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ABSTRACT
We propose a novel dynamic software watermarking design
based on Return-Oriented Programming (ROP). Our design
formats watermarking code into well-crafted data arrange-
ments that look like normal data but could be triggered to
execute. Once triggered, the pre-constructed ROP execution
will recover the hidden watermark message. The proposed
ROP-based watermarking technique is more stealthy and re-
silient over existing techniques since the watermarking code
is allocated dynamically into data region and therefore out
of reach of attacks based on code analysis. Evaluations show
that our design not only achieves satisfying stealth and re-
silience, but also causes significantly lower overhead to the
watermarked program.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Soft-
ware Protection – Proprietary rights

General Terms
Security

Keywords
Software watermarking, return-oriented programming, re-
verse engineering, code obfuscation

1. INTRODUCTION
Software theft and pirating have always been important

concerns in software industry. In fighting against such in-
tellectual property violations, software watermarking is con-
sidered a valuable tool. Like media watermarking, software
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watermarking embeds a secret message into a subject pro-
gram which can be extracted to identify the copyright owner
or authentic user of the program.

Existing software watermarking designs can be divided
into static and dynamic watermarking [10]. The former
embeds the watermark message directly in program’s text,
while the later hides it in program’s runtime states or dy-
namic data. Since dynamic watermarking retrieves the hid-
den message by running along a specific path of the water-
marked program and examining its specific behavior, it is
usually considered a more reliable and secure solution [9].

Nevertheless, despite the progress made on dynamic wa-
termarking, there are well-documented limitations with ex-
isting techniques [9]. First, existing solutions of dynamic
watermarking introduce special data structures and instruc-
tion patterns which could be targeted by attackers to locate
the hidden watermark. Second, code inserted by dynamic
watermarking is usually rather independent from the other
parts of the program, and thus can be suspicious. Finally,
because previous designs, e.g., [8,21,23], use an external ex-
tractor to recover the watermark from program’s execution
recordings, sometimes the watermarked program needs to
leave some information for the extractor to find the hidden
watermark, which might also be exploited by attackers in
undoing it. Existing research suggests that these problems
be solved by integrating other protection techniques [23];
yet doing so also significantly decreases the efficiency of the
watermarking technique [9].

In general, dynamic watermarking is to give the program
a new execution path (which presents the watermark). How-
ever, with regular programming techniques, it’s nearly im-
possible to also conceal the existence of this new execu-
tion path. In this paper, we present a innovative solution
to this difficulty – a novel dynamic watermarking design
based on Return-Oriented Programming (henceforth ROP),
a well-known software exploit technique [4,14,16,26,27]. We
show that, although initially proposed for malicious pur-
poses, ROP can be applied in benign uses like software wa-
termarking and works surprisingly well.

Our approach “assembles” the watermarking code out of a
group of small, special instruction pieces picked from exist-
ing code, resulting an unexpected execution path that can
only be chained with ROP. We also modify the subject pro-
gram so that it prepares all other resources needed to chain



this watermarking path on-the-fly in its heap region. Only
when triggered by the secret input will the program transfer
its control to the hidden ROP path, which then extracts the
embedded watermark. Our method ensures that the water-
marked program does not have an explicit code stream that
belongs exclusively to watermarking, so that when our wa-
termarking module lurks it functionally doesn’t exist, pre-
venting it from being spotted by software analyses.

To our best knowledge, our approach is the first dynamic
watermarking technique that performs execution of water-
marking using solely instructions from other existing code
modules. This not only keeps the watermarking code out of
the scope of analysis tools, but also helps it survive various
distortive attacks. Moreover, since ROP is initially devel-
oped to defeat protections against code injection exploits,
our approach also involves no suspicious behavior like viola-
tion of W⊕X, DEP, or code signing. We present evaluations
of program stealth and resilience in Section 4. Results show
that our approach is able to make watermarking semantics
untraceable by powerful static analysis tools, thus succeeds
in concealing watermarking behaviors.

Another benefit of arranging the watermarking module in
the form of ROP is better integration with the original pro-
gram without creating suspicious data structures as in most
existing work [11,21]. We show that components of the wa-
termark, which are inserted as ROP resources, can be spread
out and blended with the program’s other runtime data more
easily and flexibly, minimizing suspicion from analyses that
aim to locate them. Our evaluation demonstrates that our
design achieves satisfying static stealth in merging the wa-
termark into subject programs.

Last but not the least, instead of using an external ex-
tractor, our approach plants an ROP trigger inside the wa-
termarked program to activate the ROP execution and to
extract the watermark. This avoids leaking hints that could
assist watermark recovering to third parties as in existing
techniques [8, 11,20,21].

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the background as well as existing re-
search on aspects related to our design. The ideology and
implementation of ROP-based watermarking is given in Sec-
tion 3. Section 4 presents evaluations on the proposed so-
lution along with comparisons with previous watermarking
methods. We discuss applicability and compatibility issues
of applying ROP in watermarking in Section 5. Section 6
concludes the paper.

2. RELATED WORK

2.1 Software watermarking
The goal of software watermarking is to embed an iden-

tifying message into a piece of software which could later
be extracted to recognize the ownership or certain authentic
information of the watermarked software.

