
RopSteg: Program Steganography with Return Oriented
Programming

Kangjie Lu
Georgia Institute of

Technology
kjlu@gatech.edu

Siyang Xiong
D’crypt Pte Ltd

xiong siyang@d-
crypt.com

Debin Gao
Singapore Management

University
dbgao@smu.edu.sg

ABSTRACT
Many software obfuscation techniques have been proposed
to hide program instructions or logic and to make reverse
engineering hard. In this paper, we introduce a new prop-
erty in software obfuscation, namely program steganography,
where certain instructions are “diffused” in others in such
a way that they are non-existent until program execution.
Program steganography does not raise suspicion in program
analysis, and conforms to the W ⊕X and mandatory code
signing security mechanisms. We further implement Rop-
Steg, a novel software obfuscation system, to provide (to a
certain degree) program steganography using return-oriented
programming. We apply RopSteg to eight Windows exe-
cutables and evaluate the program steganography property
in the corresponding obfuscated programs. Results show
that RopSteg achieves program steganography with a small
overhead in program size and execution time. RopSteg is the
first attempt of driving return-oriented programming from
the “dark side”, i.e., using return-oriented programming in
a non-attack application. We further discuss limitations of
RopSteg in achieving program steganography.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion

Keywords
Code obfuscation, watermarking, program steganography,
return-oriented programming

1. INTRODUCTION
Many software program obfuscation techniques have been

proposed to deliberately conceal various aspects of an exe-
cutable to make reverse engineering hard [7, 11, 20, 15, 26].
These techniques are powerful in terms of their robustness,
semantic-preservation, obscurity, resilience, stealth, and other
properties [7, 11, 15]. However, most existing techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY’14, March 3–5, 2014, San Antonio, Texas, USA.
Copyright 2014 ACM 978-1-4503-2278-2/14/03 ...$15.00.
http://dx.doi.org/10.1145/2557547.2557572.

raise suspicion in program analysis, and may violate the
W ⊕X or mandatory code signing security mechanisms [14].

Software watermarking [6], on the other hand, tries to em-
bed a secret message into a cover program, which is very sim-
ilar to the concept of steganography, the art and science of
hiding information. Although both software obfuscation and
software watermarking are forms of security through obscu-
rity, a notable difference in them are 1) software obfuscation
tries to transform something while software watermarking
tries to hide something; 2) target of software obfuscation is
usually executable code in the original program, while that
of software watermarking is usually additional secret mes-
sage (data) that is not part of the original program.

This paper introduces a new property in software obfus-
cation, which, in some sense, combines the ideas of tradi-
tional software obfuscation and watermarking, namely pro-
gram steganography. Program steganography refers to an
interesting property that part of the executable code is hid-
den. It differs from existing software obfuscation in that the
instructions are hidden instead of being transformed. It also
differs from existing software watermarking in that part of
the executable code in the original program, instead of some
additional information, is hidden.

We do not introduce program steganography just for the
sake of combining the ideas of existing obfuscation and wa-
termarking techniques. Program steganography has some
specific and useful properties absent from existing approaches,
out of which the most important ones being not attracting
attention to itself, a well documented advantage of steganog-
raphy over cryptography. Even the strongest existing soft-
ware obfuscation, in which instructions are encrypted to
make static analysis next to impossible (e.g., [26, 20]), can-
not hide the existence of the instruction sequence and leaves
suspicion to program analysis. Program steganography, on
the other hand, completely hides the existence of certain
instructions from static analysis and raises no suspicion or
attention. This is also different from self-generating code
where instructions to be executed are generated by the pro-
gram itself on the fly, which violates the W ⊕ X security
mechanism and is not suitable in mandatory code signing
environments (e.g., iOS). Note that we do not include re-
sistance to dynamic analysis as a necessary property of pro-
gram steganography, as the hidden instructions are intended
to be executed in a dynamic run.

One of the reasons why program steganography has not
been widely studied is its difficulty. It was not clear how
some instructions to be executed could be completely hid-
den in an executable. However, steganography has been

265

well studied to embed secret into documents, images, au-
dio and video files, and so thidehe concept behind it and
the techniques to achieve it are well known. The gap lies
in the availability of a special technique to achieve program
steganography. We propose that using return-oriented pro-
gramming [3, 4, 17, 19, 12] could be a good way to close this
gap.

Return-oriented programming (ROP) [19] has attracted a
lot of research attention in the last few years. The idea of
using unintended gadgets (unintended instruction sequences
ending with ret) in ROP is to disassemble instructions from
the middle of some inhidetended instruction to perform at-
tacks. Such instructions are “hidden” in the sense that they
were not intended to exist when the binary was created,
and therefore a disassembler would never pick them up. If
we could intentionally “diffuse” some instructions into such
an unintended form, they will be hidden and therefore non-
existent until program execution.

