Fast Kernels for Inexact String Matching

Christina Leslie and Rui Kuang

Columbia University, New York NY 10027, USA
{rkuang,cleslie }@cs.columbia.edu

Abstract. We introduce several new families of string kernels designed in par-
ticular for use with support vector machines (SVMs) for classification of protein
sequence data. These kernels — restricted gappy kernels, substitution kernels, and
wildcard kernels — are based on feature spaces indexgddngth subsequences
from the string alphabeX’ (or the alphabet augmented by a wildcard character),
and hence they are related to the recently preseiited)-mismatch kernel and
string kernels used in text classification. However, for all kernels we define here,
the kernel valugs (z, y) can be computed i®(cx (|z| + |y|)) time, where the
constantx depends on the parameters of the kernel but is independent of the size

| 2| of the alphabet. Thus the computation of these kernels is linear in the length
of the sequences, like the mismatch kernel, but we improve upon the parameter-
dependent constani = k™| Z|™ of the mismatch kernel. We compute the
kernels efficiently using a recursive function based on a trie data structure and re-
late our new kernels to the recently described transducer formalism. Finally, we
report protein classification experiments on a benchmark SCOP dataset, where we
show that our new faster kernels achieve SVM classification performance com-
parable to the mismatch kernel and the Fisher kernel derived from profile hidden
Markov models.

Keywords: Kernel methods, string kernels, computational biology.

1 Introduction

Recently, there has been considerable interest in the development of string kernels for
use with support vector machine classifiers and other kernel methods in applications
like text categorization, speech recognition, and protein sequence classification. Pre-
vious work includes convolution kernels defined by Haussler [5], dynamic alignment
kernels based on pair hidden Markov models by Watkins [15], and the gajppgm

kernel developed for text classification by Lodtial. [11]. A practical disadvantage of
these string kernels is their computational expense. Most of the kernels rely on dynamic
programming algorithms for which the computation of each kernel valge, y) is
quadratic in the length of the input sequengeandy, that is,O(|z||y|) with constant

factor that depends on the parameters of the kernel. The recently presesgedtrum
(gap-freek-gram) kernel gave a linear tim@ (k(|z| + |y|)) implementation of a ker-

nel based on a trie data structure for use in SVM protein classification. Vishwanathan
et al. [13] extended this work to compute the weighted suni-apectrum kernels for
different & by using suffix trees and suffix links, allowing elimination of the constant

factor in the spectrum kernel for a compute time(fiz| + |y|). Finally, the(k, m)-
mismatch kernel [9] achieved improved performance on the protein classification task
by incorporating the biologically important notion of character mismatches. Using a
mismatch tree data structure, the complexity of the kernel calculation was shown to be
O(ck(|z] + |y])), with cg = E™+1| 3|™ for k-grams with up tan mismatches from
alphabet>.

In this paper, we introduce several new families of string kernels designed for use
with SVMs for classification of protein sequence data. These kernels — restricted gappy
kernels, substitution kernels, and wildcard kernels — are based on feature spaces indexed
by k-length subsequences from the string alphabébr the alphabet augmented by a
wildcard character), and hence they are closely related tokthe)-mismatch kernel
and string kernels used in text classification. However, for all kernels we define here, the
kernel valueK (z, y) can be computed i@ (ck (|z| + |y|)) time, where the constank
depends on the parameters of the kernel but is independent of th&'siakthe alpha-
bet. Thus the computation of these kernels is linear in the length of the sequences, like
the mismatch kernel, but we improve upon the parameter-dependent constant. There-
fore, we provide a number of different models for incorporating a notion of inexact
matching while maintaining fast computation. We describe how to compute these ker-
nels efficiently using a recursive function based on a trie data structure. We also relate
our new kernels to the recently described transducer formalism [2] and give transducers
corresponding to some of our kernels.

Finally, we report protein classification experiments on a benchmark SCOP dataset,
where we show that our new faster kernels achieve SVM classification performance
comparable to the mismatch kernel and the Fisher kernel derived from profile hidden
Markov models.

2 Definitions of Feature Maps and String Kernels

Below, we review the definition of mismatch kernels [9] and introduce three new fami-
lies: restricted gappy kernels, substitution kernels, and wildcard kernels.