Some schemes statically embed watermark into program’s
text by, e.g., relocating registers or modifying program’s
abstract semantics [12, 18]. Others focus on dynamic ap-
proaches in which the watermark is embedded in program’s
runtime behavior [8, 11,19–21,23,25,31].

Previous work on dynamic watermarking falls into two
categories. Graph-based watermarking, first introduced by
Collberg et al. [10], is one of the most well-understood soft-
ware watermarking method [11, 23, 31, 34]. These schemes

encode watermark messages into heap-allocated graph struc-
tures. Watermark extraction is done by examining graph
structures built by the program with external watermark
extraction routines and recognizing the graph that repre-
sents the watermark message. Another category of dynamic
watermarking attempts to encode the watermark in special
states of the program’s control flow and extract the water-
mark by analyzing specific execution traces of the program,
such as multi-thread behavior [21], conditional branching
[8, 20], or value of opaque predicates [19].

A common characteristic of the above methods is that
they require special components added into the program
that serve solely for watermarking (e.g., data structures rep-
resenting graph nodes [11,34], special thread components [21]).
Many of them leave distinguishable features on regular run-
ning since the watermark extraction relies on external ob-
servation/examination to the program. For example, water-
marking schemes based on thread behavior or dynamic exe-
cution path require locating and monitoring special thread
components or certain branch instructions externally [9].

2.2 Return-oriented programming
Initially proposed by Shacham [27], return-oriented pro-

gramming has become a major step in the advance of ma-
licious code. While protection mechanisms like W⊕X and
DEP are used by more and more operation systems to fight
against code injection attacks, ROP provides a new way
of exploitiation for arbitrary computation and bypasses the
above protections since it does not inject any new code.

ROP was started on x86 architecture [5, 26] and later
extended to many other platforms, e.g., the SPARC [4],
ARM [16], etc. ROP attack is now not only fully automated,
but able to be initiated during the executing of target pro-
gram [15,29]. Furthermore, ROP is also proven to be useful
in compromising iOS applications [32] where code injection
is not allowed.

2.3 Program steganography with ROP
Though introduced as an attacking technique, recently the

argument on whether ROP can be used in a benign way has
been brought to researchers’ attention. In particular, Rop-
Steg [17] was proposed for code protection that attempts to
hide selected code portion of a program by executing their
“unintended matches” located elsewhere. In the sense of hid-
ing certain code blocks of a piece of software, RopSteg and
our ROP-based software watermarking share similar pur-
poses. However, RopSteg’s design assumes a scenario where
tampering with program code is not of the best interest of
the attackers, which is certainly not true in software water-
marking since removing a specific part of the program (that
for watermarking) is exactly the purpose of attacks. When
used directly for software watermarking, RopSteg has the
following drawbacks.

First, RopSteg replaces the protected code portion with
ROP generator and ROP board for jumping into and re-
turning from the unintended matches. In watermarking this
means that RopSteg still introduces new code of special pat-
tern that only executes in watermark extraction. This could
make the embedded watermark even easier to be located.

Second, RopSteg does not withstand distortive attacks in
the sense that any simple program transformation applied
to the RopStegged program would most likely destroy the
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Figure 1: Overview of ROP-based watermarking

unintended matches of the hidden instructions. This makes
it a fragile solution for watermark embedding.

3. ROP-BASED DYNAMIC SOFTWARE
WATERMARKING

3.1 Threat model and assumptions
A dynamic watermarking design consists of a watermark

embedder and a watermark recognition protocol. The wa-
termark embedder, denoted as E(·, ·, ·), takes as input the
subject program P , a watermark object ω, and an input
setting δ ∈ ∆ (aka the “secret input”), and outputs the wa-
termarked program P ′ = E(P, ω, δ). The goal is to make
P ′(δ) = P (δ) + Ω at semantic level, where Ω is the exe-
cutable form of ω, while preserving the semantics for other
inputs, i.e., P ′(i) = P (i) ∀i 6= δ. The watermark recogni-
tion protocol R(·) extracts ω from P ′ when it runs with the
secret input, i.e. ω = R(P ′(δ)).

In general, an adversary may launch the following attacks
on P ′:

Additive attack which turns P ′ into P ′′ in order to in-
sert a bogus watermark υ, such that for an adversary-
specified σ ∈ ∆1, R(P ′′(σ)) = υ.

Subtractive/distortive attack which turns P ′ into P ′′

so that the authentic watermark ω is removed or com-
promised, i.e. R(P ′′(δ)) 6= ω.

The adversary is assumed to possess full control of P ′.
He could modify it using any semantic-preserving transfor-
mations, and observe and analyze its behavior both stat-
ically and dynamically. Nonetheless, the adversary is not
al-mighty either. In practice, it is considered to be blind on
a number of key information [10], namely:

1. Whether P ′ has been watermarked;

2. The original program P ;

3. The secret input δ.

Our ROP-based watermarking inherits the above assump-
tions and considers the same general attack model. Further-
more, we extend the concept of the recognition protocol R to

1Whether σ satisfies σ 6= δ is not important here.

be more than just an algorithm or software analysis toolkit,
but to also include the entire system environment setting in
which the program is to be executed. The reason of such a
definition will be explained in Section 5.