We design and implement RopSteg, a novel software ob-
fuscation technique that hides the existence of program in-
structions while providing (to a certain degree) program
steganography. More specifically, RopSteg hides instruc-
tions from static analysis while conforming to the W ⊕ X
and mandatory code signing security mechanisms with min-
imal suspicions raised. We additionally evaluate RopSteg
by applying it to different Windows executables, including
desktop application, server program, and malware. Results
show that RopSteg achieves program steganography with a
small overhead in program size and execution time.

Note that RopSteg applies the concept of ROP in a com-
pletely new way. Return-oriented programming had always
been considered as an attacking technique in previous re-
search, where an attacker locates and uses unintended gad-
gets found in a given and vulnerable program. RopSteg,
on the other hand, turns instructions into unintended form
and embeds the ROP code into a program. In this respect,
RopSteg is the first proposal of driving return-oriented pro-
gramming from the “dark side”, i.e., using return-oriented
programming in a non-attack application1.

In summary, our paper makes the following contributions.

• Introducing a new property in software obfuscation,
namely, program steganography, to hide the existence
of program instructions.

• Designing and implementing RopSteg, a novel tech-
nique for providing program steganography using return-
oriented programming.

• Evaluating RopSteg by applying it to different Win-
dows programs.

• First proposal of driving return-oriented programming
from the “dark side”.

2. PROGRAM STEGANOGRAPHY AND RE-
LATED WORK

In this section, we first introduce the new property in soft-
ware obfuscation, namely, program steganography. Due to its
close relationship with a few previously proposed concepts,
we also present a summary of these related works as well as
their differences from program steganography.
1RopSteg could also be used by malware writers to hide
malicious instructions to evade detection.

Given a piece of executable code, program steganography
refers to the result of hiding part of the program’s func-
tionality and the corresponding instructions such that they
are non-existent till the point of execution. Figure 1 shows a
simple example of a program segment that exhibits program
steganography. Static analysis of this code segment reveals
100% disassembled instructions (see bottom of Figure 1).
These instructions are prepared by a normal compiler and
can be easily disassembled. However, the exact same byte
sequence could also be interpreted in a different way to ob-
tain completely different instructions (see top of Figure 1).
A normal disassembler would not be able to pick up these
instructions. They are hidden till the point of execution.

Figure 1: Program steganography example

Software watermarking.
Software watermarking is the closest to our property of

program steganography. In software watermarking, some
information is embedded in the software program to be reli-
ably located and extracted [9, 8]. This is similar to program
steganography in the sense that something is hidden in a
program. The main difference is on the target of hiding —
software watermarking usually hides a piece of information,
e.g., the author’s identity, which is a foreign object to the
program; program steganography, on the other hand, hides
some of its own instructions. The information hidden by
software watermarking needs to be extracted via some spe-
cial means, while instructions hidden by program steganog-
raphy will be executed during program’s normal runs.

Software obfuscation.
Many software program obfuscation techniques have been

proposed to deliberately conceal various aspects of an exe-
cutable to make reverse engineering hard. These techniques
are powerful in terms of their robustness, semantic preser-
vation, obscurity, resilience, stealth, etc [7, 11, 15, 26], most
of which are designed to transform readable code into obfus-
cated code that is hard to understand or reverse engineer.

Two types of software obfuscation techniques are worth
noting due to their close relationship with program steganog-
raphy. One is to make disassembling of machine code diffi-
cult [11, 20, 15] so that only a small portion gets disassem-
bled. Although in some sense program steganography also
tries to hide information from the disassembler, it does it in
such a way that the disassembler believes that it succeeds
in disassembling 100% of the binary code, although the fact
is that there are still instructions hidden.

Another work in software obfuscation technique applies
encryption to some of the instructions so that they are hid-
den without a key. Encryption provides very strong protec-
tion; however, it always leaves suspicion to program analysis
and attracts attention. Program steganography has a very
similar objective, but tries to achieve it without attracting
attention from the analyzer by hiding the existence of the
instructions from static analysis. Program steganography
could be considered a new property in software obfuscation.

266

Self-generating code.
Executable code can be generated on the fly before they

are executed, hiding themselves from static analysis of the
program binary [20]. The difference between self-generating
code and program steganography is subtle, in that self-generating
code comes to live (e.g., code placed on writable and exe-
cutable memory) before they are executed, while instruc-
tions hidden by program steganography never come to live.
Even if program analysis is performed right before, during,
or after the execution, the hidden instruction in program
steganography never “exists” in any noticeable form and no
self-modifying is introduced. This makes program steganog-
raphy suitable in mandatory code signing environments, e.g.,
iOS, where self-generating code is not allowed.

Document, image, audio, and video steganography.
Steganography [2, 23] is a well studied technology widely

applied to documents, images, audio, and video files. Steganog-
raphy refers to hiding information in these files, while the
information to be hidden is usually a foreign object, just like
that in software watermarking. Program steganography, on
the other hand, tries to hide part of itself.

