
MPTEE: Bringing Flexible and Efficient Memory
Protection to Intel SGX

Wenjia Zhao
Xi’an Jiaotong University
University of Minnesota

Kangjie Lu*

University of Minnesota
Yong Qi*

Xi’an Jiaotong University
Saiyu Qi

Xidian University

Abstract
Intel Software Guard eXtensions (SGX), a hardware-based
Trusted Execution Environment (TEE), has become a promis-
ing solution to stopping critical threats such as insider attacks
and remote exploits. SGX has recently drawn extensive re-
search in two directions—using it to protect the confidentiality
and integrity of sensitive data, and protecting itself from at-
tacks. Both the applications and defense mechanisms of SGX
have a fundamental need—flexible memory protection that
updates memory-page permissions dynamically and enforces
the least-privilege principle. Unfortunately, SGX does not pro-
vide such a memory-protection mechanism due to the lack of
hardware support and the untrustedness of operating systems.

This paper proposes MPTEE, a memory-protection mech-
anism that provides flexible and efficient enforcement of
memory-page permissions in SGX. The enforcement relies
on our elastic cross-region bound check technique which
uses only three bound registers but provides six memory per-
missions. To defend MPTEE against potential attacks, we
further develop an efficient mechanism that exploits the in-
place bound-check technique to ensure the integrity of the
memory protection. With MPTEE, developers can enhance
the protection for data and code in SGX enclaves and enforce
the least-privilege principle such as Execute-no-Read mem-
ory readily. We have implemented MPTEE and extensively
evaluated its effectiveness, utility, and performance. The re-
sults show that MPTEE incurs a performance overhead of
only 2%–8%, and is effective in ensuring memory protection
and in defending against potential attacks.

1 Introduction
Hardware-based trusted execution environments (TEEs), as
a way to protect the confidentiality and integrity of data and

*Co-corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6882-7/20/04.
https://doi.org/10.1145/3342195.3387536

code, emerge in today’s market. In particular, Intel has pro-
vided SGX in its commodity processors, which supports a se-
cure region, namely enclave, to protect the internally loaded
code and data. Given its important and practical protection,
SGX has been extensively studied and used in practice. For
example, SCONE [1] uses it to effectively enhance the secu-
rity of containers with low overhead. JITGuard [17] leverages
it to protect the security-critical just-in-time compiler oper-
ations. SGXCrypter[49] utilizes it to securely unpack and
execute Windows binaries. There are many other useful appli-
cations [35], [34], [31],[6], which confirm the practical and
promising applications of SGX.

Another line of research is to protect SGX itself from at-
tacks. While being useful and practical, SGX still suffers
from a variety of attacks [5, 7–11, 24, 25, 36, 52, 54]. It
is not only vulnerable to various side-channel attacks [8–
11, 25, 36, 52, 54], but also traditional memory-corruption
attacks [5, 24] because the code inside SGX may still be vul-
nerable. To defend against these attacks, researchers have
attempted to harden SGX [22, 37, 45, 46]. For example,
SGX-Shield [37] designs a memory-randomization scheme
for SGX environments, and SGXBOUNDS [22] provides an
efficient memory-safety approach for the security of objects
in SGX.

Both the SGX applications and the defense mechanisms
have a fundamental need—flexibly and securely enforcing
memory-page permissions, such as write (W), read (R), and
execute (X), in a least-privilege manner. For example, SGX-
ELIDE [3] and SGXCrypter [49] ensure enclave-code confi-
dentiality with code packing or encryption. Code generation
at runtime thus requires to remove the W permission for code
pages—code pages must be non-writable to be compatible
with the NX enforcement. On the other hand, defense mecha-
nisms for SGX also require changes to memory permissions.
For example, SGX-Shield requires to remove the W permission
of code pages after randomization. This way, it can ensure
that it would not introduce the traditional code-injection at-
tacks [29]. Overall, a flexible and secure memory-permission
control is required to enforce the least-privilege principle and
to prevent attacks.

While flexible memory-permission enforcement is impor-
tant, SGX, unfortunately, does not provide such a mechanism
due to two main reasons. First, Intel provides very limited
hardware support due to security considerations. The current
SGX does not provide instructions for modifying the permis-

1

https://doi.org/10.1145/3342195.3387536


sions of the Enclave Page Cache (EPC) after the enclave has
been initialized [14] [32]. This is to prevent the untrusted OS
from changing the access permissions of EPC to facilitate
attacks at runtime. Second, permissions for memory pages
of an SGX program are statically decided by the GCC com-
piler which however does not support flexible permissions
such as execute-only memory. One cannot modify the per-
mission configuration of the generated SGX program due to
the signature-verification mechanism. The signature [33] is
computed for the content and the layout of enclave memory,
and its page security properties at build time. The SGX loader
will check the signature at load-time and reject the program
if the signature cannot be verified.