In each case, the kernel is defined via an explicit feature map map from the space
of all finite sequences from an alphal¥tto a vector space indexed by the setkef
length subsequences froi or, in the case of wildcard kernel§; augmented by a
wildcard character. For protein sequencEss the alphabet of>| = 20 amino acids.

We refer to ak-length contiguous subsequence occurring in an input sequence as an
instancek-mer (also called &-gram in the literature). The mismatch kernel feature
map obtains inexact matching of instanceners from the input sequence temer
features by allowing a restricted number of mismatches; the new kernels achieve inexact
matching by allowing a restricted number of gaps, by enforcing a probabilistic threshold
on character substitutions, or by permitting a restricted number of matches to wildcard
characters.

2.1 Spectrum and Mismatch Kernels

In previous work, we defined thg, m)-mismatch kernel via a feature m@tzﬂ,fg‘;‘mhto
the | X'|k-dimensional vector space indexed by the set-afiers fromX. For a fixedk-

mera = ajas . . . ag, With eacha; a character irtZ, the(k, m)-neighborhood generated
by « is the set of allk-length sequences from X' that differ from«a by at mostm
mismatches. We denote this setly, ,,,)(«). For ak-mera, the feature map is defined

as

Mlsmatch(a

(k,m) ,BGEk

wheregg (o) = 1if 5 belongs toN(k’m)(a), and¢ﬁ(a) = 0 otherwise. For a sequence
z of any length, we extend the map additively by summing the feature vectors for all

thek-mers inz: .
PN = Y)
k-mersain
Each instance of &-mer contributes to all coordinates in its mismatch neighborhood,
and theg-coordinate of@M'Smamh(:c is just a count of all instances of themer 3
occurring with up tom mlsmatches inc. The (k, m)-mismatch kerneK, ,,,) is then
given by the inner product of feature vectors:

KMlsmatch<x y dlesmatch() @Mlsmatch(y».

Form = 0, we obtain the-spectrum [8] ork-gram kernel [11].

2.2 Restricted Gappy Kernels

For the(g, k)-gappy string kernel, we use the saidg*-dimensional feature space,
indexed by the set of-mers fromX, but we define our feature map based on gappy
matches of-mers tok-mer features. For a fixegtmera = aqas . .. a4(eacha, € X,
letG, 1) () be the set of all thé-length subsequences occurringigwith up tog — &
gaps). Then we define the gappy feature map. @s

85 () = ($5())pesst

whereg;(a) = 1if 3 belongs taG , 1) («), and¢pz(a) = 0 otherwise. In other words,
each instancg-mer contributes to the set étmer features that occur (in at least one
way) as subsequences with upge- k£ gaps in theg-mer. Now we extend the feature
map to arbitrary finite sequencedy summing the feature vectors for all tiieners in

€.
G G
@ =Y ¢, Fa)

g-mersac€x

The kernelKGap (m, y) is defined as before by taking the inner product of feature vec-
tors forz an&y

Alternatively, given an instancg-mer, we may wish to count the number of oc-
currences of each-length subsequence and weight each occurrence by the number of
gaps. Following [11], we can define fgrmer« andk-mer feature3 = b1bs ... by the

weighting)
A o te—11+1
$p(a) = % > AT
1<i1<i<...<ip<g
aij:bj forj:l...k

where the multiplicative factor satisfi@&s< A\ < 1. We can then obtain a weighted

version of the gappy kerngt X;’ellggtfd Ga%rom the feature map:

Weighted G
Plgin)= D (#5(a))pent

g-mersacx

This feature map is related to the gagpgram kernel defined in [11] but enforces the
following restriction: here, only those character subsequences that occur with at most
g — k gaps, rather than all gappy occurrences, contribute to the correspondieg
feature. When restricted to input sequences of lepgtur feature map coincides with
that of the usual gappl-gram kernel. Note, however, that for our kernel, a gappyer
instance (occurring with at mogt— &k gaps) is counted in all (overlappingymers that
contain it, whereas in [11], a gapgymer instance is only counted once. If we wish to
approximate the gappy-gram kernel, we can define a small variation of our restricted
gappy kernel where one only counts a gappyer instance if its first character occurs
in the first position of g;-mer window. That is, the modified feature map is defined on
eachg-mer« by coordinate functions

oy 1 o
A = ix—i1+1
Pp(a) = F) A ,
1=41<i2<...<1 <g
a;;=bj for j=1...k

0 < A < 1, and is extended to longer sequences by adding feature vectarsrfers.
This modified feature map now gives a “truncation” of the usual gapgyam kernel.

