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Abstract. This paper introduces the Minnesota Intrusion Detection System 
(MINDS), which uses a suite of data mining techniques to automatically detect at-
tacks against computer networks and systems. While the long-term objective of 
MINDS is to address all aspects of intrusion detection, in this paper we present 
two specific contributions. First, we present MINDS anomaly detection module 
that assigns a score to each connection that reflects how anomalous the connection 
is compared to the normal network traffic. Experimental results on live network 
traffic at the University of Minnesota show that our anomaly detection techniques 
have been successful in automatically detecting several novel intrusions that could 
not be identified using state-of-the-art signature-based tools such as SNORT. 
Many of these have been reported on the CERT/CC list of recent advisories and 
incident notes. We also present the results of comparing the MINDS anomaly de-
tection module to SPADE (Statistical Packet Anomaly Detection Engine), which 
is designed to detect stealthy scans. Second, we present MINDS association pat-
tern analysis module that summarizes those network connections that are ranked 
highly anomalous by the anomaly detection module. Given the very high volume 
of connections observed per unit time, such characterization of novel attacks is es-
sential in enabling a security analyst to understand emerging threats. Experimental 
evaluation shows that the MINDS approach is very useful in creating accurate 
summaries of novel attacks. 

1 Introduction 

Traditional methods for intrusion detection are based on extensive knowledge of 
attack signatures that are provided by human experts. The signature database has to 
be manually revised for each new type of intrusion that is discovered. A significant 
limitation of signature-based methods is that they cannot detect novel attacks. In 
addition, once a new attack is discovered and its signature developed, often there is a 
substantial latency in its deployment. These limitations have led to an increasing 
interest in intrusion detection techniques based upon data mining [3, 4, 21, 26, 28], 
which generally fall into one of two categories: misuse detection and anomaly detection. 

In misuse detection, each instance in a data set is labeled as 'normal' or 'intrusive' 
and a learning algorithm is trained over the labeled data. Research in misuse detection 



has focused mainly on detecting network intrusions using various classification algo-
rithms [3, 10, 21, 24, 26, 33], rare class predictive models [14-17, 19], association 
rules [3, 21, 28] and cost sensitive modeling [9, 16]. Unlike signature-based intrusion 
detection systems, models of misuse are created automatically, and can be more so-
phisticated and precise than manually created signatures. In spite of the fact that mis-
use detection models have high degree of accuracy in detecting known attacks and 
their variations, their obvious drawback is the inability to detect attacks whose in-
stances have not yet been observed. In addition, labeling data instances as normal or 
intrusive may require enormous time for many human experts. 

Anomaly detection algorithms build models of normal behavior and automatically 
detect any deviation from it [7, 12]. The major benefit of anomaly detection algo-
rithms is their ability to potentially detect unforeseen attacks. In addition, they may be 
able to detect new or unusual, but non-intrusive, network behavior that is of interest 
to a network manager, and needs to be added to the normal profile. A major limitation 
of anomaly detection systems is a possible high false alarm rate. There are two major 
categories of anomaly detection techniques, namely supervised and unsupervised 
methods. In supervised anomaly detection, given a set of normal data to train from, 
and given a new piece of test data, the goal is to determine whether the test data be-
longs to “normal” or to an anomalous behavior. Recently, there have been several 
efforts in designing supervised network-based anomaly detection algorithms, such as 
ADAM [3], PHAD [27], NIDES [2], and other techniques that use neural networks 
[32], information theoretic measures [22], network activity models [6] etc. Unlike 
supervised anomaly detection where the models are built only according to the nor-
mal behavior on the network, unsupervised anomaly detection attempts to detect 
anomalous behavior without using any knowledge about the training data. Unsuper-
vised anomaly detection approaches are based on statistical approaches [36, 37, 38], 
clustering [8], outlier detection schemes [1, 5, 18, 31], state machines [34], etc. 

This paper introduces the Minnesota Intrusion Detection System (MINDS), which 
uses a suite of data mining techniques to automatically detect attacks against com-
puter networks and systems. While the long-term objective of MINDS is to address 
all aspects of intrusion detection, in this paper we present details of two specific con-
tributions: (i) an anomaly detection technique that assigns a score to each network 
connection that reflects how anomalous the connection is compared to the normal 
network traffic; and (ii) an association pattern technique module that summarizes 
those network connections that are ranked highly anomalous by the anomaly detec-
tion module.  

In addition, we provide an evaluation of MINDS anomaly detection schemes in the 
context of real life network data at the University of Minnesota. During the past seven 
months, this evaluation has shown that anomaly detection algorithms have been suc-
cessful in automatically detecting numerous novel intrusions that could not be identi-
fied using state-of-the-art tools such as SNORT [35]. In fact, many of these attacks 
have been reported on the CERT/CC (Computer Emergency Response 
Team/Coordination Center) list of recent advisories and incident notes. We chose to 
present results on real life network data, since publicly available data sets for evalua-
tion of network intrusion detection systems (e.g. DARPA 1998 and DARPA 1999 
data sets [23, 25]) are known to have serious limitations [29]. In the absence of labels 



of network connections (normal vs. intrusive), we are unable to provide real estimate 
of detection rate, but nearly all connections that are ranked highly by our anomaly 
detection algorithms are found to be interesting and anomalous by the network secu-
rity analyst on our team. Finally, we also present a brief comparison of SPADE (Sta-
tistical Packet Anomaly Detection Engine) [36] and MINDS on the same real life 
network data to provide an understanding of their relative effectiveness in detecting 
anomalous network behavior. SPADE is chosen for this comparison due to the fact 
that both SPADE and MINDS are unsupervised anomaly detection algorithms whose 
success is not predicated upon the existence of a sample of clean normal network 
traffic with no irregularities. This comparison was possible since SPADE is publicly 
available. 