As SGX does not support the change of memory permis-
sions, existing applications have attempted multiple solu-
tions which are however insecure or inefficient. Specifically,
SGX-Shield [37] uses software-based DEP to create an NRW
boundary (i.e., non-readable and -writable boundary) to re-
move the R and W permissions for code pages. While wasting
the R15 register, it also incurs an extra overhead for comput-
ing the range to check. Meanwhile, the NRW boundary using
a general register can be shifted [5]. SGXELIDE [3] modi-
fies the p_flags field in the program header entry to make
the section writable throughout the enclave’s lifetime. This
is insecure because code pages are subject to code-injection
attacks after adding writable permission. SGXCrypter [49]
relies on the OS page table to remove the W permission, which
is incompatible with the SGX security model, namely the
fact that the page table is managed by the untrusted OS. In
summary, all of these works are only for a single permission
change, and their designs waste registers, incur a significant
performance overhead, or introduce security issues.

Supporting a flexible, efficient, and secure memory pro-
tection mechanism for SGX is in fact challenging for two
reasons. R1. Limited hardware support. SGX currently does
not have hardware support for flexible memory-permission
enforcement. Although it is possible to implement the en-
forcement with a software-based solution, the runtime and
memory overheads tend to be significant, needless to mention,
the size of the code running in SGX will also be significantly
increased. R2. Strong adversary. The security model of SGX
assumes that the privileged software (e.g., OS, hypervisor) is
untrusted. We thus cannot simply ask the OS or hypervisor to
change the memory permissions. In addition, SGX programs
themselves might be vulnerable and thus subject to a variety
of attacks that may abuse the permission changes.

In this paper, we present MPTEE, a memory-protection
system that provides flexible, efficient, and isolated memory-
permission enforcement for SGX. MPTEE realizes memory-
permission enforcement by bound-checking memory accesses
of different permissions, using Memory Protection Extensions
(MPX). For example, by bound-checking all memory reads
against a specific range, we can ensure that only the memory
region specified by the range is readable. Unfortunately, MPX

provides only four registers, but a flexible memory protection
requires at least six permission combinations. Spilling bounds
from registers to memory will significantly incur performance
overhead and require the integrity protection for the bounds
in memory. To address these problems, we propose a novel
cross-over memory-layout design that uses only three bound
registers to offer the six common memory permissions (e.g.,
execute-only or read-only memory) efficiently. We name the
design elastic cross-region bound check (CRBC). CRBC is
generic; it is also applicable to embedded systems that lack
the Memory Management Unit (MMU) but require flexible
memory protection.

Since the memory-protection mechanism runs in the same
address space as the potentially vulnerable SGX code, a re-
maining problem with MPTEE is that adversaries may abuse
the mechanism to maliciously change memory permissions,
invalidating the permission enforcement. We thus further
provide the enforcement integrity technique which employs
memory isolation and control-data integrity (CDI) to protect
the memory permission enforcement mechanism from attacks.
Note that, while memory isolation and CDI are well studied,
MPTEE exploits the in-place CRBC technique to further
improve their performance and security. With MPTEE, de-
velopers can readily enforce memory permissions flexibly,
efficiently, and securely.

We have implemented a prototype of MPTEE and eval-
uated its security, effectiveness, utility, and performance us-
ing representative SGX programs. The evaluation results
show that the MPTEE can provide efficient permission
settings to prevent existing known attacks, and can resist
against potential attacks that try to bypass or abuse MPTEE.
MPTEE’s protection has a small runtime performance aver-
age overhead—6.6% for SQLite and 2.18% for Memcached.
Moreover, the enforcement-integrity mechanism, which in-
cludes memory isolation and control-data integrity, incurs
less than 1% runtime performance overhead, benefiting from
the in-place CRBC technique. We believe that MPTEE is a
practical and secure memory-protection mechanism that is
ready for protecting SGX applications and SGX itself.

We have the following research contributions in this paper.

� The novel cross-region bound check technique. We pro-
pose a new technique to flexibly and dynamically enforce
six common memory permissions of SGX using only three
MPX bound registers. The cross-over layout design of the
technique does not require OS support or specific hardware
features. It can also be ported to bare-metal systems in em-
bedded devices that do not provide memory protection [12].

� An efficient and secure design. We design and imple-
ment MPTEE to efficiently realize the cross-region bound
check technique for SGX. MPTEE also employs CDI and
memory isolation to ensure the integrity of permission en-
forcement. More importantly, relying on the in-place cross-

2



region bound-check technique,MPTEEfurther improves
the performance and security of CDI and memory isolation.