3.2 Overview
The reason of ROP being so popular in malicious uses is

that it formats its “code” in a form that is not to be run
directly, but to help creating unexpected executions out of a
program using its own instructions. Due to this special way
of organizing executables, ROP also makes it very difficult
for analysts to detect or understand the new “code” stream
it creates. In other words, the execution path introduced by
ROP is functionally “invisible”. This could very well be a
solution to building a dynamic software watermarking that,
unlike existing ones, achieves minimum visibility while main-
taining strong resilience.

It is important to first understand that an ROP “code”
consists of 2 portions:

1. small pieces of instructions called “gadgets” that end
with return or indirect call/jump, which are located
somewhere in the existing executables; and

2. a carefully crafted bit string called the “payload” con-
sisting of addresses of these gadgets as well as other
variables they need in the execution.

ROP works by executing the gadgets with the payload
strings, which means that for the new execution path it
creates, nothing more than some extra data needs to be
built. Therefore, the idea of ROP-based watermarking is
to construct the actual watermarking code with ROP gad-
gets, while introducing extra code that builds a payload to
control the gadgets. As briefly demonstrated in Figure 1,
program modified in this way will transfer control to the se-
lected gadgets when given the secret input2 which takes over
and presents the hidden watermark, and then return back
to the program’s normal routine. Since building ROP pay-
load does not change the way in which the original program
works, the extra code added by this method can always be
executed during regular use of program instead of being kept
idle and raising suspicions.

2These gadgets may be intended code pieces of the program
or unintended instruction sequences in the middle of some
code session (in case of CISC instruction set).



To give an example, suppose that we are to embed the
watermark “007” into the target program by putting it into
a 4-byte character string S (see Figure 2). In this example,
payload construction involves preparing a sequence control-
ling the following gadgets and variables on the heap (shaded
area in Figure 2):

string S

program routine

watermarking trigger

program routine

<pop ebx; ret>

3616816

initiating stub

<mov [ebx] eax; ret>

offset: S

0x30

0x30

0x37

0x00

control 
transfer

data 
updating

<pop eax; ret>

terminating stub

Figure 2: A simple example of ROP-based watermarking

• An initiating stub to store the current stack pointer
and the address to return to, and to modify the stack
pointer to point to the watermarking code;

• The watermarking code consisting of three gadgets
<pop eax; ret>, <pop ebx; ret>, and
<mov [ebx], eax; ret> which complete a mem-
ory writing chain;

• A constant 3616816 (corresponding to the ASCII code
of string “007”) and the address of string S which will
be used by the memory writing gadgets;

• A terminating stub that recovers the original stack lay-
out and goes back to regular program execution.

When the watermark extraction procedure is triggered,
the embedded ROP first loads 3616816 and the address of S
into register eax and ebx, respectively, then updates S to
the watermark message “007”3.

Typically, executing a well-designed ROP relies on inject-
ing the payload on the stack in advance of turning to the
gadgets, to ensure not only that the gadgets are given all
operands they required but also that the indirect control in-
structions correctly find their successors so that gadgets are
executed in the exact sequence as planned. Therefore, the
way to construct and plant payload is a critical link of ROP.
In malicious exploits, this is usually done by inputting exter-
nal data to the program via some vulnerable routines, and
the injected payload corrupts the original stack environment
without concerning potential consequences (e.g., segmenta-
tion fault after the ROP execution). However, in case of
software watermarking, the following issues have to be con-
sidered:

1. since the embedded ROP is for presenting a water-
mark, the payload has to be built all by the program
itself;

3Note that it is only for simplicity that the watermark mes-
sage is directly written in the ROP payload. In real im-
plementation, this can be easily avoided with more complex
gadget combinations.

2. code used in constructing the payload should not ap-
pear to be suspicious when compared to the original
program;

3. after retrieving the watermark, ROP should return
control to normal execution without sabotaging the
program’s normal execution.

Besides these, we also need to bypass protection mecha-
nisms, e.g., Address Space Layout Randomization (ASLR).
Clearly the old-fashioned way of launching an ROP for ma-
licious attack is inappropriate in ROP-based watermarking.
Instead, we need to propose a customized technique for our
purposes. In the following subsections, we present each step
of our scheme in more detail.

3.3 Locating watermarking gadgets
As mentioned in Section 3.2, ROP execution is constructed

on the basis of instruction pieces called gadgets located from
existing code regions, thus our first step is to find gadgets
useful in watermark generation. However, using instructions
inside the program itself is susceptible to simple program
transformation attacks (as discussed in Section 2.3).

To provide resistance to the transformation attacks, we
make use of the shared libraries (e.g. libc.so for UNIX
and kernel32.dll for Windows). Such libraries are linked
to almost any programs and cannot be easily modified. There-
fore, we choose to search for watermarking gadgets from
these system libraries, since semantic-preserving transforma-
tions on the watermarked program cannot prevent it from
correctly targeting gadgets inside such legacy code.

Because we are using ROP only to hide watermarking
behavior, gadgets to be executed needs to have no more
than the following functions:

Register loading to load watermark messages and target
memory addresses into registers. Note that this may
not be as simple as a <pop; ret> sequence. Arith-
metic/logical/shifting operations are also included.

Memory writing to write the value of source register to
the memory area pointed to by the address in the tar-
get register, e.g., <mov [eax], ecx; ret>.