Deniable encryption.
Analyzing the example in Figure 1, one may notice that

the bytes in code segment are interpreted two times in two
different ways, a concept similar to deniable encryption [16,
13]. Deniable encryption provides multiple ways of explain-
ing a single ciphertext so that the creator of the message
could deny having produced it. Inspired by deniable en-
cryption, one way to provide program steganography is to
prepare multiple ways of explaining some binary code, out of
which one is given to the disassembler to make it believe that
the code segment has been 100% disassembled, and others
are used to execute the hidden instructions. Unfortunately,
encryption is not a solution because we do not want to at-
tract attention or to generate new code upon decryption.

Return-oriented programming.
Return-oriented programming (ROP) had been proposed

as an attacking technique to perform arbitrary computation
without injected code [3, 4, 5, 17]. The idea behind ROP is
to disassemble the program under attack at different offsets
and to execute the new instructions to perform arbitrary
computation. This idea matches with the example shown
in Figure 1 in that the hidden instructions could be those
disassembled at a new offset. Our proposed system, Rop-
Steg, actually applies the idea of ROP to achieve program
steganography; see the next section for an overview.

3. OVERVIEW OF RopSteg
Having introduced the concept of program steganography,

we now turn to our novel system RopSteg that provides the
property of program steganography. RopSteg takes as input
the binary instructions of a program P and some sequence
of instructions I from P to be hidden. RopSteg tries to hide
these instructions in a way that they are non-existent until
being executed, i.e., I is hidden from static analysis but vis-
ible in a dynamic run. Note that as discussed in Section 2,
RopSteg does not use encryption or dynamic code genera-
tion, and thus conforms to the W ⊕X and mandatory code
signing security mechanisms.

Figure 2 shows an overview of RopSteg and the four steps
in which the obfuscated program executes. Code block 2
(ending at addr2) denotes I, which is the instruction se-
quence to be hidden. RopSteg modifies Code block 3 (start-
ing at addr1) such that I is embedded in unintended form.
RopSteg then replaces I with an ROP board which performs
the control transfer. When the ROP code embedded at
addr1 finishes execution, control returns to addr2. To com-
bat static analysis of finding values of addr1 and addr2,
RopSteg uses an ROP generator to dynamically calculate
the values of them and to store them in memory.

...

Code block 3

(to contain ROP code)

...

...

Modified block 3 with

unintended ROP code

embedded

...

...

addr1

addr2

...

1
1

2
2

3

4

Original Program

RopSteged Program

addr1

addr2

1. generate addrs and store them in data storage

Data

Storage

Code block 1
(to contain ROP gen)

Modified block 1 with

intended ROP

generator embedded

Code block 2

(to be hidden)

2. load addrs to regs
3. jump to ROP code
4. return/jump back to the next instruction following ROP board

Modified block 2 with

intended ROP board

embeded

Figure 2: An overview of RopSteg

Figure 3 shows an example where I = <neg eax; sbb eax,

eax; ret>2. RopSteg first finds an unintended form of I.
This could be easy when I is short and when P is large, but
it could also be impossible unless we insert additional in-
structions into P, as shown in Figure 3b at addr1. After the
unintended form of I is located, RopSteg replaces the origi-
nal I with an ROP board (see Figure 3c), which loads addr1
into eax, stores addr2 on the stack, and jumps to addr1. In
the end, RopSteg inserts an ROP generator (see Figure 3d)
to dynamically calculate and store addr1 and addr2.

4. DESIGN OF RopSteg
As explained in Section 3, RopSteg performs three main

modifications on P, namely the embedded I in the form of
ROP code, the ROP board to facilitate control transfers, and
the ROP generator to dynamically generate ROP gadgets.
In this section, we present details of these three parts and
outline the binary rewriting to perform the modification.

4.1 Finding and constructing unintended ROP
code

Previous work on ROP has demonstrated that gadgets
and unintended code can be found efficiently and automati-
cally [19, 18]. However, RopSteg uses ROP in a different
setting in which the execution of ROP is legitimate and
planned. RopSteg could modify P to plant seeds for ROP
execution. Therefore, the algorithm to find and construct
unintended ROP code is different from any previous work.

2The return or return-like instruction was inserted at the
end to facility a return after I finishes execution.

267

……
neg eax
sbb eax, eax
Ret
……

a

addr2

……
neg eax
sbb eax, eax
ret
……
cmp edx, C01BD8F7h
...

ret

b

addr1

addr2
To be

hidden I

ROP code

To be
hidden I

……
mov eax, [409200h]
add eax, 30h
mov edx, [409204h]
add edx, 30h
push edx
jmp eax
……
cmp edx, C01BD8F7h
…

ret

c

addr1

addr2

mov eax, 4040h
shl eax, 8
mov ebx, eax
add eax, 79200h
add ebx, 5200h
mov [ebx], eax
sub eax, 7919Ah
mov [ebx+4], eax
……
mov eax, [409200h]
add eax, 30h
mov edx, [409204h]
add edx, 30h
push edx
jmp eax
……
cmp edx, C01BD8F7h
...

ret
d

addr1
(404096h)

addr2
(47D230h)

ROP
board

ROP
board

ROP gen

ROP code

ROP code

Figure 3: Using ROP for program steganography

RopSteg first removes I from P to obtain P−. It then
uses a modified Galileo algorithm G to find a sequence of
candidate instructions C that fully or partially match with
I. For each c ∈ C that does not fully match with I, RopSteg
looks for I′ that is semantically equivalent with I and P′ that
is semantically equivalent with P− such that the resulting c′

fully matches with I′.

