.org/citation.cfm?id=2671225.2671287
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://doi.org/10.1145/2642937.2642972
http://dl.acm.org/citation.cfm?id=2387880.2387897
http://dl.acm.org/citation.cfm?id=2387880.2387897
https://doi.org/10.1145/2976749.2978403
https://doi.org/10.1145/2976749.2978340
https://doi.org/10.1145/2508859.2516665
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun

	Abstract
	1 Introduction
	2 A Study on LRC bugs
	2.1 A Formal Definition of LRC Bugs
	2.2 Security Check and Error Code in Linux
	2.3 Causes of Modification
	2.4 Security Impact of LRC Bugs

	3 LRSan
	3.1 Overview of LRSan
	3.2 Automated Security Check Identification
	3.3 Recursive Critical Variable Inference
	3.4 Check-Use Chain Construction
	3.5 Modification Analysis

	4 Implementation
	5 Evaluation
	5.1 Detection Statistics
	5.2 Bug Finding
	5.3 Analysis Time

	6 Bug-Fixing Strategies
	7 Limitations and Discussion
	7.1 False Positives
	7.2 False Negatives
	7.3 Supporting More Systems

	8 Related work
	8.1 Kernel Code Analysis
	8.2 Missing-Check Bugs
	8.3 Double-Fetch Bugs
	8.4 Atomicity Bugs
	8.5 Error-Code Analysis

	9 Conclusion
	Acknowledgments
	References