Cyber attacks detected using MINDS anomaly detection algorithms were further 
analyzed and summarized using association pattern analysis. This summarization of 
anomalous network connections into a fewer high-level patterns is a key if we expect 
a security analyst to have any hope of making sense of the results of intrusion detec-
tion. Our experiments on real network data demonstrate that such association rules 
were able to provide a concise characterization of many detected anomalies and to 
help in understanding nature of detected attacks. In addition, these rules may be effec-
tively used for creating new signatures for intrusion detection systems. 

2 The MINDS System 

The Minnesota Intrusion Detection System (MINDS) is a data mining based system 
for detecting network intrusions.  Figure 1 illustrates the process of analyzing real 
network traffic data using the MINDS system.  Input to MINDS is Netflow version 5 
data collected using Netflow tools.  Netflow tools only capture packet header infor-
mation (i.e., they do not capture message content), and build one way sessions 
(flows).  We are working with Netflow data instead of tcpdump because we currently 
do not have the capacity to collect and store the tcpdump.  Netflow data for each 10 
minute window, which typically result in 1 to 2 million flows, is stored in a flat file.  
The analyst uses MINDS to analyze these 10-minute data files in a batch mode.  Be-
fore applying MINDS to these data files, a data filtering step is performed by the 
system administrator to remove network traffic that the analyst is not interested in 
analyzing. For example, the removed attack-free network data in data filtering step 
may include the data coming from trusted sources, non-interesting network data (e.g. 
portions of http traffic) or unusual/anomalous network behavior for which it is known 
that it does not correspond to intrusive behavior. 

The first step in MINDS includes constructing features that are used in the data 
mining analysis. Basic features include source IP address, source port, destination IP 
address, destination port, protocol, flags, number of bytes, and number of packets. 
Derived features include time-window and connection-window based features. Time-
window based features are constructed to capture connections with similar character-
istics in the last T seconds, since typically of Denial of Service (DoS) and scanning 
attacks involve hundreds of connections. A similar approach was used for construct-



ing features in KDD Cup'99 data [21]. Table 1 summarizes the time-window based 
features. 

Fig. 1. Architecture of MINDS system 

Table 1. The extracted “time-window” features 

Feature Name Feature description 
count_dest For the same source IP address, number of unique destination IP 

addresses inside the network in the last T seconds  
count_src For the same destination IP address, number of unique source IP 

addresses inside the network in the last T seconds 
count_serv_src Number of connections from the source IP to the same destination 

port in the last T seconds 
count_serv_dest Number of connections from the destination IP to the same source 

port in the last T seconds 

“Slow” scanning attacks, i.e. those that scan the hosts (or ports) and use a much 
larger time interval than a few seconds, e.g. one scan per minute or even one scan per 
hour, cannot be detected using derived “time-window” based features. To capture 
these types of the attacks, we also derive “connection-window” features that capture 
the same characteristics of the connection records as time-window based features, but 
are computed in the last N connections. The connection-window based features are 
shown in Table 2. 

Table 2. The extracted “connection-window” based features 

Feature Name Feature description 
count_dest_conn For the same source IP address, number of unique destination 

IP addresses inside the network in the last N connections 
count_src_conn For the same destination IP address, number of unique source 

IP addresses inside the network in the last N connections 
count_serv_src_conn Number of connections from the source IP to the same desti-

nation port in the last N connections 
count_serv_dest_conn Number of connections from the destination IP to the same 

source port in the last N connections 

After the feature construction step, the known attack detection module is used to 
detect network connections that correspond to attacks for which the signatures are 
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available, and then to remove them from further analysis.  For experiments reported 
in this paper, this step is not performed. 

Next, the data is fed into the MINDS anomaly detection module that uses an outlier 
detection algorithm to assign an anomaly score to each network connection.  A hu-
man analyst then has to look at only the most anomalous connections to determine if 
they are actual attacks or other interesting behavior. 

 MINDS association pattern analysis module summarizes network connections that 
are ranked highly anomalous in the anomaly detection module. Human analyst pro-
vides a feedback when analyzing created summaries of detected attacks and deciding 
whether these summaries are helpful in creating new rules that may be further used in 
the known attack detection module. 

3 MINDS Anomaly Detection 

In this section, we only present the density based outlier detection scheme used in our 
anomaly detection module. For more detailed overview of our research in anomaly 
detection the reader is referred to [20]. 