4.1.1 A modified Galileo algorithm G

Unlike the original Galileo algorithm presented when return-
oriented programming was first introduced [19], our modi-
fied algorithm G is flexible enough to be able to find partial
matches of the unintended form of I. Refer to an example
shown in Figure 4 c-i where I = <F7 D8 1B C0 C3>. Upon
searching for I in P−, we realized that no exact match ex-
ists, and therefore G output a partial match c = <EB 1B>

(a one-byte match). G then inserts three instructions into
P− to form P′ such that I′ = <F7 D8 B1 EB 1B C0 C3> is
semantically equivalent with I and has an exact match in P′.

……

25F7D88D4A and eax,0x4A8DD8F7

3D1BC0C300 cmp eax,0xC3C01B
……

PROGRAM P-
PROGRAM P’

c-i

insert

3 insts

between E9 and D8

cannot insert

c-ii

insert

1 insts

c-iii

…...

EB1B
……

……

25F7D88D4A
……

……

E9D8FDFFFF
……

Fail

……

3D23F7D8B1 cmp eax,23F7D81B
EB1B jmp short18
C0C3C2 rol bl,0x02

C0CBC2 rol bl,0x02
……

Figure 4: Partial matches found by G

It may sound simple, but G is much more complicated
than a substring search to maximize matches. For example,
G might consider a partial match c = <E9 D8 FD FF FF>.
However, no matter how we insert additional instructions
into P− to produce a semantically equivalent P′, the byte
immediately proceeding the matching byte D8 can never
change, which means that the resulting c′ will always have
E9 proceeding the matching byte D8. This happens because
the matching byte D8 appears in the middle of an instruction
instead of locating at the beginning as in c-i in Figure 4.

Note that here we only insert instructions when trans-
forming from P− to P′ and from I to I′ (additions). G rules
out a candidate match c containing a matching byte b if

• !isLast(b,P−) ∩ !isLast(b, I) ∩ �(b,P−) 6= �(b, I), and;

• !isFirst(b,P−) ∩ !isFirst(b, I) ∩ �(b,P−) 6= �(b, I).

where isFirst(b,X) and isLast(b,X) denote that b is the first
or the last byte in the corresponding instruction in context
X, respectively; and �(b,X) and �(b,X) denote the byte
proceeding or following b in context X, respectively. In Fig-
ure 4, c-iii is filtered out because we cannot insert bytes
between E9 and D8. After finding the valid candidates, Rop-
Steg arranges them in a sequence C according to the follow-
ing considerations (in order of importance).

1. number of instructions c covers;

2. number of matching bytes c covers;

3. number of matching bytes that satisfy isFirst(b,P−);

4. number of matching bytes that satisfy !isFirst(b,P−) ∩
!isLast(b,P−);

5. number of matching bytes that satisfy isLast(b,P−).

It it easier to construct I′ when b is the first byte in an
instruction in P−, and that is why the last three counts are
in the order in which they are presented above. We explain
this in more detail in the next subsection. In the examples
presented in Figure 4, c-ii ranks higher than c-i because c-
ii matches one more byte than c-i. With all the candidate
matches found and arranged in a ranking sequence, Rop-
Steg proceeds to construct I′ and P′ such that there exists a
corresponding c′ that fully matches I′.

4.1.2 Constructing equivalent versions of I by insert-
ing ineffective instructions

RopSteg constructs semantically equivalent P′ and I′ by
inserting ineffective instructions, which have no effect in the
semantics of the corresponding execution context.

268

Context

Insensitive
Context Sensitive

Instructions Instructions Context

mov edi, edi add eax,????

sub ebx,????

CF

or eax, eax cmp ebx,???? CF/ZF/SF/OF/AF/PF

push ebp; pop ebp test eax,???? CF/ZF/SF/OF/AF/PF

xchg eax, ebx;

xchg eax, ebx

mov eax,???? eax not in use

Table 1: Two types of ineffective instructions

Ineffective instructions.
RopSteg uses two types of ineffective instructions, context

insensitive ones and context sensitive ones. Table 1 shows
some examples of ineffective instructions RopSteg uses (where
? denotes a “don’t care” byte).

Ineffective instructions that are context insensitive never
change anything regardless of the execution context, e.g.,
<mov eax,eax>. On the other hand, context sensitive ones
only possess the ineffectiveness property in some particular
execution context, e.g., <add eax,????; sub eax,????> is
ineffective when flag CF is not in use.

The use of ineffective instructions is a well-studied area,
and they have been widely used in previous research work
to produce polymorphic and metamorphic malware [21, 10,
1]. RopSteg takes advantage of the existing work in this
area and constructs a database of ineffective instructions,
which currently contains 230 entries (still evolving though).
It is our future work to explore other types of ineffective
instructions, and to experiment inserting more context sen-
sitive ones to P−. Expanding the search space of ineffective
instruction will result in higher success rates of RopSteg in
providing program steganography.

