
Detection and Summarization of
Novel Network Attacks Using Data Mining

Levent Ertöz, Eric Eilertson, Aleksandar Lazarevic, Pang-Ning Tan,
Paul Dokas, Vipin Kumar, and Jaideep Srivastava

Computer Science Department, 200 Union Street SE, 4-192, EE/CS Building,
University of Minnesota, Minneapolis, MN 55455, USA

{ertoz,eric,aleks,ptan,dokas,kumar,srivasta}@cs.umn.edu

Abstract. This paper introduces the Minnesota Intrusion Detection System
(MINDS), which uses a suite of data mining techniques to automatically detect at-
tacks against computer networks and systems. While the long-term objective of
MINDS is to address all aspects of intrusion detection, in this paper we present
two specific contributions. First, we present MINDS anomaly detection module
that assigns a score to each connection that reflects how anomalous the connection
is compared to the normal network traffic. Experimental results on live network
traffic at the University of Minnesota show that our anomaly detection techniques
have been successful in automatically detecting several novel intrusions that could
not be identified using state-of-the-art signature-based tools such as SNORT.
Many of these have been reported on the CERT/CC list of recent advisories and
incident notes. We also present the results of comparing the MINDS anomaly de-
tection module to SPADE (Statistical Packet Anomaly Detection Engine), which
is designed to detect stealthy scans. Second, we present MINDS association pat-
tern analysis module that summarizes those network connections that are ranked
highly anomalous by the anomaly detection module. Given the very high volume
of connections observed per unit time, such characterization of novel attacks is es-
sential in enabling a security analyst to understand emerging threats. Experimental
evaluation shows that the MINDS approach is very useful in creating accurate
summaries of novel attacks.

1 Introduction

Traditional methods for intrusion detection are based on extensive knowledge of
attack signatures that are provided by human experts. The signature database has to
be manually revised for each new type of intrusion that is discovered. A significant
limitation of signature-based methods is that they cannot detect novel attacks. In
addition, once a new attack is discovered and its signature developed, often there is a
substantial latency in its deployment. These limitations have led to an increasing
interest in intrusion detection techniques based upon data mining [3, 4, 21, 26, 28],
which generally fall into one of two categories: misuse detection and anomaly detection.

In misuse detection, each instance in a data set is labeled as 'normal' or 'intrusive'
and a learning algorithm is trained over the labeled data. Research in misuse detection

has focused mainly on detecting network intrusions using various classification algo-
rithms [3, 10, 21, 24, 26, 33], rare class predictive models [14-17, 19], association
rules [3, 21, 28] and cost sensitive modeling [9, 16]. Unlike signature-based intrusion
detection systems, models of misuse are created automatically, and can be more so-
phisticated and precise than manually created signatures. In spite of the fact that mis-
use detection models have high degree of accuracy in detecting known attacks and
their variations, their obvious drawback is the inability to detect attacks whose in-
stances have not yet been observed. In addition, labeling data instances as normal or
intrusive may require enormous time for many human experts.

Anomaly detection algorithms build models of normal behavior and automatically
detect any deviation from it [7, 12]. The major benefit of anomaly detection algo-
rithms is their ability to potentially detect unforeseen attacks. In addition, they may be
able to detect new or unusual, but non-intrusive, network behavior that is of interest
to a network manager, and needs to be added to the normal profile. A major limitation
of anomaly detection systems is a possible high false alarm rate. There are two major
categories of anomaly detection techniques, namely supervised and unsupervised
methods. In supervised anomaly detection, given a set of normal data to train from,
and given a new piece of test data, the goal is to determine whether the test data be-
longs to “normal” or to an anomalous behavior. Recently, there have been several
efforts in designing supervised network-based anomaly detection algorithms, such as
ADAM [3], PHAD [27], NIDES [2], and other techniques that use neural networks
[32], information theoretic measures [22], network activity models [6] etc. Unlike
supervised anomaly detection where the models are built only according to the nor-
mal behavior on the network, unsupervised anomaly detection attempts to detect
anomalous behavior without using any knowledge about the training data. Unsuper-
vised anomaly detection approaches are based on statistical approaches [36, 37, 38],
clustering [8], outlier detection schemes [1, 5, 18, 31], state machines [34], etc.