MINDS anomaly detection module assigns a degree of being an outlier to each 
data point, which is called the local outlier factor (LOF) [5].  The outlier factor of a 
data point is local in the sense that it measures the degree of being an outlier with 
respect to its neighborhood. For each data example, the density of the neighborhood 
is first computed. The LOF of specific data example p represents the average of the 
ratios of the density of the example p and the density of its nearest neighbors. To 
illustrate advantages of the LOF approach, consider a simple two-dimensional data 
set given in Figure 2. It is apparent that the density of cluster C2 is significantly 
higher that the density of cluster C1. Due to the low density of cluster C1 it is apparent 
that for every example q inside cluster C1, the distance between the example q and its 

nearest neighbor is greater than the distance between the example p2 and its nearest 
neighbor, which is from cluster C2, and therefore example p2 will not be considered 
as outlier. 

Fig. 2. Advantages of the LOF approach 



Hence, the simple nearest neighbor approach based on computing the distances fail 
in these scenarios. However, the example p1 may be detected as outlier using the 
distances to the nearest neighbor. On the other side, LOF is able to capture both out-
liers (p1 and p2) due to the fact that it considers the density around the points.  
LOF requires the neigborhood around all data points be constructed.  This involves 
calculating pairwise distances between all data points which is an O(n^2) process, 
which makes it computationally infeasibe for millions of connections.  To address 
this problem, we sample the data to use as a training set and compare all data points 
to this small set, which reduces the complexity to O(n*m) where n is the size of the 
data and m is the size of the sample.  Apart from achieving computational efficiency 
by sampling, anomalous network behavior will not be able to match enough examples 
in the sample to be called normal.  This is because rare behavior will not be repre-
sented in the sample. 

4 Experimental Evaluation of MINDS Anomaly Detection 

The output of the MINDS anomaly detector contains the original Netflow data with 
the addition of the anomaly score and relative contribution of each of the 16 attributes 
to the score.  Table 3 shows the 16 attributes.  The analyst typically looks at only the 
top few connections that have the highest anomaly scores.  Figure 3 shows the most 
anomalous connections found by MINDS on January 26th in a 10-minute window, 48 
hours after the slammer attack.  The University of Minnesota network security analyst 
has been using MINDS and SNORT independently to analyze the university network 
traffic for the past seven months.  During this period, MINDS has been successful in 
detecting many novel network attacks and emerging network behavior that could not 
be detected using SNORT.  In the following, we present a few examples that demon-
strate the effectiveness of the MINDS anomaly detection algorithm. 

4.1 MINDS Anomaly Detection Results 

• On January 26, 2003, 48 hours after the “SQL Slammer/Sapphire” worm started, 
network connections related to the worm were only about 2% of the total traffic.  
Despite this, they were still ranked at the top by the anomaly detection algorithm 
(see Figure 3).  The network connections that are part of the “slammer worm” are 
highlighted in light gray in Figure 3.  It can be observed that the highest contribu-
tions to anomaly score for these connections were due to the features 9 and 11 
(count_dest and count_serv_src from Table 1).  This was due to the fact that the 
infected machines outside our network were still trying to communicate with 
many machines inside our network  Similarly, it can be observed from Figure 3 
that during this time interval there is another scanning activity (ICMP ping scan, 
highlighted in dark gray) that was detected again mostly due to the features 9 and 
11.  The two non-shaded flows are replies from Half-Life game servers (running 
on port 27016/udp).  They were flagged anomalous because those machines were 
talking to only port 27016/udp.  For web connections, it is common to talk only on 



port 80, and it is well represented in the normal sample.  However, since Half-Life 
connections did not match any normal samples with high counts on feature 15, 
they became anomalous. 

 
score    srcIP sPort    dstIP dPort protocoflags packets  bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
4048.49 142.150.X.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
4008.35 200.250.X.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3657.23 202.175.X.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2693.88 142.150.X.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2444.16 142.150.X.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2385.42 142.150.X.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2057.15 142.150.X.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1919.54 142.150.X.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1634.38 142.150.X.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1513.96 142.150.X.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1279.75 142.150.X.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

 Fig. 3. Most anomalous connections found by MINDS anomaly detection algorithm 
in a 10-minute window 48 hours after the “slammer worm” started. 

Table 3. List of features used in anomaly detection 

1 source IP 5 protocol 9 cnt_dest 13 cnt_src 
2 destination IP 6 duration 10 cnt_dest_conn 14 cnt_src_conn 
3 source Port 7 bytes/packet 11 cnt_serv_src 15 cnt_serv_dest 
4 destination Port 8 # packets 12 cnt_serv_src_conn 16 cnt_serv_dest_conn 

 
• On October 10th, our anomaly detection module detected two activities of the 

slapper worm that were not identified by SNORT since they were variations of an 
existing worm code.  Once a machine is infected with the worm, it communicates 
with other machines that are also infected and attempts to infect other machines.  
The most common version of the worm uses port 2002 for communication, but 
some variations use other ports. Our anomaly detector flagged these connections 
as anomalous for two reasons.  First, the source or destination ports used in the 
connection may not have been rare individually but the source-destination port 
pairs were very rare (the anomaly detector does not keep track of the frequency of 
pairs of attributes; however, while building the neighborhoods of such connec-
tions, most of their neighbors will not have the same source-destination port pairs, 
which will contribute to the distance). Second, the communication pattern of the 
worm looks like a slow scan causing the value of the variable 
count_serv_src_conn (number of connections from the source IP to the same des-
tination port in the last N connections) to become large.  SNORT has a rule for de-
tecting worm that uses port 2002 (and a few other ports), but not for all possible 



variations.  A single general SNORT rule can be written to detect the variations of 
the worm at the expense of a higher false positive rate. 