Stack shifting to control stack pointer, allowing water-
marking ROP to be linked without being redirected
with additional code. These are basically special regis-
ter loading gadgets, since their only target is the stack
pointer register.

Transferring to record the current position of instruction
pointer when the program is directed to ROP, and to
recover after the watermarking code is executed. Be-
sides a specific combination of the former types of gad-
gets, we specifically exploit register exchange gadgets
like <xchg eax, esp; ret> here since they can store
the current stack pointer for later usage.

Since the introduction of ROP, many have proposed au-
tomatic searching of useful instruction sequences [15,26,29].
We make use of these existing techniques to locate the gad-
gets we need from system libraries. To be compatible with
ASLR-enabled systems, we record gadgets by their offsets
from entries of certain functions in the libraries, so that at
runtime their absolute address can be computed easily with
the assistant of function pointers.



Projects/libs Size(KB)
Gadget types

Register loading Memory writing Stack shifting Transferring

bzip2 63.488 22 2 2 1

hmmer 204.288 8 NA NA 1

lbm 24.064 8 NA NA 1

mcf 18.432 8 NA NA 1

sjeng 105.984 12 1 1 1

soplex 306.688 24 NA NA 1

libc.so.6 1335.56 9 5 2 4

kernel32.dll 857.6 13 2 8 3

Table 1: Number of available gadgets in projects and libraries

We search these four types of gadgets in a collection of
SPECint-2006 benchmark projects as well as two system
libraries libc.so.6 and kernel32.dll. Only gadgets
that complete a functional chain are recorded as available.
Results shown in Table 1 confirm that both system libraries
provide fully functional gadget sets for watermarking, while
the same searching on small program modules are likely to
fail. In addition, we found that typically gadgets of the
equivalent function can be found at more than one locations,
which could provide flexibility in formatting the payload.

3.4 Distributive and dynamic construction
of watermarking payload

Constructing a reasonable watermark in ROP typically
requires to execute dozens of gadgets, thus the payload used
to chain the gadgets up would be of notable length. The code
used to construct such payload would then be even longer,
leaving potential targets for attackers. However, as briefly
mentioned in Section 1, an important advantage of our ROP-
based watermarking technique is to be able to spread out the
watermarking components throughout the execution path
to minimize suspicion from program analysis. Our design
splits the watermarking payload into small segments to be
constructed in different functions of the program which we
called “carriers”. With a number of carriers, we managed
to embed just a small piece of code in each carrier that
controls only a few gadgets, largely reducing the suspicion
raised since the inserted code is almost negligible compared
to the size of the original carriers. Refer to Section 4 for
security evaluations on this.

We use TEMU, the dynamic analysis component of Bit-
Blaze binary analysis platform [30], to trace the execution
of the program with the secret input and to record all func-
tions that are executed on the path along with their size,
invoking frequency, and a call graph showing the control
flow among them. Each function on this execution path is
a carrier candidate for the watermarking payload. We sort
the carriers by their size and embed longer segments of the
payload in larger carriers since they provide better cover for
the additional code.

Instead of storing the watermarking payload inside static
data region, we construct the payload segments “on the fly”.
That is, only when a carrier is executed will the payload seg-
ment it carries be created in the program’s heap area (we
choose not to do this in carriers’ stack frame in order to
minimize the affect to program’s normal execution caused
by watermarking). We diversify the forms in which the pay-

load segments are constructed to make it harder to recognize
a pattern that indicates watermarking. Payload segments
could be arranged as

• Integer arrays;

• Character strings;

• Selected variables of newly created instances of com-
posite data structures (e.g., C structs and C++ classes).

Figure 3 shows examples on how the watermarking pay-
load stored in a linear memory space can be built with differ-
ent types of program objects. As we can see, the same piece
of payload corresponding to the gadget <pop eax; ret>
could stand in different ways: an integer array with two el-
ements, two variables next to each other in an instance of
a struct/class. We construct the payload based on the data
structures that are already in the subject program and do
not create new types of structures serving solely for water-
marking which could be targets for attackers.

Furthermore, since the payload segments are formatted as
heap-allocated data pieces, it’s easy to use them in comput-
ing other variables owned by the program. Doing so creates
active connections between the watermark components and
the subject program, making them more difficult to be dis-
abled even if they are somehow spotted by the adversary.

3.5 Payload chaining via stack pointer
manipulation

Although splitting watermarking payload into short seg-
ments and distributing them among multiple carriers im-
prove security, we still need a way to ensure that the dis-
cretely distributed payload pieces can be chained into a
continuous stream during watermark extraction so that the
ROP execution under their control works correctly.

As shown in Figure 4, when the watermarking payload
is cut into segments, we attach stack-shifting gadgets at the
end of them. In this way, each of the segments is responsible
to relocate the stack frame correctly to the exact memory
address of the next one, so that the watermarking payload
works as if it were a continuous piece.