This paper introduces the Minnesota Intrusion Detection System (MINDS), which
uses a suite of data mining techniques to automatically detect attacks against com-
puter networks and systems. While the long-term objective of MINDS is to address
all aspects of intrusion detection, in this paper we present details of two specific con-
tributions: (i) an anomaly detection technique that assigns a score to each network
connection that reflects how anomalous the connection is compared to the normal
network traffic; and (ii) an association pattern technique module that summarizes
those network connections that are ranked highly anomalous by the anomaly detec-
tion module.

In addition, we provide an evaluation of MINDS anomaly detection schemes in the
context of real life network data at the University of Minnesota. During the past seven
months, this evaluation has shown that anomaly detection algorithms have been suc-
cessful in automatically detecting numerous novel intrusions that could not be identi-
fied using state-of-the-art tools such as SNORT [35]. In fact, many of these attacks
have been reported on the CERT/CC (Computer Emergency Response
Team/Coordination Center) list of recent advisories and incident notes. We chose to
present results on real life network data, since publicly available data sets for evalua-
tion of network intrusion detection systems (e.g. DARPA 1998 and DARPA 1999
data sets [23, 25]) are known to have serious limitations [29]. In the absence of labels

of network connections (normal vs. intrusive), we are unable to provide real estimate
of detection rate, but nearly all connections that are ranked highly by our anomaly
detection algorithms are found to be interesting and anomalous by the network secu-
rity analyst on our team. Finally, we also present a brief comparison of SPADE (Sta-
tistical Packet Anomaly Detection Engine) [36] and MINDS on the same real life
network data to provide an understanding of their relative effectiveness in detecting
anomalous network behavior. SPADE is chosen for this comparison due to the fact
that both SPADE and MINDS are unsupervised anomaly detection algorithms whose
success is not predicated upon the existence of a sample of clean normal network
traffic with no irregularities. This comparison was possible since SPADE is publicly
available.

Cyber attacks detected using MINDS anomaly detection algorithms were further
analyzed and summarized using association pattern analysis. This summarization of
anomalous network connections into a fewer high-level patterns is a key if we expect
a security analyst to have any hope of making sense of the results of intrusion detec-
tion. Our experiments on real network data demonstrate that such association rules
were able to provide a concise characterization of many detected anomalies and to
help in understanding nature of detected attacks. In addition, these rules may be effec-
tively used for creating new signatures for intrusion detection systems.

2 The MINDS System

The Minnesota Intrusion Detection System (MINDS) is a data mining based system
for detecting network intrusions. Figure 1 illustrates the process of analyzing real
network traffic data using the MINDS system. Input to MINDS is Netflow version 5
data collected using Netflow tools. Netflow tools only capture packet header infor-
mation (i.e., they do not capture message content), and build one way sessions
(flows). We are working with Netflow data instead of tcpdump because we currently
do not have the capacity to collect and store the tcpdump. Netflow data for each 10
minute window, which typically result in 1 to 2 million flows, is stored in a flat file.
The analyst uses MINDS to analyze these 10-minute data files in a batch mode. Be-
fore applying MINDS to these data files, a data filtering step is performed by the
system administrator to remove network traffic that the analyst is not interested in
analyzing. For example, the removed attack-free network data in data filtering step
may include the data coming from trusted sources, non-interesting network data (e.g.
portions of http traffic) or unusual/anomalous network behavior for which it is known
that it does not correspond to intrusive behavior.

The first step in MINDS includes constructing features that are used in the data
mining analysis. Basic features include source IP address, source port, destination IP
address, destination port, protocol, flags, number of bytes, and number of packets.
Derived features include time-window and connection-window based features. Time-
window based features are constructed to capture connections with similar character-
istics in the last T seconds, since typically of Denial of Service (DoS) and scanning
attacks involve hundreds of connections. A similar approach was used for construct-

ing features in KDD Cup'99 data [21]. Table 1 summarizes the time-window based
features.

Fig. 1. Architecture of MINDS system

Table 1. The extracted “time-window” features

Feature Name Feature description
count_dest For the same source IP address, number of unique destination IP

addresses inside the network in the last T seconds
count_src For the same destination IP address, number of unique source IP

addresses inside the network in the last T seconds
count_serv_src Number of connections from the source IP to the same destination

port in the last T seconds
count_serv_dest Number of connections from the destination IP to the same source

port in the last T seconds

“Slow” scanning attacks, i.e. those that scan the hosts (or ports) and use a much
larger time interval than a few seconds, e.g. one scan per minute or even one scan per
hour, cannot be detected using derived “time-window” based features. To capture
these types of the attacks, we also derive “connection-window” features that capture
the same characteristics of the connection records as time-window based features, but
are computed in the last N connections. The connection-window based features are
shown in Table 2.