• On August 9th, 2002, CERT/CC issued an alert for “widespread scanning and 
possible denial of service activity targeted at the Microsoft-DS service on port 
445/TCP” as a novel Denial of Service (DoS) attack.  In addition, CERT/CC also 
expressed “interest in receiving reports of this activity from sites with detailed 
logs and evidence of an attack.” This type of attack was the top ranked outlier on 
August 13th, 2002, by our anomaly detection module in its regular analysis of 
University of Minnesota traffic. The port scan module of SNORT could not detect 
this attack, since the port scanning was slow.  

• On August 13th, 2002, our anomaly detection module detected “scanning for an 
Oracle server” by ranking connections associated with this attack as the second 
highest ranked block set of connections (the top ranked block of connections be-
longed to the denial of service activity targeted at the Microsoft-DS service on 
port 445/TCP). This type of attack is difficult to detect using other techniques, 
since the Oracle scan was embedded within much larger Web scan, and the alerts 
generated by Web scan could potentially overwhelm the human analysts. On June 
13th, CERT/CC had issued an alert for the attack. 

• On August 8th and 10th, 2002, our anomaly detection techniques detected a ma-
chine running a Microsoft PPTP VPN server, and another one running a FTP 
server, which are policy violations, on non-standard ports.  Both policy violations 
were the top ranked outliers.  Our anomaly detector module flagged these servers 
as anomalous since they are not allowed, and therefore very rare.  Since SNORT 
is not designed to look for rogue and unauthorized servers, it was not able to de-
tect these activities. In addition, for the PPTP VPN server, the collected GRE traf-
fic is part of the normal traffic, and not analyzed by tools such as SNORT. 

• On January 27, 2003, our techniques detected odd, not routable RFC1918 traffic 
coming from the Internet. RFC1918 (Request for Comments) serves as Address 
Allocation for Private Internets, while RFC1918 blocks are segments of IP address 
space reserved by IANA (Internet Assigned Numbers Authority) for use within an 
organization. DNS records for RFC1918 addresses are legitimate only within the 
network on which a host with RFC1918 address resides. However, RFC1918 ad-
dresses are not globally routed and they should not appear on the public Internet. 

• On February 6, 2003, our technique detected that the IP address 128.101.6.0, 
which does not correspond to a real computer, but to a network itself, has been 
targeted with IP Protocol 0 traffic from Korea (61.84.X.97). This type of network 
traffic is “exceedingly” bad as IP Protocol 0 is not legitimate. 

• On February 6, 2003, our techniques detected a computer on the network appar-
ently communicating with a computer in California over a VPN. This scenario in 
the worst case may correspond to a covert channel by which someone might be 
gaining access to the University network in an unauthorized way, and in the best 
case to someone at the University creating unauthorized tunnels between the Uni-
versity and some other network, which is not allowed. However, both types of be-
havior are extremely useful for security analysts. 

• On February 7, 2003, a computer in the CS department talking on IPv6 was de-
tected using our techniques. This type of communication is extremely rare and 



represents a possible covert tunnel to the outside world. The follow-up analysis 
diagnosed that a suspect who was doing this is on system staff and is in fact using 
this as a covert tunnel to his home computers. 

• On February 6, 2003, our anomaly detection techniques detected unsolicited 
ICMP ECHOREPLY messages to a computer previously infected with Stachel-
dract worm (a DDos agent). Although infected machine has been removed from 
the network, other infected machines outside our network were still trying to talk 
to infected machine from our network 

4.2 Comparison of MINDS and SPADE 

SPADE: A brief overview. SPADE is a SNORT plug-in that automatically detects 
stealthy port scans [36]. Unlike traditional scan detectors that look for X events in Y 
seconds, SPADE takes a radically different approach and looks at the amount of in-
formation gained by probing.  It has four different methods of calculating the likeli-
hood of packets.  However, the most successful method measures the direct joint 
probability P(dest IP, dest Port).  SPADE examines TCP-SYN packets and maintains 
the count of packets observed on (destIP, destPort) tuples.  When a new packet is 
observed, SPADE checks the probability of observing that packet on the (dest IP, dest 
Port) tuple.  The lower the probability, the higher the anomaly score. Note that 
SPADE raises alarms on individual SYN packets regardless of how many other desti-
nation IP/ports have been scanned by the same source.  In the case of an IPsweep, the 
scanner will eventually touch a machine that does not have the service being scanned 
for and therefore will raise a SPADE alarm.  In the case of a portscan, an alarm will 
be raised when the scanner touches a port for which the service is not available on the 
target machine.  In addition, SPADE will raise false alarms on legitimate traffic for 
which (destination IP, destination port) combinations are infrequent.  This will be 
even more prevalent on outbound connections.  The reason is that the number of IPs 
outside is much bigger than the number of IPs inside the network.  As reported in 
[36], on DARPA99 data, as the number of variables in the direct joint probability is 
increased to include the source IP and source Port, the accuracy of SPADE decreases.  
This can be attributed to the fact that when extra attributes are used, the model essen-
tially becomes sparser and therefore gives more false alarms. 