As discussed in the previous subsection, segments of the
watermarking payload are constructed dynamically. During
runtime whene one of them is constructed, the watermarked
program checks if its previous and/or following segment had
already been constructed. If either of them exists, the pro-
gram chains the segments together by updating their stack
shifting gadgets. Since the segments are generated one after



 class gadC {
 Private:
         int var_1;
         int var_2;
 Public:
         gadC (int init_1, int init_2)
         {
                   var_1 = init_1;
                   var_2 = init_2;
         }
    … 
 }
 … 
 gadC *gad = new gadC(addr, X) ;
 … 

 … 
 Int *gad = new int[2];
 gad[0] = addr; 
 gad[1] = X; 
 … 

 struct gadS {
       int var_1, var_2;
 }
 … 
 gadS *gad = new gadS ; 
 gad.var_1 = addr;  
 gad.var_2 = X; 
 … 

watermarking payload 

watermarking payload 

addr
(addres of gadget <pop eax; ret>)

X
(operand of the gadget)

Figure 3: The diversity of payload formatting in ROP-based watermarking

heap region somewhere in the code

gadgets

pop esp; ret
Pk

gadgets

Pk+1

gadgets

???

payload segment
Pk-1

payload segment
Pk

payload segment
Pk+1

pop esp; ret

pop esp; ret

Figure 4: Chaining discrete payload segments via stack shift-
ing gadgets (The dash arrows indicate stack pointer reloca-
tion while solid arrows indicate ROP execution flow)

another (although they may not be in the strict order as
when they are used), each of them would either link itself to
its neighbors or get linked by the neighbors.

3.6 Triggering ROP via function pointer
overwriting

Now that the watermarking payload is chained up for exe-
cution. The last missing piece in the ROP-based watermark-
ing is to instantiate the execution of the hidden watermark-
ing path. This involves transitioning from normal execution
of the program to ROP execution of the pre-selected gad-
gets, and we don’t want instructions that perform such a
transition to look suspicious.

We use a function pointer for triggering the ROP execu-
tion. The reason of this design choice is because a function
pointer not only allows control transfer to the ROP gadgets
via a simple overwriting of its value, but also provides a nat-
ural way of loading the initiating stub of the watermarking
payload (given in the example in Section 3.2) directly onto
the stack as function parameters. Usually this watermark-
ing trigger points to a dummy function we added to the
program so that in normal execution the trigger calls the
dummy function and performs computations that do not

affect the rest of the program. Upon inputting the secret
input, the value of trigger is overwritten to point to the first
gadget of the initiating stub (while the other parts of this
stub will be pushed on the stack later by the trigger). Later
when the trigger is invoked, gadgets of the initiating stub get
executed, which save the current environment and transfer
control to the first segment of watermarking payload.

The next question is how to encode the trigger condition
(testing the secret input). A simple solution is to use a
conditional block (e.g., an if statement) to compare current
program input with the constant secret input. However,
such conditional block introduces branching in the control
flow graph and could attract attention of program analysis.
Here we propose a novel idea to conceal such branching, see
Figure 5. We exploit the right shifting operation so that only
when Input equals to Key will the variable x be set to 0.
As a result, the program is able to conditionally determine
the function pointer’s value without explicitly introducing
control flow transfer instructions.

void RopTrigger_A (int Input, int Key)
{

int a=Input-Key;
int b=Key-Input;
a>>31;
b>>31:
/* if Input==Key, then x=0, otherwise x

=-1 */
int x=a^b;
/* overwriting */
&funcPt=addressA*(0-x)+addressB*(1+x);
funcPt(Initial_Gadgets);

}

Figure 5: Testing trigger condition without branching

Note that the above example is only a raw implementa-
tion of our watermark trigger. In practice there are many
ways to build the same function in more complex form so
that the embedded trigger is harder to locate or analyze.
For example, we can use the hash value of Key to com-
pute a and b as similarly suggested in [28]. Simple right
shifting can be replaced with equivalent arithmetic combi-
nations. Pointer aliasing may also be applied to the function
pointer overwriting. Finally, code block of the trigger can
be taken apart and merged with another functional module
to decrease its visibility.



3.7 Implementation
Our ROP-based watermarking toolkit is implemented in

a set of python scripts consisting of a gadget scanner, a trace
processor and a code re-writer, as shown in Figure 6.

Watermarking Toolkit

system 
libraries

program 
source code

watermarked 
programgadget 

scanner

code re-writer

trace processor

code marker
trace 

analyzer

dynamic trace analyzer

Figure 6: Implementation of ROP-based watermarking

Gadget scanner analyzes the system libraries, selects avail-
able gadgets of the four types given in Section 3.3 and creates
a gadget database. It also generates the ROP payload that
chains the candidate gadgets into the watermarking code.

Meanwhile, the trace processor analyzes the execution
traces of the subject program under the secret input to find
available carriers for watermarking payload. It not only finds
the entry points of carriers but also records which parts of
them are executed in the given trace.

After these preparations, code re-writer modifies the pro-
gram’s source code to embed the watermark. First, it divides
the payload provided by the gadget scanner into segments
and generates code for building and linking them. Follow-
ing that, it distributes these code into the carriers, and also
plants the dummy function as well as the ROP trigger. Fi-
nally, the modified source code is re-compiled, resulting the
watermarked program.

Secret trace analysis is a tricky part of the watermarking
since the analyzer only records execution on binary level
while the watermark is embedded to the source code. To fill
this gap, our trace processor consists of a code marker and
a trace analyzer.