In Section 3, we show that our restricted gappy kernel®&sg, k)(|z| + |y|))
computation time, where constadiiy, k) depends on size aof andk, while the orig-
inal gappyk-gram kernel has complexit®(k(|z||y|)). Note in particular that we do
not compute the standard gappygram kernel on every pair gf-grams fromz and
y, which would necessarily be quadratic in sequence length since the€¥ fargy|)
such pairs. We will see that for reasonable choiceg ahdk, we obtain much faster
computation time, while in experimental results reported in Section 5, we still obtain
good classification performance.

2.3 Substitution Kernels

The substitution kernel is similar to the mismatch kernel, except that we replace the
combinatorial definition of a mismatch neighborhood with a similarity neighborhood
based on a probabilistic model of character substitutions. In computational biology, it is
standard to compute pairwise alignment scores for protein sequences using a substitu-
tion matrix [6, 12, 1] that gives pairwise scorgs, b) derived from estimated evolution-

ary substitution probabilities. In one scoring system [12], the scdre$) are based on
estimates of conditional substitution probabilitié&a|b) = p(a, b)/q(b), wherep(a, b)

is the probability that: andb co-occur in an alignment of closely related proteif(s,)

is the background frequency of amino aeidand P(a|b) represents the probability of

a mutation intaz during fixed evolutionary time interval given that the ancestor amino

acid wash. We define the mutation neighborhodf, (o) of ak-mera = ajaz . .. ay
as follows:

k
Moy () = {B=0b1ba... b € oL ZlogP(aAbi) <o}

Mathematically, we can define = o(NV) such that maxe sx |M(; o) ()| < N, so
we have theoretical control over the maximum size of the mutation neighborhoods.
In practice, choosing to allow an appropriate amount of mutation while restricting
neighborhood size may require experimentation and cross-validation.

Now we define the substitution feature map analogously to the mismatch feature
map:

Ao (@)= Y ($p(@) sz

k-mersain x

wheregs(a) = 1if 3 belongs to the mutation neighborhodf;,) (a), andgs(a) = 0
otherwise.

2.4 Wildcard Kernels

Finally, we can augment the alphatigtvith a wildcard character denoted byand we
map to a feature space indexed by the)debf k-length subsequences fromuU {x}
having at mostn occurrences of the character The feature space has dimension

m k —1
Zi:o (l) |2|k .
A k-mera matches a subsequengé)V if all non-wildcard entries of are equal
to the corresponding entries @f(wildcards match all characters). The wildcard feature
map is given by

oA (z) = D (dp(a))pew

k-mersain

wheregg(a) = N if « matches patterfi containingj wildcard charactersjs(a) = 0
if o does not matcly, and0 < A < 1.

Other variations of the wildcard idea, including specialized weightings and use of
groupings of related characters, are described in [3].

3 Efficient Computation

All the kernels we define above can be efficiently computed using a trie data structure,
similar to the mismatch tree approach previously presented [9]. We will describe the
computation of the gappy kernel in most detail, since the other kernels are easier adap-
tations of the mismatch kernel computation. For simplicity, we explain how to compute
a single kernel valud((z, y) for a pair of input sequences; computation of the full
kernel matrix in one traversal of the data structure is a straightforward extension.

3.1 (g, k)-Gappy Kernel Computation

For the(g, k)-gappy kernel, we represent our feature space as a rooted tree ofkdepth
where each internal node hgs| branches and each branch is labeled with a symbol
from X. In this depthk trie, each leaf node represents a fixedher in feature space

by concatenating the branch symbols along the path from root to leaf and each internal
node represents the prefix for those for the sdt-ofer features in the subtree below it.