Table 2. The extracted “connection-window” based features

Feature Name Feature description
count_dest_conn For the same source IP address, number of unique destination

IP addresses inside the network in the last N connections
count_src_conn For the same destination IP address, number of unique source

IP addresses inside the network in the last N connections
count_serv_src_conn Number of connections from the source IP to the same desti-

nation port in the last N connections
count_serv_dest_conn Number of connections from the destination IP to the same

source port in the last N connections

After the feature construction step, the known attack detection module is used to
detect network connections that correspond to attacks for which the signatures are

network

Data capturing
device

Anomaly
detection

…
…

Anomaly
scores

Human
analyst

Detected novel attacks

Summary
of attacks

MINDS system

I
N
D
S

Known attack
detection

Detected known attacks

Labels

Filtering Feature
Extraction

Association
pattern analysis

p2

p1

available, and then to remove them from further analysis. For experiments reported
in this paper, this step is not performed.

Next, the data is fed into the MINDS anomaly detection module that uses an outlier
detection algorithm to assign an anomaly score to each network connection. A hu-
man analyst then has to look at only the most anomalous connections to determine if
they are actual attacks or other interesting behavior.

 MINDS association pattern analysis module summarizes network connections that
are ranked highly anomalous in the anomaly detection module. Human analyst pro-
vides a feedback when analyzing created summaries of detected attacks and deciding
whether these summaries are helpful in creating new rules that may be further used in
the known attack detection module.

3 MINDS Anomaly Detection

In this section, we only present the density based outlier detection scheme used in our
anomaly detection module. For more detailed overview of our research in anomaly
detection the reader is referred to [20].

MINDS anomaly detection module assigns a degree of being an outlier to each
data point, which is called the local outlier factor (LOF) [5]. The outlier factor of a
data point is local in the sense that it measures the degree of being an outlier with
respect to its neighborhood. For each data example, the density of the neighborhood
is first computed. The LOF of specific data example p represents the average of the
ratios of the density of the example p and the density of its nearest neighbors. To
illustrate advantages of the LOF approach, consider a simple two-dimensional data
set given in Figure 2. It is apparent that the density of cluster C2 is significantly
higher that the density of cluster C1. Due to the low density of cluster C1 it is apparent
that for every example q inside cluster C1, the distance between the example q and its

nearest neighbor is greater than the distance between the example p2 and its nearest
neighbor, which is from cluster C2, and therefore example p2 will not be considered
as outlier.

Fig. 2. Advantages of the LOF approach

Hence, the simple nearest neighbor approach based on computing the distances fail
in these scenarios. However, the example p1 may be detected as outlier using the
distances to the nearest neighbor. On the other side, LOF is able to capture both out-
liers (p1 and p2) due to the fact that it considers the density around the points.
LOF requires the neigborhood around all data points be constructed. This involves
calculating pairwise distances between all data points which is an O(n^2) process,
which makes it computationally infeasibe for millions of connections. To address
this problem, we sample the data to use as a training set and compare all data points
to this small set, which reduces the complexity to O(n*m) where n is the size of the
data and m is the size of the sample. Apart from achieving computational efficiency
by sampling, anomalous network behavior will not be able to match enough examples
in the sample to be called normal. This is because rare behavior will not be repre-
sented in the sample.

4 Experimental Evaluation of MINDS Anomaly Detection

The output of the MINDS anomaly detector contains the original Netflow data with
the addition of the anomaly score and relative contribution of each of the 16 attributes
to the score. Table 3 shows the 16 attributes. The analyst typically looks at only the
top few connections that have the highest anomaly scores. Figure 3 shows the most
anomalous connections found by MINDS on January 26th in a 10-minute window, 48
hours after the slammer attack. The University of Minnesota network security analyst
has been using MINDS and SNORT independently to analyze the university network
traffic for the past seven months. During this period, MINDS has been successful in
detecting many novel network attacks and emerging network behavior that could not
be detected using SNORT. In the following, we present a few examples that demon-
strate the effectiveness of the MINDS anomaly detection algorithm.