Inserting ineffective instructions into P− .
Inserting ineffective instructions into P− is one of the most

complicated tasks in RopSteg. Here we first discuss the sen-
sitive context check, and then explain the different types of
instructions to be inserted.

RopSteg performs the context sensitive analysis with the
classical def-use chain analysis [24]. First, we delineate the
context from the insertion point to the end of the function
(taking direct jumps into consideration). If there is any
use of the resources (e.g., the flags) or an indirect jump
instruction before a re-def of the resources, we consider the
resources is sensitive in the context; otherwise insensitive.

To explain the different types of ineffective instructions to
be inserted, we consider three cases shown in Figure 5 where
I = F7 D8 1B C0 C3, i.e., <neg eax; sbb eax, eax; ret>.

The first case is when a matched byte is the first in an in-
struction in P− before which an unmatched byte exists, i.e.,
�(b,P−) 6= �(b, I) ∩ isFirst(b,P−). To increase the match-
ing between P− and I, we insert an instruction right before
the matched one in P− where the last byte of the instruc-
tion inserted is �(b, I). As shown in case 1 in Figure 5, C3 is
the original matching byte. RopSteg inserts an instruction
ending with <F7 D8 1B> to increase matching with I.

In this first case, we always manage to find such an in-
struction from our database of ineffective instructions. The
catch here is that our requirement on the instruction is at
its last (few) byte(s), and there exists ineffective instructions

……
C3

……

……
74 1B

……

……
A3 F7 D8 01 01

……

PROGRAM P’
Case 1: preinsert
3D F7 D8 1B C0
cmp
eax,c01bd8f7h

Case 2:postinsert
C0 C3 02
C0 CB 02
rol bl,2;ror bl,2 Case 3: midinsert

C0 C3 1B
C0 CB 1B
rol bl,1bh; ror bl,1bh

Figure 5: Locations of the matching/unmatching
bytes in c

where the last few bytes are “don’t cares”. With our def-use
chain analysis, RopSteg selects (context insensitive or sen-
sitive) ineffective instructions, e.g., mov ebx, ????, where
ebx is not in use in the context. Note that this case also
corresponds to the third criteria when ordering the candi-
date matches (see Section 4.1.1).

The second case is an exact opposite, i.e., when a matched
byte is the last byte in an instruction in P−, after which an
unmatched byte exists (�(b,P−) 6= �(b, I) ∩ isLast(b,P−)).
In this case, RopSteg tries to insert an ineffective instruction
right after the matched instruction; however, such an ineffec-
tive instruction is the most difficult to find because its first
byte is given as �(b, I) (e.g., C0 in case 2 in Figure 5). The
database of ineffective instructions we have right now does
not contain one for every possible initial byte, and therefore
the success rate in this case is about 36% (our ineffective
instruction database covers about 36% opcode). Note that
this case corresponds to the fifth criteria when ordering the
candidate matches (see Section 4.1.1).

The third case deals with a more general scenario where
a matched byte appears in the middle of an instruction
(�(b,P−) 6= �(b, I) ∩ !isFirst(b,P−) ∩ !isLast(b,P−)). The
successful rate of this case varies a lot depending on the ac-
tual scenario, and it usually takes the longest time to search
for an ineffective instruction. That is why we give it the sec-
ond lowest ranking as discussed in Section 4.1.1. In case 3
of Figure 5, we could not find a single ineffective instruction
that meets all the requirements.

We also exercise care during the insertion process to mini-
mize suspicions for steganalysis. For example, we only insert
ineffective instructions that are commonly used in normal
programs (e.g., jecxz is not used), we insert additional in-
structions to make instruction sequences look normal (e.g.,
instead of having <push ebp; pop ebp>, we change it to
<push ebp; pop eax; mov ebp, eax>). The insertions usu-
ally result in additional unmatched bytes in I and c. We
perform additional check to make sure the newly inserted
unmatched bytes constitute an ineffective instruction in I.

4.2 ROP Board
After constructing I′ and its unintended form, the next

step is to transfer control to the unintended gadgets. As
shown in Figure 3, ROP board performs this assuming addr1

(address of the unintended code) and addr2 (address of the
instruction after the original I) are already stored in memory
(what the ROP generator is supposed to do, see Section 4.3).
To make it difficult for static analysis to detect the ROP
board, RopSteg has multiple ways of accessing data storage
in order to load them into registers. For example, the ad-

269

dress of memory storage is indirectly calculated rather than
an immediate as shown in Figure 3. After loading the ad-
dresses into registers, ROP board makes an indirect jump
to addr1. addr2 might be loaded onto the stack if the ROP
code ends with a ret instead of an indirect jump.