MINDS and SPADE both assign a score to each connection that indicates its de-
gree of outlierness.  They are both unsupervised anomaly detection schemes since 
neither one requires a labeled training set.  The key difference is in the method for 
computing the anomaly score.  In SPADE, the anomaly score is inversely related to 
the probability of observing the connection based upon the features used.  If too many 
features are used (or if any feature has too many values), then the probability esti-
mates are not reliable.  The reason is that many of the legitimate combinations of 
features may be previously unseen or infrequent.  In contrast, MINDS does not suffer 
from increased dimensionality as much as SPADE does, since MINDS constructs 
neighborhoods around data points which is a better estimate of actual probabilities 
when there is not enough data to adequately develop the model.  This allows MINDS 
to use a large number of features as long as they are not spurious.  Even if MINDS 



used only two features (destination IP and destination port), we argue that it can pro-
vide higher quality outlier scores.  To illustrate this consider the following probability 
distribution (Table 4), where blank represents no occurrences.  If we observe a packet 
P1 on IP2/Port3 and another packet P2 on IP4/Port1, SPADE will assign equal anom-
aly scores to both of the packets.  However, one could argue that P2 should be more 
anomalous than P1 since in the case of P2 neither the port (Port1) nor the IP (IP4) by 
themselves are used frequently, whereas for P1, both the port (Port3) and the IP (IP2) 
are frequently used. 

If we use MINDS anomaly detection module with only 2 attributes, namely the 
destination IP and destination port, packet P2 will be assigned a higher anomaly score 
than P1.  The reason is that P1 will be closer to its neighbors than P2 will be to its 
neighbors.  Both P1 and P2 will have neighbors that are in dense regions.  If we com-
pare the ratios of densities of P1 and P2 to the density of their respective neighbors, 
P2 will have a lower ratio, hence a higher anomaly score. 

Table 4. IP/Port frequency distribution 

Frequency IP1 IP2 IP3 IP4 
Port1  Low  P2 
Port2  High   
Port3 High P1 High  
Port4 Low High Low  

We ran the latest version of SPADE (v021031.1) on live network traffic at the 
University of Minnesota for a 10-minute period using a threshold of 8.  It generated 
296,921 alarms out of approximately one million TCP_SYN packets received during 
this 10-minute window.  Nearly 26% (76,956) of the alarms were on inbound packets. 
Vast majority of outbound packets were false alarms.  This is not surprising since the 
space of (IP/Port) combinations outside our network is very large and the data is very 
sparse.  This is a serious limitation of SPADE, since outbound alarms tend to be very 
important, as they often indicate infected machines inside the network.  In the rest of 
the discussion, we focus on alarms on inbound packets.  25% (19020) of inbound 
alarms were to web alarms, 6% (4608) to common services other than web (https, 
mail, ftp, ssl enabled imap, web proxies), 28.5% (21895) to peer-to-peer applications 
(kazaa, gnutella, edonkey) and the remaining 41% (31433) were hard to interpret.  If 
we ignore repetitions of the same alarm (same source IP, destiantion IP, destination 
Port), we are left with 28973 alarms.  There were a total of 21669 unique sources of 
alarms, 20825 of them generated only 1 or 2 alarms (Figure 4a). (More detailed in-
formation about the distributions is given in Table 5.)  Although some of these alerts 
may indicate very slow stealthy scans, majority of these alerts are likely to be for 
legitimate connections on rarely used destination IP, destination port combination.  
Specifically, we can say that the alarms on p2p applications are false alarms (not 
scans) since p2p applications get the list of active servers from their super-nodes 
instead of scanning for machines running these applications.  In any case, one cannot 
expect from a system administrator to investigate alarms for so many different 
sources in a short 10-minute window. 



If we raise our threshold and look at only top 10,000 alerts, the picture is very 
similar (Figure 4b).  If we look at the breakdown of alarms by type, in the top 10,000 
(threshold = 12.6108), web alerts are 59% (5927), common services are 7.5% (754), 
p2p applications are 9% (923) and the remaining, hard-to-interpret ones are 24% 
(2396).  There are 3306 unique sources that generate 10,000 alarms, 3159 of which 
raised either 1 or 2 alarms.  If we look at top 1000, 497 out of 547 unique sources 
raised less than 3 alarms (Figure 4c).  If we look at top 100, 73 out of 78 unique 
sources raised less than 3 alarms (Figure 4d).   

If we do a similar analysis for alarms on web (Figure 4e), P2P (peer to peer) (Fig-
ure 4f), common services (Figure 4g) and the remaining alarms (Figure 4h) sepa-
rately, we still get a very similar picture; the number of unique sources generating 
very few alarms is very large. We argue that most of SPADE alarms are effectively 
false alarms as the number of unique sources generating the alarms is at a high per-
centage regardless of the threshold. 