4.1 MINDS Anomaly Detection Results

• On January 26, 2003, 48 hours after the “SQL Slammer/Sapphire” worm started,
network connections related to the worm were only about 2% of the total traffic.
Despite this, they were still ranked at the top by the anomaly detection algorithm
(see Figure 3). The network connections that are part of the “slammer worm” are
highlighted in light gray in Figure 3. It can be observed that the highest contribu-
tions to anomaly score for these connections were due to the features 9 and 11
(count_dest and count_serv_src from Table 1). This was due to the fact that the
infected machines outside our network were still trying to communicate with
many machines inside our network Similarly, it can be observed from Figure 3
that during this time interval there is another scanning activity (ICMP ping scan,
highlighted in dark gray) that was detected again mostly due to the features 9 and
11. The two non-shaded flows are replies from Half-Life game servers (running
on port 27016/udp). They were flagged anomalous because those machines were
talking to only port 27016/udp. For web connections, it is common to talk only on

port 80, and it is well represented in the normal sample. However, since Half-Life
connections did not match any normal samples with high counts on feature 15,
they became anomalous.

score srcIP sPort dstIP dPort protocoflags packets bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
4048.49 142.150.X.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
4008.35 200.250.X.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3657.23 202.175.X.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2693.88 142.150.X.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2444.16 142.150.X.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2385.42 142.150.X.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2057.15 142.150.X.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1919.54 142.150.X.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1634.38 142.150.X.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1513.96 142.150.X.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1279.75 142.150.X.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

 Fig. 3. Most anomalous connections found by MINDS anomaly detection algorithm
in a 10-minute window 48 hours after the “slammer worm” started.

Table 3. List of features used in anomaly detection

1 source IP 5 protocol 9 cnt_dest 13 cnt_src
2 destination IP 6 duration 10 cnt_dest_conn 14 cnt_src_conn
3 source Port 7 bytes/packet 11 cnt_serv_src 15 cnt_serv_dest
4 destination Port 8 # packets 12 cnt_serv_src_conn 16 cnt_serv_dest_conn

• On October 10th, our anomaly detection module detected two activities of the

slapper worm that were not identified by SNORT since they were variations of an
existing worm code. Once a machine is infected with the worm, it communicates
with other machines that are also infected and attempts to infect other machines.
The most common version of the worm uses port 2002 for communication, but
some variations use other ports. Our anomaly detector flagged these connections
as anomalous for two reasons. First, the source or destination ports used in the
connection may not have been rare individually but the source-destination port
pairs were very rare (the anomaly detector does not keep track of the frequency of
pairs of attributes; however, while building the neighborhoods of such connec-
tions, most of their neighbors will not have the same source-destination port pairs,
which will contribute to the distance). Second, the communication pattern of the
worm looks like a slow scan causing the value of the variable
count_serv_src_conn (number of connections from the source IP to the same des-
tination port in the last N connections) to become large. SNORT has a rule for de-
tecting worm that uses port 2002 (and a few other ports), but not for all possible

variations. A single general SNORT rule can be written to detect the variations of
the worm at the expense of a higher false positive rate.

• On August 9th, 2002, CERT/CC issued an alert for “widespread scanning and
possible denial of service activity targeted at the Microsoft-DS service on port
445/TCP” as a novel Denial of Service (DoS) attack. In addition, CERT/CC also
expressed “interest in receiving reports of this activity from sites with detailed
logs and evidence of an attack.” This type of attack was the top ranked outlier on
August 13th, 2002, by our anomaly detection module in its regular analysis of
University of Minnesota traffic. The port scan module of SNORT could not detect
this attack, since the port scanning was slow.

• On August 13th, 2002, our anomaly detection module detected “scanning for an
Oracle server” by ranking connections associated with this attack as the second
highest ranked block set of connections (the top ranked block of connections be-
longed to the denial of service activity targeted at the Microsoft-DS service on
port 445/TCP). This type of attack is difficult to detect using other techniques,
since the Oracle scan was embedded within much larger Web scan, and the alerts
generated by Web scan could potentially overwhelm the human analysts. On June
13th, CERT/CC had issued an alert for the attack.