First, code marker makes a special copy of the program’s
source code by marking entry points and end points of func-
tions as well as conditional code blocks in them with inef-
fective inline assembly sequences (which we called tags). We
format these tags so that they are not only easy to be rec-
ognized, but also tell the exact locations in the correspond-
ing source files they are assigned to. In particular, we let
each tag to be started and ended with a <mov edx, edx>
instruction, which never occurs in regular binaries. Addi-
tionally, a global junk variable is added in the program,
with each tag carrying instructions that write the file ID
and line number of the marked position in sequence to this
junk variable. consequently, the resulting executable from
the marked source is run with the secret trace recorded, and
the trace analyzer can simply search for the inserted tags to
figure out exactly which part of the source code is executed.

The trace processor is implemented as a total of 207 lines
of scripts, in which the code marker takes 135 lines and the

trace analyzer takes 72 lines. Code re-writer script consists
of 191 lines due to the need of generating code for payload
preparation in addition to scanning and re-writing source
files. Gadget scanner is extended from GALILEO [27], an
existing gadget searching algorithm.

4. EVALUATION
In this section, we subject our ROP-based watermarking

to a number of security analyses and present the results. We
also measure the static and dynamic overhead.

Security of software watermarking is usually evaluated in
terms of the stealth, credibility, and resilience. Stealth typ-
ically refers to how well the watermark blends in the code
or data around it; credibility describes how precisely the
watermark can be retrieved; while resilience measures the
resistance against determined attempts at discovery or re-
moval. ROP-based watermarking extracts a watermark as a
direct result of executing the embedded ROP gadgets; thus
its credibility is quite self-evident. Therefore, in this section,
we mainly focus on analyzing stealth and resilience of our
approach. Meanwhile, the overhead caused by applying the
ROP-based watermarking is also evaluated on three aspects
– time it takes to generate the watermark, increment in code
size, and the additional heap space required.

We apply our scheme on a number of subject programs
from the SPECint-2006 test suite which are subject pro-
grams that previous research chose to work with [23]. The
experimental watermarking is designed to simply output a
watermark message on the screen. All tests were run on a
PC with a 2.66GHz Intel Core 2 Quad CPU, 4GB memory,
and Windows 7 operating system.

4.1 Static stealth
Static stealth of software watermarking measures how well

a watermark fits into the program around it. As mentioned
in Section 3, the ROP-based watermarking needs to insert
a small amount of code into the program for constructing
its payload. Therefore, static stealth plays an important
role in evaluating our design. The good news is that code
introduced by our ROP-based watermarking is only for cre-
ating and updating the payload segments which appear to
be program data. It is broken down to instruction level
and distributed over many carriers in the program (see Sec-
tion 3.4). Considering the diversity of such code as also
discussed in Section 3.4, we expect that ROP-based water-
marking presents good static stealth in this measurement.

We adopt the static stealth measurement introduced by
Collberg et al. [11], briefly described as follows:

• First, given a piece of watermarking code that gener-
ates an x-bit watermark, a dictionary is created as an
instruction level profile. This is done by sweeping a
peephole (of which the size is set to one to three in-
structions as suggested by Collberg et al.) over the
instruction stream of the watermarking code, while
distinct instruction combinations observed in the scan-
ning are added as new words to the dictionary.

• Second, to measure whether the watermarking code is
stealthy in a program, all words in the dictionary are
then searched in the original and watermarked pro-
grams. The more words appearing in them, the better
the watermarking code fits into the program.
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Figure 7: Static stealth of ROP-based watermarking

We apply our ROP-based watermarking on six benchmark
programs bzip2, hmmer, lbm, mcf, sjeng, and soplex to
embed a 192-bit watermark. By analyzing the watermarking
code inserted into the six watermarked program, we identify
a total of 171 words in the dictionary. Figure 7 shows the
number of words in the dictionary that are found in the
original and watermarked programs.

There are two important takeaways from these results.
First, we observe that between 70 and 85 percent of the
words in the dictionary of watermarking code already ex-
ists in the original programs. This shows that most of the
code introduced by our ROP-based watermarking can be
seen in the ordinary program, making it hard for attackers
to look for special instruction sequences that could serve as
signatures for detection. Second, we find that even in the
watermarked programs, there are only 72 to 88 percent of
the words in the dictionary being observed. Meanwhile, the
differences between results on the original programs and the
watermarked programs are pretty small – making the orig-
inal and watermarked programs relatively indistinguishable
in this analysis.

We further extend this experiment to perform a locality
evaluation by running a considerably large sliding window

(200 instructions in our experiment, since the watermarking
code itself only has 271 instructions in total) over the pro-
grams’ instruction stream. Again, we look for words from
the dictionary when running the sliding window, one step
to the right when the number of words found is below a
threshold, or 200 steps to the right otherwise to avoid dou-
ble counting. Locations where the number of words found
exceeds the threshold are considered “hotspots” that have
similar profile compared to the watermarking code, and will
be marked as suspicious. Figure 8 shows the result where
the horizontal axis shows different threshold settings and the
vertical axis shows the number of “hotspots” found.

Results are consistent with those from the previous ex-
periment, where few windows in which over 50% coverage
of watermarking dictionary are reported. When comparing
the results for the original and the watermarked programs,
there is no significant increase on the number of hotspots.