SPADE does find some stealthy scans that will be hard to find using simple scan 
detection schemes that look for source IP’s that connect to more than X destination 
Ports / IP’s in a specified time or connection window.  For example, among the top 
10,000 alarms 66 unique sources generated at least 10 or more alarms.  Each one of 
these sources were either scanning a specific IP for 10 or more ports, or scanning 10 
or more IP’s for a specific port.  But in the process of finding these hard to detect 
stealthy scans, SPADE generated false alarms for far too many legitimate connec-
tions. 

 

 

 

a) All 76,956 alarms b) Top 10k alarms 

c) Top 1,000 alarms d) Top 100 alarms



 

  
Fig. 4. Distribution of alerts generated by unique source IPs in the SPADE algorithm for different 
number of alerts as well as for different traffic type. 

Table 5. Distribution of number of alarms from unique sources (inbound alarms) 

# alarms 1 2 3 4 5-6 7-20 21-50 51-150 151+ 
# sources 19282 1543 394 151 139 106 45 5 4 

 
For the same 10-minute period, we ran MINDS and asked our security expert to 

analyze top few hundred anomalous connections ranked by the anomaly detector.  
Most of these were scans, which were interleaved with few non-scan connections.  
Most of these scans targeted dozens of IPs inside the University of Minnesota net-
works.  Among non-scan anomalous connections, our security expert identified a 
local machine running a web proxy open to everyone, and lots of people were brows-
ing the web through the proxy to anonymize their connections.  Proxy settings were 
fixed after the issue was identified.  For privacy reasons, we cannot report the indi-
vidual connections but only provide a high level summary.  Note that stealthy scans 
that target only a few machines during the 10-minute window are not likely to receive 
high anomaly score by MINDS. 

4.3 MINDS anomaly detection module versus SNORT  

Here we compare general capabilities of SNORT and MINDS in detecting the follow-
ing categories of attacks and irregular behavior: 

e f 

g h 



• content-based attacks 
• scanning activities 
• policy violations 

Content based attacks. These attacks are out of scope for our anomaly detection 
module since it does not consider the content of the packets, and therefore SNORT is 
superior in identifying those attacks.  However, SNORT is able to detect only those 
content-based attacks that have known signatures/rules.  Despite the fact that SNORT 
is more successful in detecting the content-based attacks, it is important to note that 
once a computer has been attacked successfully, its behavior could become anoma-
lous and therefore detected by our anomaly detection module, as seen in previous 
examples. 

Scanning activities. When detecting various scanning activities SNORT and 
MINDS anomaly detection module have similar performance for certain types of 
scans, but they have very different detection capabilities for other types. There are 
two categories of scanning activities, where SNORT and our anomaly detection mod-
ule might have different detection performance: 

• Fast (regular) scans 
• Slow scans 

When detecting regular scans, SNORT portscan module keeps track of the number 
of destination IP addresses accessed by each source IP address in a given time win-
dow (default value is 3 seconds). Let's denote this variable count_dest, already de-
fined in Table 1. Whenever the value of count_dest is above a specified threshold 
(SNORT default value is 4), SNORT raises an alarm, thus indicating a scan by the 
source IP address. Our anomaly detection module is also able to assign high anomaly 
score to such network connections, since for most normal connections the value of 
count_dest is low. In addition, connections from many types of scanning activities 
tend to have other features that are unusual (such as very small payload), which make 
additional contributions to the anomaly score. 

A scan can be detected by SNORT provided the scan is fast enough for chosen 
time window (default value is 3 seconds) and count threshold (default value is 4). If a 
scanning activity is not fast enough (outside specified parameters), it will not be de-
tected by SNORT. However, SNORT can still detect such activities by increasing the 
time window and/or decreasing the number of events counted within the time-
window, but this will tend to increase false alarm rate. On the other side, our anomaly 
detection module is more suitable for detecting slow scans since it considers both 
time-window based and connection-window based features (as opposed to SNORT 
that uses only time-window based features), as well as other features of the connec-
tions such as number of packets, number of bytes per packet, etc.  

Policy violations. MINDS anomaly detection module is much more successful 
than SNORT in detecting policy violations (e.g. rogue and unauthorized services), 
since it looks for unusual network behavior. SNORT may detect these policy viola-
tions only if it has a rule for each of these specific activities. Since the number and 
variety of these activities can be very large and unknown, it is not practical to incor-
porate them into SNORT for the following reasons. First, processing of all these rules 
will require more processing time thus causing the degradation in SNORT perform-
ance. It is important to note that it is desirable for SNORT to keep the amount of 



analyzed network traffic small by incorporating rules as specific as possible. On the 
other hand, very specific rules limit the generalization capabilities of a typical rule 
based system, i.e., minor changes in the characteristics of an attack might cause the 
attack to be undetected.  

