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Cold Start

Kinda Cold Start (10-20 ratings)



Cold Start
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How do Algorithms Behave for users
with few ratings?



How do Algorithms Behave for users
with few ratings?

 How well can different algorithms predict future ratings
of new users?

 How well can different algorithms rank and recommend
good items for new users?

 How do algorithms behave as measured by other metrics
such as popularity for new users?
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Algorithms

3 common algorithms:

« Arange of different approaches
- Itemltem

- UserUser
- Funk SVD

We will compare this against two baselines:

- [temBaseline
- UserltemBaseline
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How do we answer our questions?

» Offline analysis

 MovieLens 1M dataset
— Each user has at least 20 ratings

» Crossfold by user
- Keep only n (1 — 19) ratings for test users
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Metrics

e Accurate Predictions / e Likable Recommendations
Good Ranking - Precision@20
- RMSE - MAP@20
- NDCG - Fallout@20
- MeanRating@20
e Other Properties - RMSE@20
- Seenltems@20
- AveragePopularity@20
- AILS@?20

- Spread@20
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Metrics

e Accurate Predictions / » Likable Recommendations
Good Ranking B
- RMSE _
- NDCG _
- MeanRating@20

* Other Properties -

- Seenltems@20
- AveragePopularity@20



Results

Algorithm Accuracy / Recommendation Other Properties
Rank

ltemltem

UserUser

Funk SVD

Number of ratings to beat baseline

17



RMSE

RMSE

(Measures accuracy of predictions)

1.05 - : :
Things to note:
* Whats Up with Itemltem?
« ItemBaseline Isn't very accurate
1.00 - . .
« UserltemBaseline is surprisingly accurate
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Algorithm
—o— [temltem
—4— UserUser
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0.9650 -

0.9575 -

0.9550 -

NnDCG

(Measures how well the algorithms orders items based on ratings)

Things to note:
« We don't report UserltemBaseline

Y ¥ * |temltem does bad

 UserUser does OK

« SVD does quite well

Algorithm
—o— |temltem
—4— UserUser
-=- svd

| | | —— ltemBaseline

|
4 8 12 16
Simulated Profile Size
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Results

Algorithm Accuracy / Recommendation Other Properties
Rank
ltemltem >19 (bad)
UserUser 9
Funk SVD 4 (Good)

Number of ratings to beat baseline
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Results

Algorithm Accuracy / Recommendation Other Properties
Rank
ltemltem >19 (bad)
UserUser 9
Funk SVD 4 (Good)

Number of ratings to beat baseline
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SeenMovies@20

(Average number of Movies in both the test set and the top 20 recommendations)

A—H——W_F:::{I{]% Why?

* (Under)Estimate how many recommended
4- movies the user has seen

 Other metrics look at the intersection
between test set and recommendation

e UserUser is too small

Seenltems@20

Algorithm
~o— |temltem
—&— UserUser
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Popularity@?20

(Average popularity of movies in the top 20 recommendations)
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« Probably the driving factor behind the last
plot
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« Users prefer a certain about of novelty
(probably more than baseline)
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* New users need to see some familiar
items (probably more than UserUser)

AveragePopularity@20

Algorithm
250 - —o— |temltem

—4— UserUser

- svd
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Results

Algorithm Accuracy / Recommendation Other Properties
Rank
ltemltem >19 (bad)
UserUser 9 Too Obscure (bad)
Funk SVD 4 (Good) Too Popular?

Number of ratings to beat baseline
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MeanRating@?20

(Average rating for items in the 20 recommendations)

Ela 1'2
Simulated Profile Size
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Why?

(over)estimate how much the user likes
their recommendations

Everything is above 4 stars (yay!)

SVD does pretty well

ltemltem doesn't

Algorithm
—o— |temltem

—&— gvd

-=— [temBaseline
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Results

Algorithm Accuracy / Recommendation Other Properties
Rank
ltemltem >19 (bad) >19 (bad)
UserUser 9 ? Too Obscure (bad)
Funk SVD 4 (Good) 2 (Good) Too Popular?

Number of ratings to beat baseline
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Conclusions
What did we learn?

- If you have less than 4 ratings user a baseline
- If you need a general algorithm that works well, use SVD

- UserUser can be used for its predictions, but beware its
obscure recommendations.

- lItemlItem should not be used for cold start users.
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Questions?
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