• On August 8th and 10th, 2002, our anomaly detection techniques detected a ma-
chine running a Microsoft PPTP VPN server, and another one running a FTP
server, which are policy violations, on non-standard ports. Both policy violations
were the top ranked outliers. Our anomaly detector module flagged these servers
as anomalous since they are not allowed, and therefore very rare. Since SNORT
is not designed to look for rogue and unauthorized servers, it was not able to de-
tect these activities. In addition, for the PPTP VPN server, the collected GRE traf-
fic is part of the normal traffic, and not analyzed by tools such as SNORT.

• On January 27, 2003, our techniques detected odd, not routable RFC1918 traffic
coming from the Internet. RFC1918 (Request for Comments) serves as Address
Allocation for Private Internets, while RFC1918 blocks are segments of IP address
space reserved by IANA (Internet Assigned Numbers Authority) for use within an
organization. DNS records for RFC1918 addresses are legitimate only within the
network on which a host with RFC1918 address resides. However, RFC1918 ad-
dresses are not globally routed and they should not appear on the public Internet.

• On February 6, 2003, our technique detected that the IP address 128.101.6.0,
which does not correspond to a real computer, but to a network itself, has been
targeted with IP Protocol 0 traffic from Korea (61.84.X.97). This type of network
traffic is “exceedingly” bad as IP Protocol 0 is not legitimate.

• On February 6, 2003, our techniques detected a computer on the network appar-
ently communicating with a computer in California over a VPN. This scenario in
the worst case may correspond to a covert channel by which someone might be
gaining access to the University network in an unauthorized way, and in the best
case to someone at the University creating unauthorized tunnels between the Uni-
versity and some other network, which is not allowed. However, both types of be-
havior are extremely useful for security analysts.

• On February 7, 2003, a computer in the CS department talking on IPv6 was de-
tected using our techniques. This type of communication is extremely rare and

represents a possible covert tunnel to the outside world. The follow-up analysis
diagnosed that a suspect who was doing this is on system staff and is in fact using
this as a covert tunnel to his home computers.

• On February 6, 2003, our anomaly detection techniques detected unsolicited
ICMP ECHOREPLY messages to a computer previously infected with Stachel-
dract worm (a DDos agent). Although infected machine has been removed from
the network, other infected machines outside our network were still trying to talk
to infected machine from our network

4.2 Comparison of MINDS and SPADE

SPADE: A brief overview. SPADE is a SNORT plug-in that automatically detects
stealthy port scans [36]. Unlike traditional scan detectors that look for X events in Y
seconds, SPADE takes a radically different approach and looks at the amount of in-
formation gained by probing. It has four different methods of calculating the likeli-
hood of packets. However, the most successful method measures the direct joint
probability P(dest IP, dest Port). SPADE examines TCP-SYN packets and maintains
the count of packets observed on (destIP, destPort) tuples. When a new packet is
observed, SPADE checks the probability of observing that packet on the (dest IP, dest
Port) tuple. The lower the probability, the higher the anomaly score. Note that
SPADE raises alarms on individual SYN packets regardless of how many other desti-
nation IP/ports have been scanned by the same source. In the case of an IPsweep, the
scanner will eventually touch a machine that does not have the service being scanned
for and therefore will raise a SPADE alarm. In the case of a portscan, an alarm will
be raised when the scanner touches a port for which the service is not available on the
target machine. In addition, SPADE will raise false alarms on legitimate traffic for
which (destination IP, destination port) combinations are infrequent. This will be
even more prevalent on outbound connections. The reason is that the number of IPs
outside is much bigger than the number of IPs inside the network. As reported in
[36], on DARPA99 data, as the number of variables in the direct joint probability is
increased to include the source IP and source Port, the accuracy of SPADE decreases.
This can be attributed to the fact that when extra attributes are used, the model essen-
tially becomes sparser and therefore gives more false alarms.