Second, SNORT's static knowledge has to be manually updated by human analysts 
each time a new suspicious behavior is detected. In contrast, MINDS anomaly detec-
tion module is adaptive in nature, and it is particularly successful in detecting anoma-
lous behavior originating from a compromised machine (e.g. attacker breaks into a 
machine, installs unauthorized software and uses it to launch attacks on other ma-
chines). Such behavior is often undetected by SNORT's signatures. 

5 Summarization of Anomalous Connections 

While improving detection rate and reducing false alarm rate for attacks is a continu-
ing objective for intrusion detection schemes, this task alone is not sufficient if the 
rate of network traffic is very high. For example, suppose a security analyst examines 
the output of an anomaly detector every 10 minutes during which two million connec-
tions are established at the University of Minnesota network. Even if a hundred of 
these connections are reported as anomalous, it is impracticable for the analyst to 
examine them in 10 minutes. Thus, there is a need for an approach whereby anoma-
lous connections can be summarized into patterns that capture the essence of the 
anomalous behavior. In addition to making the human analyst’s task manageable, this 
also had had the advantage of providing templates from which signatures of novel 
attacks can be built for augmenting the database of signature-based intrusion detec-
tion systems.  

5.1. Association Pattern Analysis 

MINDS uses a data mining technique called association pattern analysis [3, 21, 28] to 
achieve summarization of detected attacks. An example of this is shown in Figure 5, 
where ten connections are summarized into a frequent itemset. Note that connection 
parameters that provide no information are eliminated. This reduces information 
overloading for the security analyst. 

Figure 5. Association rule that desribe scanning activity on port 139 

{SrcIP=X.Y.Z.95, DestPort=139}  
Summarization

SrcIP Start time Dest IP Dest 
Port 

Number 
of bytes

X.Y.Z.95 11:07:20 A.B.C.223 139 192 
X.Y.Z.95 11:13:56 A.B.C.219 139 195 
X.Y.Z.95 11:14:29 A.B.C.217 139 180 
X.Y.Z.95 11:14:30 A.B.C.255 139 199 
X.Y.Z.95 11:14:32 A.B.C.254 139 186 
X.Y.Z.95 11:14:35 A.B.C.253 139 177 
X.Y.Z.95 11:14:36 A.B.C.252 139 172 
X.Y.Z.95 11:14:38 A.B.C.251 139 192 
X.Y.Z.95 11:14:41 A.B.C.250 139 195 
X.Y.Z.95 11:14:44 A.B.C.249 139 163 
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The overall architecture of our association pattern analysis module is shown in 
Figure 6. Connections that have high anomaly scores are mostly likely to be 
scans/attacks and those with low anomaly scores are most likely to be normal traffic. 
As a result, MINDS chooses connections that have the top percentage of anomaly 
scores to be the attack class and the bottom percentage of anomaly scores to be the 
normal class. Connections with intermediate anomaly scores will be ignored. In our 
experiments, we choose connections that have the top 10% anomaly score to be the 
anomaly class and the bottom 30% anomaly score to be the normal class. Connections 
with intermediate anomaly scores are ignored. Next, the association pattern generator 
is applied to each class and the patterns are ranked according to the various measures 
described above. The extracted patterns can be used to create summaries and profiles 
for normal and anomaly connections. 

Once the profiles for the attack class have been established, a follow-up analysis is 
often performed to study the nature of the anomalous connections.  A typical follow-
up analysis involves connecting via telnet to the suspected computer at the specific 
port and examining the returned information. Another possibility of analyzing the 
suspected computer is to start capturing packets on that machine at the particular port 
and to investigate the contents of the packets. 

MINDS 
Anomaly 
Detection 
System R1: TCP, DstPort=1863 → Anomaly

… 
… 

R100: TCP, DstPort=80 → Normal 

Discriminating Association 
Pattern Generator

• Build normal profile 
• Study changes in normal 

behavior 
• Create summary for anomalies
• Understand nature of 

anomalies

Update
Knowledge 

Base 

Anomaly

Normal 

Anomaly  
Scores 

 
Figure 6. MINDS association analysis module 

5.2. Evaluation of attack summaries on real network data 

In this section, we report some of the highest ranked (most discriminative) patterns 
generated by MINDS association pattern analysis module. These patterns represent a 
summary of the most frequently occurring and discriminating anomalous traffic 
flagged by MINDS anomaly detection module. 

Example 1: 
SrcIP=IP1,DstPort=80,Protocol=TCP, Flag=SYN, NoPackets: 3, NoBytes=120…180 (c1=256, c2 = 1) 

SrcIP=IP1,DstIP=IP2,DstPort=80,Protocol=TCP, Flag=SYN, NoPackets=3, NoBytes=120…180 (c1=177,c2=0) 

The first rule indicates that the source of the anomalous connections originates 
from IP1, the destination port is 80, the protocol used is TCP with tcpflags set to 



SYN, the number of packets is 3, and the total number of bytes is between 120 and 
180. Furthermore, this pattern is observed 256 (c1 = 256) among the anomalous con-
nections and only once (c2=1) in the normal connections.  Therefore, it has a high 
ratio and precision, which is why it is ranked among the top few anomalies found by 
the system. 