� Case studies and extensive evaluation.We provide mul-
tiple use cases that can bene�t fromMPTEE. By applying
MPTEEto representative SGX programs, we thoroughly
evaluate its effectiveness, utility, and performance.

2 Overview
In this section, we �rst present the background and threat
model ofMPTEE, and then introduce theMPTEEapproach.

2.1 Background

Intel MPX. Intel MPX is a new instruction set architecture
(ISA) extension, a hardware-assisted full-stack solution to pro-
tect against memory safety violations [28]. It provides new
instructions and registers for software-based bounds checking,
making it much more ef�cient. Speci�cally, MPX provides
four dedicated bound registers (BND0s BND3) and instructions
for setting (bndmk), moving (bndmov), and checking (bndcu,
bndcl ) against bound registers for addresses. MPX also pro-
vides a bound table, similar to a two-level page table structure,
to extend the number of bounds. Due to the scarcity of bound
registers, a typical use of MPX is to use a bound table to store
a large number of bounds for objects.
Memory-permission enforcement.The memory-page per-
mission of traditional applications is enforced by the permis-
sion bits of the OS page table. In linux syscalls,mmap()and
mprotect() are used to set or update the memory page per-
mission by updating the bits of page-table entries. In the x86
architecture, each page-table entry contains 2 permission bits;
one is theNXbit which presents whether the page is executable,
and the other is theW/Rbit which presents whether the page is
writable. Under the existing x86 architecture, memory pages
are readable by default.

The SGX hardware provides three new permission bits for
SGX pages,W, R, andXbits which are contained in the SGX
enclave control structure (SECS)—the metadata structure of an
EPC. These three bits should be initialized onlyonceduring
the load-time. They arechecked at each address translation,
enforced by hardware, so even an untrusted OS cannot break
it. In comparison, the permission bits in page tables cannot
limit whether the memory page is readable, but SGX permis-
sion bits can. Further, page tables are managed by the OS,
which is untrusted in the SGX threat model.

2.2 Threat Model

In MPTEE, we assume that the adversary can control all
the software (e.g., OS kernels and hypervisors) and hardware
except the SGX component. That is, we assume that only Intel
SGX itself is trusted, and all other software and hardware
components are untrusted. The adversary can freely read and
write the content in memory. We also assume that the code
running inside SGX may have any kind of vulnerabilities

such as buffer over�ows that can be exploited by adversaries.
The adversary can perform any static or dynamic analysis
to �nd any patterns in the SGX code. Denial of service [20]
and side-channel [10, 11, 25, 54] attacks, such as power and
timing analysis, are out of the scope.

2.3 The MPTEE Approach

In general, memory protection can be realized with either
hardware-based or software-based approaches. Hardware-
based approaches use hardware features to control access
rights such as the special permission bits [26] [50, 53]. By con-
trast, software-based approaches use software-fault isolation
(SFI) mechanisms [51] to restrict memory accesses [30, 38]
or use exception mechanisms to check the access permis-
sions [2]. The hardware-based approaches tend to have lower
overhead but lack �exibility, while the software-based are the
opposite.

In MPTEE, we aim to propose a solution bene�ting from
both the software-based and hardware-based approaches. Our
solution focuses primarily on software-based approaches and
requires minimum hardware support (e.g., only some regis-
ters), so that it is �exible, ef�cient, and potentially generic.
Since permission enforcement itself may be attacked when
the enclave code has vulnerabilities, we also need to pro-
tect the enforcement. Figure 1 depictsMPTEE's overview.
MPTEEis mainly comprised of two components: permission
enforcement and enforcement integrity.

2.3.1 Permission Enforcement

The permission-enforcement component ofMPTEEaims to
�exibly enforce memory permissions, which includes two
parts: dynamic permission enforcement and adaptive permis-
sion enforcement. Dynamic permission enforcement provides
the ability of runtime permission changes for SGX appli-
cations while adaptive permission enforcement effectively
optimizes the performance of permission enforcement.
Dynamic permission enforcement.Our key technique for
achieving dynamic permission enforcement is elastic cross-
region bound check (CRBC). Its intuition is that, by bound-
checking memory accesses, including read, write, and execute,
we ensure that they are restricted in the correct permission
regions. For example, the bound-checking for reads ensures
that all memory reads can only target a speci�c memory range.
That is, any memory that is out of the range isnon-readable.
Moreover, the bound is stored in a register. By adjusting the
bound of the readable memory, we can realize a readable
memory region with a �exible range. This way, we enforce
the memory-read permission.