4.3 ROP Generator
With I′ constructed and ROP board connecting P′ with

I′, RopSteg manages to hide I in unintended form. How-
ever, addr1 and addr2 could raise suspicion in steganalysis;
therefore, RopSteg introduces ROP generator to make such
analysis difficult. As shown in Figure 3, ROP generator dy-
namically calculates the address of the ROP code and the
address to which ROP code returns, and stores them in the
data segment. In the ASLR environment, the address of
data segment is randomized. RopSteg adopts a common
way, i.e., call-pop instruction sequence, used in position-
independent executable (PIE) to load the value of the cur-
rent eip into eax. By adding the offset to eax, we can get
the randomized address of the data segment.

4.4 Binary Rewriting
After successfully constructing I and connecting I′ and its

original context, RopSteg constructs the new binary via bi-
nary rewriting. Although we envision that RopSteg could be
integrated with a compiler to produce the new executable
from source code directly, for the purpose of finer-grained
performance evaluation, we implemented RopSteg as a stan-
dalone component using binary rewriting in the current ver-
sion and leave the integration with a compiler as future work.

As shown in Figure 3, existing code section needs to be
expanded to make room for new instructions. Operands of
jump and call instructions, direct or relative, need to be re-
located. When the expansion goes beyond the original code
section, other sections after it have to be moved backward.

If the program is ASLR-enabled with relocation tables,
the binary rewriting would be much easier as the positions
of the code blocks could be changed by simply adjusting the
addresses in direct call/jump instructions and modifying the
entries in the relocation table. Similarly, in a PIE-enabled
program, we can simply identify the program counter related
instructions and adjust the relative addresses in them to
address the offset problem. The binary rewriting for these
two scenarios is easy and we will not elaborate it here. When
the program strips the relocation information or disables
PIE, further adjustments are required to the following code,
which is challenging.

In order to handle such case, accurate disassembling would
be the most important part. We use IDA Pro (together with
NDISASM3) to obtain function boundary information and
the set of potential targets of branch instructions. And then
we use binary sled, inspired by binary stirring [25], to address
the offset problem of binary rewriting. The basic idea in
binary stirring is to put the extended blocks in a new .text

segment. When control is transferred to the original code
(with lookup table), it redirects control to the corresponding
code in the new .text segment.

In order not to raise suspicion for steganalysis, we perform
three additional steps. First, our inserted code block could
be put either in the old .text or the new one. Second,
RopSteg gathers the “innocent blocks” that are relatively
large (e.g., greater than 100 bytes) but don’t contain any

3http://www.nasm.us/doc/nasmdoca.html

jump instructions (the locality of jump instruction might
raise suspicions) and put them in the new .text segment.
After that, the original innocent blocks in the old .text can
be used as a container to put our inserted code. Lastly, the
indirect binary sled makes use of indirect jump/call instruc-
tions to transfer control to the corresponding block in the
new .text segment. In this way, every code block could po-
tentially be the block that contains our inserted code, and
steganalysis is difficult.

5. EXPERIMENTS AND EVALUATION
In this section, we evaluate the effectiveness of RopSteg in

providing program steganography in a few scenarios, one in
hiding a secret algorithm, one in hiding some malicious code,
and others in hiding random instructions. In addition, we
analyze the overhead of the resulting binary in both program
size and execution time.

Our experiments were performed with Microsoft Windows 7
ultimate on a desktop computer with AMD Phenom II X6
1090T CPU at 3.21GHz and 4GB of RAM. We implement
RopSteg in C/C++ with around 7000 LOC.

5.1 Experiments

5.1.1 Protecting a secret algorithm
In this experiment, we apply RopSteg to hide the quick-

sort algorithm in searchcand.exe (a program we developed
as part of RopSteg to search for unintended gadgets).

The original quick sort in searchcand.exe corresponds
to 90 instructions or 266 bytes. We choose five critical in-
struction sequences (core variable calculation, control flow
prediction, function calls, etc.) each containing one to three
instructions for hiding, see Figure 6.

5.1.2 Hiding malicious code
Another use of RopSteg could be to hide malicious code.

We select trojan.dll (the main malicious module of mal-
ware Gh0st) as the example, whose functionality includes
FileManagement, ScreenMonitor, KeyMonitor, RemoteShell,
and SystemManager, and use RopSteg to hide virus signa-
tures in it. The signature of trojan.dll was located with
MyCCL (a tool used to identify malicious feature) and is
shown in Table 24.

Location Instructions Machine code
0x000000DB mov eax,[ebp-118h]; 8B85E8FEFFFF

push eax 50
0x00000CA4 mov edx,[ebp+8]; 8B5508

call [edx] FF12
0x00000800 and [esi+0Dh], 0EEh; 80660DEE
0x00006980 mov edx,[ebp+8]; 8B5508

mov eax,[ecx*4+edx+4]; 8B448A04
add eax, 1 83C010

Table 2: Signature of trojan

5.1.3 Hiding random instruction sequences
We pick six more common x86 Windows programs (see

Table 3) and randomly select 100 different instruction se-
quences in each of the eight programs to hide. The instruc-

4Here we focus on the signature in code section only and
ignore that in the data segment.