Using a depth-first traversal of this tree, we maintain at each node that we visit a
set of pointers to alj-mer instances in the input sequences that contain a subsequence
(with gaps) that matches the current prefix pattern; we also store, forgear in-
stance, an index pointing to the last position we have seen so far iprier. At the
root, we store pointers to ajtmer instances, and for each instance, the stored index is
0, indicating that we have not yet seen any characters ig-tiner. As we pass from a
parent node to a child node along a branch labeled with symhaé process each of
parent’s instances by scanning ahead to find the next occurrence of synmbehach
g-mer. If such a character exists, we passdghmer to the child node along with its up-
dated index; otherwise, we drop the instance and do not pass it to the child. Thus at each
node of depthl, we have effectively performed a greedy gapped alignmeptroers
from the input sequences to the currédength prefix, allowing insertion of up tp— &
gaps into the prefix sequence to obtain each alignment. When we encounter a node with
an empty list of pointers (no valid occurrences of the current prefix), we do not need to
search below it in the tree; in fact, unless there is a wglider instance from each af
andy, we do not have to process the subtree. When we reach a leaf node, we sum the
contributions of all instances occurring in each source sequence to obtain feature values
for andy corresponding to the currehtmer, and we update the kernel by adding the
product of these feature values. Since we are performing a depth-first traversal, we can
accomplish the algorithm with a recursive function and do not have to store the full trie
in memory. Figure 1 shows expansion down a path during the recursive traversal.

The computation at the leaf node depends on which version of the gappy kernel
one uses. For the unweighted feature map, we obtain the feature valueanaofy
corresponding to the currehtmer by counting theg-mer instances at the leaf coming
from z and fromy, respectively; the product of these counts gives the contribution to the
kernel for thisk-mer feature. For tha-weighted gappy feature map, we need a count
of all alignments of each valig-mer instance against tikemer feature allowing up to
g — k gaps. This can be computed with a simple dynamic programming routine (similar
to the Needleman-Wunsch algorithm), where we sum over a restricted set of paths, as
shown in Figure 2. The complexity @(k(g — k)), since we fill a restricted trellis of
(k+1)(g—k—+1) squares. Note that when we align a subsequénég ... b;, against
ak-meraias...ax, We only penalize interior gaps corresponding to non-consecutive
indices inl < i; < is... < i < g. Therefore, the multiplicative gap costlisn the
zeroth and last rows of the trellis andn the other rows.

Eachg-mer instance in the input data can contribute{go) = 0(g97%) k-mer fea-
tures (assuming that— k is smaller thark). Therefore, we visit at mog2 (g9 =% (|z| +

|y|) leaf nodes in the traversal. Since we iterate through at m@stsitions of each
g-mer instance as we pass from root to leaf, the traversal ti¢gs—***(|z| + |y|)).

0/0]0
gba
ala
a alalb
albla
bla|b
1/2)1
(alhfa]
bgla
alalb b
albla
bla|b
2/4|3
b|a
ﬁ)a& b
a
aﬁa
bla|b
O

Fig. 1. Trie traversal for gappy kernel. Expansion along a path from root to leaf during traveral
of the trie for the(5, 3)-gappy kernel, showing only the instan&eners for a single sequence

x = abaabab. Each node stores its validmer instances and the index to the last match for each
instance. Instances at the leaf node contribute to the kerngirfuer featureubb.

The total processing time at leaf node§ig? % (|z| + |y|)) for the unweighted gappy
kernel andO(k(g — k)g?~*(|z| + |y|)) for the weighted gappy kernel. Therefore, in
both cases, we have total complexity of the fatrtx(g, k)(|z| + |y|)), with c(g, k) =
O((g — k)g?~k*1) for the more expensive kernel.

Note that with the definition of the gappy feature maps given above, a gappy
character subsequence occuring withd g — k gaps is counted in each of the—
(k+¢) + 1 g-length windows that contain it. To obtain feature maps that count a gappy
k-character subsequence only once, we can make minor variations to the algorithm by
requiring that the first character of a gappymer occurs in the first position of the
g-length window in order to contribute to the correspondinger feature.