For performance reasons, we use Intel MPX for ef�cient
bound checks. However, there are some limitations to us-
ing MPX for ef�cient permission enforcement. The mem-
ory layout of traditional Linux programs includes many non-
contiguous memory regions (i.e., sections) with different per-

3



Figure 1. An overview ofMPTEE. MPTEEincludes two main components, namely permission enforcement and enforcement integrity. The
enclave code can enable permission enforcement statically by setting con�g.xml or dynamically by calling interfaces. The implementation of
permission enforcement and enforcement integrity relies on code instrumentation based on LLVM.

missions. Such a many-region layout makes the MPX bound
checks less ef�cient—MPX has only four bound registers; ad-
ditional bounds will have to be stored to bound tables in mem-
ory, which will, however, cause two problems. First, it incurs
performance issues [22, 28]. The bounds must be frequently
loaded from memory, incurring signi�cant performance over-
head. Second, it also introduces security issues—the integrity
of bounds (saved in memory) must be guaranteed.

Therefore, how to use only a limited number of registers to
ef�ciently and securely complete the enforcement of multi-
ple permissions in the enclave is a challenging problem. To
address this problem,CRBCrelies on a novelcross-over de-
sign. The design is based on our key observation that the same
permission memory range is continuous in an enclave (details
are presented in §3.1).CRBCrequires onlythreebound reg-
isters but offerssixmemory regions with different permission
combinations—RWX, RW, RX, R, X, non-permission. Note
that theWXcombination is disallowed to be aligned with theNX
enforcement, and the write-only permission is also disallowed
because it does not have a practical use scenario.
Adaptive permission enforcement. We further reduce the
performance overhead of the memory enforcement by propos-
ing adaptive permission enforcement which is based on an
observation that memory regions that do not require permis-
sion changes can be protected with the SGX permission bits.
For example, when we know that the size of executable mem-
ory is 2MB and that the size will not change at runtime, we
can use theXpermission bit to enforce the executable mem-
ory, so thatCRBConly needs to bound-check memory reads
and writes but not executes, which saves one bound register
and avoids bound-checking for executes. When all memory
regions of different permissions have a �xed size, we can
completely avoid bound-checking and thus remove all the
performance overhead ofCRBC(see details in §3.2). SGX
permission bits are checked through the hardware circuit,
without any additional instructions, so it is much faster than
MPX bound-checking.

As we will show in §3.2, the current compilation tool-chain
does not allow the �exible con�guration of the permission
bits statically, we thus have to redesign the SGX parser and
loader, which is also shown in §3.2.

2.3.2 Enforcement Integrity

Since the permission-enforcement component is in the same
address space as all other code in SGX that is potentially
vulnerable, it can be abused by attackers through the vulner-
abilities. Therefore, we also developenforcement integrity
to protect the component, which includes two techniques,
ef�cient memory isolation and control-data integrity (CDI).

The memory isolation mechanism is to prevent data-�ow
attacks that aim to manipulate variables (e.g., a variable con-
trolling the size of a memory region) that in�uence the per-
mission enforcement. All such variables will be collected and
saved in the isolated memory region, thus will be protected
from being manipulated. On the other hand, CDI prevents
control-�ow attacks that may bypass bound-checks. By en-
suring the integrity of control data, attackers cannot hijack
control �ows.

Although CDI and memory isolation are well studied, our
enforcement integrityhas some unique advantages. First, it
leverages the in-placeCRBCto achieve memory isolation for
free. Second, since control data like the trampoline table [15]
can be readily protected using the non-permission memory
offered by the in-placeCRBC, we manage to further improve
both the ef�ciency and security of traditional control-data
protection. As will be shown in §6, ourenforcement integrity
technique incurs a runtime performance overhead of less than
1%, and is more secure than CFI techniques like CFCC [47]
and Readactor [15].

3 Flexible and Ef�cient Memory-Permission
Enforcement

We �rst elaborate on the �exible enforcement of memory
permissions. The main contribution is the dynamic permission
enforcement, which (1) uses only three bound registers to

4


	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Threat Model
	2.3 The MPTEE Approach

	3 Flexible and Efficient Memory-Permission Enforcement
	3.1 Elastic Cross-Region Bound Check
	3.2 Optimizing CRBC: Adaptive Permission Enforcement

	4 Enforcement Integrity Against Attacks
	5 Implementation
	5.1 Permission Enforcement
	5.2 Enforcement Integrity

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Utility Analysis
	6.3 Effectiveness Evaluation

	7 Discussion
	8 Related work
	9 Conclusion
	10 Acknowledgment
	References