270

O
ri

g
in

a
l

co
d

e
R

O
P

 c
o

d
e

//int pivot = arr[(left + right) / 2];

sar eax,1

mov edx,dword ptr [ebp+8]

mov eax,dword ptr [edx+eax*4]

(D1F8 8B5508 8B0482)

//while (i <= j)

cmp ecx,dword ptr [ebp-8]

jg quickSort+0AAh

(3B4DF8 7F6A)

//swap(arr[i], arr[j]);

call swap

(E81DFFFFFF)

//quickSort(arr, left, j);

call quickSort

(E83DFFFFFF)

//quickSort(arr, i, right);

call quickSort

(E821FFFFFF)

cmp eax,558BF8D1h

or byte ptr ds:[ebx+C38204h],cl

(3DD1F88B55 088B0482C300)

add eax,B0F84D3Bh

cmp eax, E9C3107Fh

(053B4DF8B0 3D7F10C3E9)

cmp eax, FFFE10E9h

jmp dword [eax*4+443C78h]

(3DE910FEFF

FF2485783C4400)

cmp eax, FFFD02E9h

call dword [ebp+8]

(3DE902FDFF FF5508)

a b c d & e

Figure 6: RopSteg on quick-sort

tion sequences ranges from 2 to 13 bytes in length and cover
different types of instructions including load/store, arith-
metic, conditional branch, function call, system call, etc.
Results are shown in 5.2.

5.2 Results and evaluation
All instruction sequences were successfully hidden by Rop-

Steg. We use a linear sweep disassembler, objdump (Win-
dows version), and a recursive disassembler, IDA pro, to
disassemble the obfuscated programs. Neither could locate
any of the hidden instruction sequences.

For the experiment of Section 5.1.2, we use Kaspersky,
Macfee, and 360 Anti-Virus to scan the resulting binaries.
Results show that none of them could identify any of the
signatures. This also confirms our intuition that ROP gen-
erator and ROP board use very common instructions (e.g.,
load, store, and arithmetic operations) which, at least, does
not raise suspicions on existing anti-virus engines.

In the following sections, we show more detailed results
and our analysis on the results of these experiments.

5.2.1 Short I
One interesting finding is that the shorter I is, the more

likely RopSteg succeeds in hiding it. This is intuitive as
the shorter I is, the more likely that G finds relatively long
candidate matches, making it easier to find P′ and I′.

Figure 6 shows the five instruction sequences from search-

cand.exe that were successfully hidden and their correspond-
ing ROP code in unintended form (bold face). We also show
the corresponding machine code in square brackets. Instruc-
tions underlined are ineffective instructions RopSteg inserts.

It shows that longer I (cases A and B) results in fewer
matching candidates (less than 100 for case A and zero for
case B), while short ones (cases C, D, and E) result in more
than 500 matching candidates. Therefore, a useful strat-
egy RopSteg uses is to divide I into short sequences (usually
fewer than 5 bytes long) that only have one or two instruc-
tions to obtain high succeed rate (100% in our experiments).

5.2.2 Size and runtime overhead
The insertion of ROP generator, ROP board, and ROP

code are the main contributors to the increase in program
size, which usually add about 30 bytes, 25 bytes, and fewer
than 10 bytes, respectively. Table 3 presents the increase
in size of the program when 100 instruction sequences are
hidden (without reusing the ROP generator). We find that
the increase in bytes remains more or less a constant, which
translates to a small percentage for relatively large programs
(except one in our experiments).

Program Original size Size increment
(bytes) (bytes) (percentage)

AcroRd32.exe 806941 5613 0.70%
iexplore.exe 13129 6410 48.80 %

java.exe 93240 5836 6.26%
calc.exe 75440 5890 7.80%

ftpsvc2.dll 100475 5717 5.69%
trojan.dll 100864 5712 5.66%

searchcand.exe 1335472 5507 0.41%
shell32.dll 2075888 4887 0.24%

Table 3: Size increment

We monitor the overhead of specific operations performed
by trojan.dll to get an idea of the runtime overhead. Ta-
ble 4 shows the time to execute five different operations (av-
erage taken on 100 runs) before and after applying RopSteg.
We notice that the runtime overhead resulted from our mod-
ification to the Trojan is small.

Operation Original (ms) Modified (ms)
FileManagement 5313 5344
ScreenMonitor 62 62
KeyMonitor 31 40
RemoteShell 281 319

SystemManager 78 94

Table 4: Runtime overhead

6. CONCLUSION AND LIMITATION
In this paper, we design and implement RopSteg to make

program steganography using return-oriented programming.
We show that RopSteg successfully hide program instruc-
tions such that they are hidden from static analysis. Here
we discuss the potential limitations of RopSteg.

Dynamic analysis.
As discussed in Section 1, program steganography does

not intend to hide instructions from dynamic analysis. The
hidden instructions will eventually get executed, and dy-
namic analysis could reveal their existence. There have been
proposed methods [22, 20] to resist dynamic analysis, and
we consider combining them with RopSteg a potential future
direction of our research.