At first glance, the first rule indicates a Web scan since it appears mostly in the 
anomaly class with a fixed source IP address but not with a fixed destination IP ad-
dress. However, the second rule suggests that an attack was later launched to one of 
the specific machines since the pattern originates from the same source IP address but 
has a specific destination IP address and covers only anomalous connections. Further 
analysis confirms that a scan has been performed from the source IP address IP1, 
followed by an attack on a specific machine that was previously identified by the 
attacker to be vulnerable.  

The example above illustrates how a group of similar association patterns can be 
used to summarize the details of an attack.  It can also show the potential vulnerable 
spots of the system.  For example, the first rule reported above could have been gen-
erated for a code-red attack type, while the fact that the pattern is only observed in 
anomalous connections suggests there might be a vulnerability related to port 80 that 
the intruder attempt to exploit. 

Example 2 
DstIP= IP3, DstPort=8888, Protocol=TCP (c1=369, c2=0) 
DstIP= IP3, DstPort=8888, Protocol=TCP, Flag=SYN (c1=291, c2=0) 

This pattern indicates a high number of anomalous TCP connections on port 8888 
to a specific machine. Fol-low-up analysis of the connections covered by the pattern 
indicates possible existence of a machine that is running a variation of the KaZaA 
file-sharing protocol.  KaZaA file sharing software is typically used for sharing audio, 
video, and software files, which are very often illegal copies. 

Example 3: 
SrcIP= IP4, DstPort=27374, Protocol=TCP, Flag=SYN, NoPackets=4, NoBytes=189…200 (c1=582, c2=2) 
SrcIP= IP4, DstPort=12345, NoPackets=4, NoBytes=189…200 (c1=580, c2=3) 
SrcIP= IP5, DstPort=27374, Protocol=TCP, Flag=SYN, NoPackets=3, NoBytes=144 (c1=694, c2=3) 

The patterns above indicate a number of scans on port 27374 (which is a signature 
for the SubSeven worm) and on port 12345 (which is a signature for the NetBus 
worm). Further analysis has shown that there are no fewer than five machines scan-
ning for one or both of these ports within an arbitrary time window. 

Example 4: 
DstPort=6667, Protocol=TCP (c1=254, c2=1) 
The pattern above implies an unusually large number of network connections in-

volving the destination port 6667, which is the port where the IRC (Internet Relay 
Chat) server is typically run. Thorough analysis reveals that there are many small 
packets from/to various IRC servers around the world. Although IRC traffic is not 
unusual, the fact that it is flagged as anomalous is interesting. This might indicate that 
the IRC server has been taken down (e.g. by a DOS attack) or it is a rogue or unau-
thorized IRC server (it could be involved in some hacking activity). 



6 Conclusions and Future Work 

The overall goal for MINDS is to be a general framework and system for detecting 
attacks and threats to computer systems. Data generated from network traffic moni-
tor-ing tends to have very high volume, dimensionality and heterogeneity. Coupled 
with the low frequency of occurrence of attacks, this makes standard data mining 
algo-rithms unsuitable for detecting attacks. In addition, cyber attacks may be 
launched from several different locations and targeted to many different destinations, 
thus creat-ing a need to analyze network data from several locations/networks in 
order to detect these distributed attacks. According to our initial analysis, the intru-
sions detected by MINDS are complementary to those of SNORT – a signature-based 
system. This im-plies that the two can be combined to increase overall attack cover-
age. In addition, MINDS will have a visualization tool to aid the analyst in better 
understanding anoma-lous/suspicious behavior detected by the anomaly detection 
engine. 

Figure 7. Three types of threats that can be detected by MINDS anomaly detection module  

The key anomaly detection approach used by MINDS is based on the analysis of 
unusual behavior, and is thus suitable for detecting many types of threats. Figure 7 
shows three such types. First type of threats correspond to outsider attacks that repre-
sent deviations from normal connection behavior. Second threat type is insider attack, 
where an authorized user logs into a system with malicious intent. However, the mali-
cious behavior shown by such a user is often at variance with normal procedures, and 
our behavior-analysis based approach can pick it up as anomalous behavior,  report-
ing it as a possible attack. Since no security mechanism is fool proof, an undetected 
suc-cessful outsider becomes equivalent to an insider attack, and the same ideas ap-
ply. Third threat type corresponds to a situation where a virus/worm has entered an 
envi-ronment – either undetected by a perimeter protection mechanism such as virus 
scan of attachments, or through bringing in of an infected portable hardware device, 
e.g. a laptop. The unusual behavior shown by such a machine can potentially be de-
tected by our approach of analyzing anomalous behavior. 

A number of applications outside of intrusion detection have similar characteris-
tics, e.g. detecting credit card and insurance frauds, early signs of potential disasters 
in industrial process control, early detection of unusual medical conditions – e.g. 
cardiac arrhythmia, etc. We plan to explore the use of our techniques to such prob-
lems. 

   MINDS Research 
• Defining normal behavior
• Feature extraction 
• Similarity functions 
• Outlier detection 
• Result summarization 
• Detection of attacks origi-

nating from multiple sites
Worm/virus detection 
after infection 

Insider attack 
• Policy violation

Outsider attack 
• Network intrusion
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