3.2 (k, o)-Substitution Kernel Computation

For the substitution kernel, computation is very similar to the mismatch kernel algo-
rithm. We use a depth trie to represent the feature space. We store, at each depth
node that we visit, a set of pointers to &imer instances in the input data whose
d-length prefixes have current mutation scergjle log P(a;|b;) < o of the current
prefix patternb; b, . .. by, and we store the current mutation score for ekeher in-
stance. As we pass from a parent node at déptha child node at deptti + 1 along

a branch labeled with symbé] we process eackrmera by adding— log P(a4+1|b)

to the mutation score and pass it to the child if and only if the score is still lessthan
As before, we update the kernel at the leaf node by computing the contribution of the
corresponding:-mer feature.

b, b, b; b, bs a b a b b
— 11 |1
"
a, S a N D N PES
a, — = —> b 1 K223+
P - . 0 » 233+
a3 pNal
(A) (B)

Fig. 2. Dynamic programming at the leaf nodeThe trellis in (A) shows the restricted paths for
aligning ag-mer against &-mer, with insertion of up tg — k gaps in theék-mer, forg = 5 and

k = 3. The basic recursion for summing path weight$'{$, j) = m(a:,b;)S(E — 1,5 — 1) +
g(#)S(i,7 — 1), wherem(a, b) = 1if a andb match,0 if they are different, and the gap penalty
g(i) = 1fori = 0,k andg(i) = X for other rows. Trellis (B) shows the example of aligning
ababb agains3-merabb.

The number of leaf nodes visited is in the traversaDisV, (|z| + |y|)), where
Ny = max,c 5| M,) |. We can choose sufficiently small to get any desired bound
on N,. Total complexity for the kernel value computatiorQg¢k N, (|z| + |y])).

3.3 (k, m)-Wildcard Kernel Computation

Computation of the wildcard kernel is again very similar to the mismatch kernel al-
gorithm. We use a depth trie with branches labeled by charactersiinu {x}, and

we prune (do not traverse) subtrees corresponding to prefix patterns with greater than
m wildcard characters. At each node of degthwe maintain pointers to akt-mers
instances in the input sequences whddength prefixes match the curreiitiength

prefix pattern (with wildcards) represented by the path down from the root.

Eachk-mer instance in the data matches at mpgt. (f) = O(k™) k-length
patterns having up ten wildcards. Thus the number of leaf nodes visited is in the
traversal iSO (k™ (|z| + |y|)), and total complexity for the kernel value computation is
O(k™ (|| + [y]))-

3.4 Comparison with Mismatch Kernel Complexity

For the(k, m) mismatch kernel, the size of the mismatch neighborhood of an instance
k-merisO(k™|X|™), so total kernel value computation@g k™ 1| 2| (|z|+]y])). All

the other kernels presented here have running @re; (|z| + |y|)), where constant

ck depends on the parameters of the kernel but not on the size of the alptiabet
Therefore, we have improved constant term for larger alphabets (such as the alphabet of
20 amino acids). In Section 5, we show that these new, faster kernels have performance
comparable to the mismatch kernel in protein classification experiments.

4 Transducer Representation

Corteset al. [2] recently showed that many known string kernels can be associated
with and constructed from weighted finite state transducers with input alphatwe
briefly outline their transducer formalism and give transducers for some of our newly
defined kernels. For simplicity, we only describe transducers over the probability semir-
ingR; = [0, c0), with regular addition and multiplication.

Following the development in [2], a weighted finite state transducer Byeis
defined by a finite input alphabét, a finite output alphabed, a finite set of state®,
a set of input state$ C @, a set of output stateE C (@, a finite set of transitions
E C @Qx(XU{e}) x (AU{e}) xRy x Q, an initial weight functiom\ : I — R, and
a final weight functiorp : F' — R,. Here, the symbot represents the empty string.
The transducer can be represented by a weighted directed graph with nodes indexed by
@ and each transitioa € F corresponding to a directed edge from its origin stdié
to its destination state[e] and labeled by the input symbijk] it accepts, the output
symbolo[e] it emits, and the weighb|e] it assigns. We write the label &g] : o[e]/w]e]
(abbreviated afie] : o[e] if the weight is1).