MINDS and SPADE both assign a score to each connection that indicates its de-
gree of outlierness. They are both unsupervised anomaly detection schemes since
neither one requires a labeled training set. The key difference is in the method for
computing the anomaly score. In SPADE, the anomaly score is inversely related to
the probability of observing the connection based upon the features used. If too many
features are used (or if any feature has too many values), then the probability esti-
mates are not reliable. The reason is that many of the legitimate combinations of
features may be previously unseen or infrequent. In contrast, MINDS does not suffer
from increased dimensionality as much as SPADE does, since MINDS constructs
neighborhoods around data points which is a better estimate of actual probabilities
when there is not enough data to adequately develop the model. This allows MINDS
to use a large number of features as long as they are not spurious. Even if MINDS

used only two features (destination IP and destination port), we argue that it can pro-
vide higher quality outlier scores. To illustrate this consider the following probability
distribution (Table 4), where blank represents no occurrences. If we observe a packet
P1 on IP2/Port3 and another packet P2 on IP4/Port1, SPADE will assign equal anom-
aly scores to both of the packets. However, one could argue that P2 should be more
anomalous than P1 since in the case of P2 neither the port (Port1) nor the IP (IP4) by
themselves are used frequently, whereas for P1, both the port (Port3) and the IP (IP2)
are frequently used.

If we use MINDS anomaly detection module with only 2 attributes, namely the
destination IP and destination port, packet P2 will be assigned a higher anomaly score
than P1. The reason is that P1 will be closer to its neighbors than P2 will be to its
neighbors. Both P1 and P2 will have neighbors that are in dense regions. If we com-
pare the ratios of densities of P1 and P2 to the density of their respective neighbors,
P2 will have a lower ratio, hence a higher anomaly score.

Table 4. IP/Port frequency distribution

Frequency IP1 IP2 IP3 IP4
Port1 Low P2
Port2 High
Port3 High P1 High
Port4 Low High Low

We ran the latest version of SPADE (v021031.1) on live network traffic at the
University of Minnesota for a 10-minute period using a threshold of 8. It generated
296,921 alarms out of approximately one million TCP_SYN packets received during
this 10-minute window. Nearly 26% (76,956) of the alarms were on inbound packets.
Vast majority of outbound packets were false alarms. This is not surprising since the
space of (IP/Port) combinations outside our network is very large and the data is very
sparse. This is a serious limitation of SPADE, since outbound alarms tend to be very
important, as they often indicate infected machines inside the network. In the rest of
the discussion, we focus on alarms on inbound packets. 25% (19020) of inbound
alarms were to web alarms, 6% (4608) to common services other than web (https,
mail, ftp, ssl enabled imap, web proxies), 28.5% (21895) to peer-to-peer applications
(kazaa, gnutella, edonkey) and the remaining 41% (31433) were hard to interpret. If
we ignore repetitions of the same alarm (same source IP, destiantion IP, destination
Port), we are left with 28973 alarms. There were a total of 21669 unique sources of
alarms, 20825 of them generated only 1 or 2 alarms (Figure 4a). (More detailed in-
formation about the distributions is given in Table 5.) Although some of these alerts
may indicate very slow stealthy scans, majority of these alerts are likely to be for
legitimate connections on rarely used destination IP, destination port combination.
Specifically, we can say that the alarms on p2p applications are false alarms (not
scans) since p2p applications get the list of active servers from their super-nodes
instead of scanning for machines running these applications. In any case, one cannot
expect from a system administrator to investigate alarms for so many different
sources in a short 10-minute window.

If we raise our threshold and look at only top 10,000 alerts, the picture is very
similar (Figure 4b). If we look at the breakdown of alarms by type, in the top 10,000
(threshold = 12.6108), web alerts are 59% (5927), common services are 7.5% (754),
p2p applications are 9% (923) and the remaining, hard-to-interpret ones are 24%
(2396). There are 3306 unique sources that generate 10,000 alarms, 3159 of which
raised either 1 or 2 alarms. If we look at top 1000, 497 out of 547 unique sources
raised less than 3 alarms (Figure 4c). If we look at top 100, 73 out of 78 unique
sources raised less than 3 alarms (Figure 4d).

If we do a similar analysis for alarms on web (Figure 4e), P2P (peer to peer) (Fig-
ure 4f), common services (Figure 4g) and the remaining alarms (Figure 4h) sepa-
rately, we still get a very similar picture; the number of unique sources generating
very few alarms is very large. We argue that most of SPADE alarms are effectively
false alarms as the number of unique sources generating the alarms is at a high per-
centage regardless of the threshold.