4.2 Dependence analysis on watermarking
components

In the second analysis on the stealth of the watermark-
ing technique, we assume a more realistic scenario where
the attacker manages to locate one distinguishable compo-
nent used in the watermark, and tries to trace the other
parts of it with dependency analysis to the exposed com-
ponent. Existing watermarking schemes can be vulnerable
on this aspect since certain features used by their external
extractor to recognize watermark may also be exploited by
adversaries, while the connections between their code and
data are directly exposed to analyses.

As an example, we simulate such a dependency analysis
on the CT watermarking technique [10], one representative
watermarking techniques proposed in the literature. In the
simulation, we set the root node of the heap-allocated wa-
termark graph to be static, as if it is recognized already.
IDA pro 6.4 is then used to launch a dependency analysis
starting from the given root node in order to find anything



that are semantically connected. Figure 9 shows the analysis
result, where we find that based on the exposed root node,
IDA pro is able to detect a dependency graph connecting
all functions that participate in the watermark generation,
making it relatively easy for attackers to narrow down to
specific functions in searching for the watermarking code.

Figure 9: Dependency analysis result of CT watermarking

In contrast, our ROP-based watermarking payload stay
in the data region of the program, thus from normal per-
spective it has no explicit connection to the corresponding
gadgets, making the watermarking semantics “invisible” to
code analyses (including dependence analysis), i.e. the code
stream in charge of writing the watermark message into pro-
gram’s memory then printing it out literally does not exist
when the embedded ROP is not triggered. For verification,
we perform a similar simulation on our design, in which
we intentionally let the watermarking code write the hidden
message in a static character string that can be easily picked
up by a static analyzer, and again look for semantically con-
nected portions from the program. However, IDA pro en-
counters a failure to reach anything that have dependencies
on the exposed string, i.e., it believes that semantically there
is no instruction in the watermarked program that tries to
read or modify the string at all.

To confirm this result, we dynamically execute the water-
marked program and monitor the target string to find out
instructions that operate upon it. Figure 10 shows screen-
shots of this dynamic analysis (before and after the exposed
character string is overwritten). We can see that instruc-
tions operating on the target string are actually unintended
instructions from the shared library that are beyond the
scope of the analyzer. This confirms that there is zero de-
pendency found in the watermarked program.

Note that the above simulation is only for demonstrating
the difference on semantic visibility between our design and
the previous work. In our ROP-based watermarking, we do
not actually use such a static string to store the watermark
message, and therefore the dependency analysis might even
have no ground to begin with.

4.3 Resilience
In this subsection, we discuss the strength of our design

against distortion attacks in which the adversary attempts

to destroy the watermark by twisting the binary of water-
marked program. Common binary obfuscations (including
function and basic block reordering, function inlining and
outlining, data restructuring, etc.) are the main approaches
of distortion attack while program packing and optimizing
are also included in the adversaries’ arsenal.

Intuitively, semantic-preserving transformations do not af-
fect our design because they do not change the way gadgets
are constructed. One possibility, though, is to target param-
eters of the function pointer for triggering ROP execution.
However, the trigger function pointer works via a indirect
call, whose target is hard to be determined at binary level.
Theoretically, a complete distortion on the trigger needs to
locate all indirect calls and modify all their potential targets
including those imported to the program (which are highly
error-prone). This makes the adversary’s task impractical.

We test the resilience of all our watermarked programs
against transformation of a selection of well-known tools:

• xenocode, performs binary-level obfuscation including
encrypting static strings, randomly inserting redun-
dant ineffective instructions, and obfuscating program’s
control flow [3];

• UPX, provides high-quality packing and compression
on softwares [2]; and

• LLVM optimizer, enables various source- and target-
independent binary optimizations, some of which per-
form decompilation/recompilation on target code [1].

Results show that after transformations, the watermarked
programs can still correctly generate and chain the water-
marking payload, and the hidden watermarks can still be
correctly extracted. This not only indicates the good re-
silience of our design, but also shows that our ROP-based
watermarking has potentially high compatibility should we
want to combine it with other protection mechanisms.

4.4 Overhead
In this subsection, we evaluate the performance overhead

of our design in comparison with graph-based watermark-
ing. Intuitively, ROP-based watermarking involves far less
overhead in both execution time and heap space because it
does not need to encode the watermark into complex data
structures (e.g., a graph).

In our experiments, we apply the CT watermarking tech-
nique to encode the watermark into radix graphs because
it is widely considered to be the most efficient solution in
graph-based watermarking [11]. All programs involved in
the test are compiled under the same setting, and programs
watermarked with both methods do not have any additional
protection mechanisms integrated. Table 2 shows the result
for runtime overhead, while Figure 11 presents results for
static program size increments.

We find that the runtime overhead of a ROP-based wa-
termarked programs is significantly smaller than that in the
graph-based one – in some cases more than two orders of
magnitude smaller. Our method also experiences smaller
increase in program size.

We also evaluate the size of heap-allocated data struc-
tures that are constructed for the watermark. Results are
very much identical for all six programs, in which CT water-
marking uses 1,536 bytes of heap space to encode a 192-bit
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Figure 10: Unintended instructions that overwrite the watermark string in our design

benchmark
runtime overhead (ms)

ROP-based
watermarking

graph-based
watermarking

bzip2 1.33 154.94

hmmer 6.48 10897.63

lbm 536.61 41363.07

mcf 88.62 47177.45

sjeng 19.04 4262.94

soplex 2.03 4.61

Table 2: Runtime overhead

watermark into a radix graph, whereas our ROP-based wa-
termarking uses 156 or 188 bytes when the gadgets are for-
matted in integer arrays or in structs/classes, respectively.
Again, our ROP-based watermarking has a clear advantage.