For a pathr = ejes . .. e, Of consecutive transitions (directed path in graph), the
weight for the path isv[r] = wlei]w[es] ... w[ek], and we denote[r] = ple;] and
n[r] = nlex]. We write * = Ug>oX* for the set of all strings oveE. For an input
stringz € X* and output stringg € A*, we denote byP(7, z, z, F') the set of paths
from initial stated/ to final stated” that accept string and emit string:. A transducer
T is called regulated if for any pair of input and output strifigsz), the output weight
[[T])(z, z) thatT assigns to the pair is well-defined. The output weight is given by:

[Tz, 2)= > Aplr)wlrlp(nlx])

neP(I,z,z,F)

A key observation from [2] is that there is a general method for defining a string
kernel from a weighted transducét Let¥ : R, — R be a semiring morphism (for
us, it will simply be inclusion), and denote Wy—! the transducer obtained froffi
by transposing the input and output labels of each transition. Then if the composed
transducers = T o T~ ! is regulated, one obtains a rational string kernel for alphabet

X via
K(z,y) =w(([SN(z,9) = > _w([T](x, 2)Z(([T])(y, 2))

where the sum is over all stringse A* (where A is the output alphabet fdF) or
equivalently, over all output strings that can be emitted’byrherefore, we can think
of T" as defining a feature map indexed by all possible output strirgs* for T
Using this construction, Cortext al. showed that thé-gram counter transducer
T}, corresponds to thé-gram ork-spectrum kernel, and the gappygram counter
transducefl}, » gives the unrestricted gapgygram kernel from [11]. Figure 3 shows
diagrams of th&-gram transducer; and gappy3-gram transducers . Our (g, k, A)-

gappy kernel’ geigt;tfd 2can be obtained from the composed transdiiter Ty, , o7,

using theT o T~ construction. (In all our examples, we usgs) = 1 for every initial
states andp(t) = 1 for every final state.)

10

ac

© 0>bb,<1)bb,<2>bb,<@
(B)

0 r— (1) 2y

bk bb

Fig. 3. Thek-gram and gappy k-gram transducers. The diagrams show thHeegram transducer
(A) and the gappy-gram transducer (B) for a two-letter alphabet.

For the(k, m)-wildcard kernel, we set the output alphabet tadbe= X' U {x} and
define a transducer witw + 1 final states, as indicated in the figure. Trhet 1 final
states correspond to destinations of paths that krgrams with0, 1, ..., m wildcard
characters, respectively. TK& 1)-wildcard transducer is shown in Figure 4.

Fig. 4. The (k, m)-wildcard transducer. The diagram shows th@, 1)-wildcard transducer for
a two-letter alphabet.

The (k, o)-substitution kernel does not appear to fall exactly into this framework,
though if we threshold individual substitution probabilities independently rather than
threshold the product probability over all positions in thener, we can define a trans-
ducer that generates a similar kernel. Starting withitigram transducer, we add ad-
ditional transitions (between “consecutive” states of khgram) of the formu : b for
those pairs of symbols with log P(a|b) < o,. Now there will be a (unique) path in
the transducer that acceptsnera = aqas . .. ar and emitss = b1 bs . . . by, if and only
if every substitution satisfies log P(a;|b;) < o,.

5 Experiments

We tested all the new string kernels with SVM classifiers on a benchmark SCOP dataset
from Jaakkoleet al. [7], which is designed for the remote protein homology detection
problem, in order to compare to results with the mismatch kernel reported in [9]. In
these experiments, remote homology is simulated by holding out all members of a tar-
get SCOP family from a given superfamily as a test set, while examples chosen from
the remaining families in the same superfamily form the positive training set. The neg-
ative test and training examples are chosen from disjoint sets of folds outside the target

11

family’s fold, so that negative test and negative training sets are unrelated to each other
and to the positive examples. More details of the experimental set-up can be found in
[7].

We compare the SVM classification performance of the three new string kernels
with both the mismatch kernel and the Fisher kernel of Jaaldtdd [7]. In the Fisher
kernel method, the feature vectors are derived from profile HMMs trained on the pos-
itive training examples. The feature vector for sequends the gradient of the log
likelihood functionlog P(x|0) defined by the model and evaluated at the maximum
likelihood estimate for model paramete#sx) = Vy log P(z|0)|g—g,- The Fisher ker-
nel was the best performing method on this dataset prior to the mismatch-SVM ap-
proach, whose performance is as good as Fisher-SVM and better than all other standard
methods tried [9].