Compatibility with ROP defenses.
In the past several years, many ROP defense and detection

techniques have been proposed. As RopSteg makes use of
ROP to achieve steganography, it is incompatible with ROP

271

defense and could be detected as malicious at run time. We
argue that this is mainly due to the fact that ROP has always
been considered in the “dark side” in the literature, which
is no longer true with the introduction of RopSteg. Future
ROP defenses would then need to carefully differentiate be-
tween ROP in attack and ROP in program steganography.

7. REFERENCES
[1] K. G. Anagnostakis and E. P. Markatos. An empirical

study of real-world polymorphic code injection
attacks. In In USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2009.

[2] D. C. B. Anckaert, B. De Sutter and K. D. Bosschere.
Steganography for executables and code
transformation signatures. Lecture Notes in Computer
Science, pages 425–439, 2005.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: generalizing
return-oriented programming to risc. In Proceedings of
the 15th ACM conference on Computer and
communications security (CCS 2008), Alexandria, VA,
USA, Oct.27-31, 2008.

[4] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In Proceedings of the
17th ACM conference on Computer and
Communications Security (CCS 2010), Chicago, IL,
USA, Oct 4-8, 2010.

[5] S. Checkoway, A. J. Feldman, B. Kantor, J. A.
Halderman, E. W. Felten, and H. Shacham. Can dres
provide long-lasting security the case of
return-oriented programming and the avc advantage.
In Proceedings of the 2009 Electronic Voting
Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE09), Montreal, Canada, Aug.
10-11, 2009.

[6] C. T. Christian Collberg. Software watermarking:
models and dynamic embeddings. In Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 99),
San Antonio, Texas, USA, Jan. 20-22, 1999.

[7] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. 1997.

[8] C. S. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation - tools for software
protection. IEEE Transactions on Software
Engineering, 28:735–746, 2002.

[9] P. COUSOT and R. COUSOT. An abstract
interpretation-based framework for software
watermarking. In Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL 2004), 2004.

[10] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. S. V.
Underduk. Polymorphic shellcode engine using
spectrum analysis. Phrack magazine, 9(61), Aug.
2003. http:
//www.phrack.org/issues.html?issue=61&id=9.

[11] C. Linn and S. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
Proceedings of 10ththe ACM Conference on Computer
and Communications Security (CCS 2003),
Washington, DC, USA, Oct. 27-30,2003.

[12] K. Lu, D. Zou, W. Wen, and D. Gao. Packed,
printable, and polymorphic return-oriented
programming. In Proceedings of the 14th International
Symposium on Recent Advances in Intrusion Detection
(RAID 2011), Menlo Park, California, USA,
September 2011.

[13] M. K. M. Klonowski, P. Kubiak. Practical deniable
encryption. LNCS, Springer, 4910:599–609, 2008.

[14] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo,
and R.-P. Weinmann. iOS Hacker’s Handbook. Wiley,
May 8, 2012.

[15] I. V. Popov, S. K. Debray, and G. R. Andrews. bi
obfuscation using signals. In Proceedings of the 16th
USENIX Security Symposium (Security 2007), Boston,
MA, USA, Aug 6-10,2007.

[16] M. N. R. Canetti, C. Dwork and R. Ostrovsky.
Deniable encryption. In Proceedings of the 17th Annual
International Cryptology Conference (CRYPTO 1997),
Santa Barbara, California, USA, August, 1997.

[17] R. Roemer, E. Buchanan, H. Shacham, and
S. Savagm. Return-oriented programming:
Systems,languages, and applications, 2009.

[18] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q:
exploit hardening made easy. In Proceedings of the
20th USENIX conference on Security (Security’11),
San Francisco, CA, USA, August, 2011.

[19] H. Shacham. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS 2007),
Alexandria, VA, USA, Oct. 29-Nov. 2,2007.

[20] M. Sharif, A. Lanzi, and W. Lee. Impeding malware
analysis using conditional code obfuscation. In
Proceedings of the 16th Network and Distributed
System Security Symposium (NDSS 2008), San Diego,
CA, USA, Feb. 8-11, 2008.

[21] F. Skulason. 1260-the variable virus. 1990. Virus
Bulletin.

[22] C. Song, P. Royal, and W. Lee. Impeding automated
malware analysis with environment-sensitive malware.
In Proceedings of The 7th USENIX conference on Hot
topics in Security (HotSec 2012), Bellevue, WA, USA,
August 2012.

[23] G. R. Tadiparthi and T. Sueyoshi. A novel
steganographic algorithm using animations as cover.
Information Technology and Systems in the
Internet-Era, 45:937–948, Nov, 2008.

[24] F. Tip. A survey of program slicing techniques.
JOURNAL OF PROGRAMMING LANGUAGES,
3:121–189, 1995.

[25] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: self-randomizing instruction addresses
of legacy x86 binary code. In Proceedings of the 2012
ACM conference on Computer and communications
security (CCS 2012), Raleigh, NC, USA, Oct, 2012.

[26] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang.
Mimimorphism: A new approach to binary code
obfuscation. In Proceedings of the 17th ACM
conference on Computer and Communications Security
(CCS 2010), Chicago, IL, USA, Oct 4-8, 2010.

272