4.5 Our method vs. RopSteg
In this subsection, we give a comparison between our

method and RopSteg when applied to hide software water-
mark. As discussed in Section 2, RopSteg is a general tool
for hiding code portions of a program with ROP. It has a dif-
ferent threat model compared to software watermarking and
is susceptible to simple program transformation attacks. In
this subsection, we, instead, focus on two evaluations. First,
the amount of additional instructions inserted that partic-
ipate dynamically in normal runs of the program (without
watermark generation) and in watermark generation. This
is an important security evaluation of software watermark-
ing because instructions dedicated to watermark generation
(those not participated in normal runs of the program at
all) are suspicious and attract program analysis. Second, we
also evaluate the program size increments. Table 3 shows
the average result for the six benchmark programs we have
tested, since the results are very much constant among them
(shown in the previous subsection for our method and dis-
cussed in [17] for RopSteg).
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Figure 11: Increment in program size (bytes)

Our ROP-based watermarking is designed based on an
idea that instructions introduced by watermarking should
be amphibious – they should be executed in regular runs of
the program (without watermark generation). Our evalu-
ation (second column of Table 3 confirms that our design
meets this criteria, as 100% of the newly added instructions
participate in normal runs of the programs. Meanwhile, only
61% of the instructions inserted by RopSteg participated in
normal executions of the programs. In addition, the total
size increment caused by RopSteg is larger than our method.

5. DISCUSSION

5.1 ROP defenses
A number of ROP defenses have been proposed to detect

and stop ROP execution [6,7,13,22,24,33]. One can imagine
that if triggered on a system with ROP defense deployed,
the embedded ROP execution in the program transformed
with our ROP-based watermarking would set off an alarm,
and that specific execution where watermark extraction took
place might be terminated.

However, watermark extraction is a special scenario that
only happens when certain concerned party tries to either
prove the software’s ownership or to identify the authorized
users. That’s why a special input is used to trigger the wa-
termark execution. In our ROP-based watermarking, nor-



Method
Newly inserted instructions executed

Program size increase
Normal run (without watermark generation) Watermark generation

Our work 100% 0% 512

RopSteg 61.5% 38.5% 650

Table 3: Overhead comparison between our method and RopSteg

mal executions of the watermarked program will show no
characteristics of ROP execution at all, and therefore do
not conflict with ROP defenses. Although it is true that
extracting watermark hidden with our design presents ROP
behaviors, we believe that given that watermark extraction
is such a special event, it is reasonable to simply run the
watermarked program in a specialized environment or tem-
porarily turn off the ROP defense.

5.2 Compatibility
Our design is implemented and evaluated under the x86

instruction architecture. Effectiveness and efficiency on other
architectures, such as SPARC or ARM, might vary from our
current results. That said, there have been reports of suc-
cessful ROP on various platforms [4, 14, 16], which suggest
that our proposal could work on these platforms, too.

Nevertheless, our design makes use of gadgets from shared
libraries, suggesting that the watermark extraction depends
on the execution environment, e.g. library versions, to cor-
rectly re-build the ROP execution path. One possible solu-
tion is to source for multiple sets of watermarking payload
strings, each corresponding to a distinct version of the se-
lected libraries, so that the watermarked program can detect
the environment on which it is running and point the water-
marking trigger to the corresponding watermarking payload.
We leave this as future work.

5.3 Library Replacement Attack
At this moment, a potential weakness of our ROP-based

watermarking is the so-called library replacement attack, i.e.
the adversary replaces the original dynamic libraries that
would link to the watermarked program, say L, with its cus-
tom library L′ that may be bundled in the software package.
So long as there are gadgets locate in L, such replacement
could render errors during ROP and therefore compromise
the watermark recovery process. In the extreme case, the
adversary could replace all dynamic libraries just in case it
does not know where the gadgets reside. We plan to improve
our approach on this aspect in the near future. Possible
ways might include exploiting gadgets inside libraries that
cannot be circumvented (this is possible in some operation
system, e.g. any program runs on windows system must load
Kernel32.dll which provides system API), or introducing
tamper-proofing approaches that at runtime check whether
the loaded libraries are compromised.

6. CONCLUSION
We proposed a novel dynamic software watermarking de-

sign that embeds and exhibits watermark through a memory
error exploiting technique named return-oriented program-
ming. Our ROP-based watermarking is able to transform
important watermarking code into ROP gadgets and build
them in the data region. The watermark can be extracted by

activating ROP execution along these gadgets constructed.
Evaluations show that compared to previous works, our de-
sign achieves better stealth because of its fine-grained code
distribution. Analysis and experiments also suggest that
our design not only presents good resilience against attacks
with code obfuscation and re-packing, but also causes no-
tably lower overhead.

We take our ROP-based watermarking as a successful at-
tempt of turning a malicious approach (return-oriented pro-
gramming in this case) into a benign usage. We also believe
that this work opens a rather different view for software
watermarking – instead of hiding messages in special execu-
tions, we could make execution itself invisible.
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