We note that there is another successful feature representation for protein classifi-
cation, the SVM-pairwise method presented in [10]. Here one uses an empirical kernel
map based on pairwise Smith-Waterman [14] alignment scores

&(z) = (d(z1,2),...,d(€Tm, x))

wherex;, i = 1...m, are the training sequences a#(d;, =) is the E-value for the
alignment score betweenandz;. In the longer version of [9], we will show that the
mismatch kernel used with an SVM classifier is competitive with SVM-pairwise on
the smaller SCOP benchmark presented in [10]. For this reason, and because the SVM-
pairwise feature map is expensive to compute on the larger SCOP dataset from [7] (each
feature vector i€)(|z|?>m), wherem is the number of training sequences), we compare
the new kernels only to the mismatch kernel and the Fisher kernel.

All methods are evaluated using the receiver operating characteristic (ROC) score,
which is the area under the graph of the rate of true positives as a function of the rate
of false positives as the threshold for the classifier varies [4]. Perfect ranking of all
positives above all negatives gives an ROC scorg athile a random classifier has an
expected score close @5.

5.1 Restricted Gappy Kernels

We tested thég, k)-gappy kernel with parameter choicgs k) = (6,4), (7,4), (8,5),

(8,6), and(9,6). Among them(g, k) = (6,4) yielded the best results, though other
choices of parameters had quite similar performance (data not shown). We also tested
the alternative weighted gappy kernel, where the contribution of an instanar to

a k-mer feature is a weighted sum of all the possible matches of-tmer to subse-
quences in thg-mer with multiplicative gap penalty (0 < A < 1). We used gap
penaltyA = 1.0 and\ = 0.5 with the (6,4) weighted gappy kernel. We found that

A = 0.5 weighting slightly weakened performance (results not shown). In Figure 5, we
see that unweighted and weighted-€ 1.0) gappy kernels have comparable results to

(5, 1)-mismatch kernel and Fisher kernel.

5.2 Substitution Kernels

We tested the substitution kernels with, o) = (4,6.0). Here,c = 6.0 was chosen
so that the members of a mutation neighborhood of a partidutaer would typically

12

35
i [
Yot
‘| LEEN
LA
20 |

15

Number of families

10

(5,1)-Mismatch-SVM ROC —+— "

5r Fisher-SVM ROC -
(6,4)-Gap-SVM ROC --*-

_ (6,4)-Weight-Gap-SVM(Weight=1.0) ROC =

05 055 06 065 07 075 08 08 09 095 1
ROC

Fig. 5. Comparison of of Mismatch-SVM, Fisher-SVM and Gappy-SVM.The graph plots the

total number of families for which a given method exceeds an ROC score threshol(t, he
Gap-SVM uses the unweighted gappy string kernel, in which an instgmeer contributes a
value of 1 to a k-mer feature if thek-mer occurs in it as a subsequence. Thed)-Weight-
Gap-SVM uses the weighted version of the gappy string kernel, which counts the total number
alignments of &-mer against g-mer with multiplicative gap penalty of.

have only one position with a substitution, and such substitutions would have fairly
high probability. Therefore, the mutation neighborhoods were much smaller than, for
example(4, 1)-mismatch neighborhoods. The results are shown in Figure 6. Again, the
substitution kernel has comparable performance with mismatch-SVM and Fisher-SVM,
though results are perhaps slightly weaker for more difficult test families.

5.3 Wildcard Kernels

In order to compare with thg, 1)-mismatch kernel, we tested wildcard kernels with
parametersk, m,\) = (5,1,1.0) and (k,m,\) = (5,1,0.5). Results are shown in
Figure 7. The wildcard kernel with = 1.0 seems to perform as well or almost as well
as the(5, 1)-mismatch kernel and Fisher kernel, while enforcing a penalty on wildcard
characters ofA = 0.5 seems to weaken performance somewhat.

6 Discussion

We have presented a number of different kernels that capture a notion of inexact match-
ing — through use of gaps, probabilistic substitutions, and wildcards — but maintain fast
computation time. Using a recursive function based on a trie data structure, we show that
for all our new kernels, the time to compute a kernel valile, y) is O(ck (|| +1y|)),

where the constanty depends on the parameters of the kernel but not on the size of
the alphabef’. Thus we improve on the constant factor involved in the mismatch ker-
nel computation, in whichX’| as well ask andm control the size of the mismatch
neighborhood and hence the constgpt

13

35

e %
30 B —
XTx
*.. X
x

25 + *, % B
%] Koo X
Q2 SR TX
= %

%
5 20f X —
- X
k] pad
8 15} XX 1
Qo
€ %%
p=} x X
10t % ,
X
x\x x*
5r (5,1)-Mismatch-SVM ROC —+— R
Fisher-SVM ROC ----x---
) (4,6)»§ubstitpti0n-§VM ROC -))

.
05 055 06 065 07 075 08 08 09 095 1
ROC

Fig. 6. Comparison of mismatch-SVM, Fisher-SVM and substitution-SVM.The graph plots
the total number of families for which a given method exceeds an ROC score threshold.

35

""""" B .
30t g T g
[N
% SEEN
w0
o * X

(%] 25 [© a, X"ﬁ]
Q ! "X
E "ok ¥
& 201 8 RX ,
5 2%
b} 15 | e +H
Qo
E g 5
= =12
z o X*

10 | % 4

(5,1)-Mismatch-SVM ROC —+— TR
5r Fisher-SVM ROC -~ %,
(5,1,1)-Wildcard-SVM ROC - 2
(5.1,0.5)-Wildcard-SVM ROC =

05 055 06 065 07 075 08 08 09 09 1
ROC50

Fig. 7. Comparison of mismatch-SVM, Fisher-SVM and wildcard-SVM.The graph plots the
total number of families for which a given method exceeds an ROC score threshold.

We also show how many of our kernels can be obtained through the recently pre-
sented transducer formalism of ratiofab T~ kernels and give the transducErfor
several examples. This connection gives an intuitive understanding of the kernel defini-
tions and could inspire new string kernels.

Finally, we present results on a benchmark SCOP dataset for the remote protein
homology detection problem and show that many of the new, faster kernels achieve
performance comparable to the mismatch kernel. Therefore, these new kernels seem
promising for applications in computational biology and other domains involving learn-
ing from sequence data.

Acknowledgments We would like to thank Eleazar Eskin, Risi Kondor and William
Stafford Noble for helpful discussions and Corinna Cortes, Patrick Haffner and Mehryar
Mohri for explaining their transducer formalism to us. CL is supported by an Award in
Informatics from the PhRMA Foundation and by NIH grant LM07276-02.

14

References

10.

11.

12.

13.

14.

15

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment
search toolJournal of Molecular Biology215:403—-410, 1990.

. C. Cortes, P. Haffner, and M. Mohri. Rational kernelSeural Information Processing

Systems2002.

. E. Eskin, W. S. Noble, Y. Singer, and S. Snir. A unified approach for sequence prediction

using sparse sequence models. Technical report, Hebrew University, 2003.

. M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC) analysis to

evaluate sequence matchir@omputers and Chemistr20(1):25-33, 1996.

. D. Haussler. Convolution kernels on discrete structure. Technical report, UC Santa Cruz,

1999.

. S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein bld?K&S

89:10915-10919, 1992.

. T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to detect remote

protein homologies. IfProceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biologpages 149-158. AAAI Press, 1999.

. C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein

classification.Proceedings of the Pacific Biocomputing Sympos2e02.

. C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein

classification.Neural Information Processing Systems 2602.

C. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector ma-
chines for remote protein homology detecti®noceedings of the Sixth Annual International
Conference on Research in Computational Molecular Biol@§p2. To appear.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernel3ournal of Machine Learning Researc1419-444, 2002.

R. M. Schwartz and M. O. Dayhoff. Matrices for detecing distant relationshipst-In

las of Protein Sequence and Structupages 353—-358, Silver Spring, MD, 1978. National
Biomedical Research Foundation.

S. V. N. Vishwanathan and A. Smola. Fast kernels for string and tree matcNiegral
Information Processing Systems, PR02.

M. S. Waterman, J. Joyce, and M. Egg€bmputer alignment of sequencebapter Phy-
logenetic Analysis of DNA Sequences. Oxford, 1991.

C. Watkins. Dynamic alignment kernels. Technical report, UL Royal Holloway, 1999.