SPADE does find some stealthy scans that will be hard to find using simple scan
detection schemes that look for source IP’s that connect to more than X destination
Ports / IP’s in a specified time or connection window. For example, among the top
10,000 alarms 66 unique sources generated at least 10 or more alarms. Each one of
these sources were either scanning a specific IP for 10 or more ports, or scanning 10
or more IP’s for a specific port. But in the process of finding these hard to detect
stealthy scans, SPADE generated false alarms for far too many legitimate connec-
tions.

a) All 76,956 alarms b) Top 10k alarms

c) Top 1,000 alarms d) Top 100 alarms

Fig. 4. Distribution of alerts generated by unique source IPs in the SPADE algorithm for different
number of alerts as well as for different traffic type.

Table 5. Distribution of number of alarms from unique sources (inbound alarms)

alarms 1 2 3 4 5-6 7-20 21-50 51-150 151+
sources 19282 1543 394 151 139 106 45 5 4

For the same 10-minute period, we ran MINDS and asked our security expert to

analyze top few hundred anomalous connections ranked by the anomaly detector.
Most of these were scans, which were interleaved with few non-scan connections.
Most of these scans targeted dozens of IPs inside the University of Minnesota net-
works. Among non-scan anomalous connections, our security expert identified a
local machine running a web proxy open to everyone, and lots of people were brows-
ing the web through the proxy to anonymize their connections. Proxy settings were
fixed after the issue was identified. For privacy reasons, we cannot report the indi-
vidual connections but only provide a high level summary. Note that stealthy scans
that target only a few machines during the 10-minute window are not likely to receive
high anomaly score by MINDS.

4.3 MINDS anomaly detection module versus SNORT

Here we compare general capabilities of SNORT and MINDS in detecting the follow-
ing categories of attacks and irregular behavior:

e f

g h

• content-based attacks
• scanning activities
• policy violations

Content based attacks. These attacks are out of scope for our anomaly detection
module since it does not consider the content of the packets, and therefore SNORT is
superior in identifying those attacks. However, SNORT is able to detect only those
content-based attacks that have known signatures/rules. Despite the fact that SNORT
is more successful in detecting the content-based attacks, it is important to note that
once a computer has been attacked successfully, its behavior could become anoma-
lous and therefore detected by our anomaly detection module, as seen in previous
examples.

Scanning activities. When detecting various scanning activities SNORT and
MINDS anomaly detection module have similar performance for certain types of
scans, but they have very different detection capabilities for other types. There are
two categories of scanning activities, where SNORT and our anomaly detection mod-
ule might have different detection performance:

• Fast (regular) scans
• Slow scans

When detecting regular scans, SNORT portscan module keeps track of the number
of destination IP addresses accessed by each source IP address in a given time win-
dow (default value is 3 seconds). Let's denote this variable count_dest, already de-
fined in Table 1. Whenever the value of count_dest is above a specified threshold
(SNORT default value is 4), SNORT raises an alarm, thus indicating a scan by the
source IP address. Our anomaly detection module is also able to assign high anomaly
score to such network connections, since for most normal connections the value of
count_dest is low. In addition, connections from many types of scanning activities
tend to have other features that are unusual (such as very small payload), which make
additional contributions to the anomaly score.

A scan can be detected by SNORT provided the scan is fast enough for chosen
time window (default value is 3 seconds) and count threshold (default value is 4). If a
scanning activity is not fast enough (outside specified parameters), it will not be de-
tected by SNORT. However, SNORT can still detect such activities by increasing the
time window and/or decreasing the number of events counted within the time-
window, but this will tend to increase false alarm rate. On the other side, our anomaly
detection module is more suitable for detecting slow scans since it considers both
time-window based and connection-window based features (as opposed to SNORT
that uses only time-window based features), as well as other features of the connec-
tions such as number of packets, number of bytes per packet, etc.

Policy violations. MINDS anomaly detection module is much more successful
than SNORT in detecting policy violations (e.g. rogue and unauthorized services),
since it looks for unusual network behavior. SNORT may detect these policy viola-
tions only if it has a rule for each of these specific activities. Since the number and
variety of these activities can be very large and unknown, it is not practical to incor-
porate them into SNORT for the following reasons. First, processing of all these rules
will require more processing time thus causing the degradation in SNORT perform-
ance. It is important to note that it is desirable for SNORT to keep the amount of

analyzed network traffic small by incorporating rules as specific as possible. On the
other hand, very specific rules limit the generalization capabilities of a typical rule
based system, i.e., minor changes in the characteristics of an attack might cause the
attack to be undetected.

Second, SNORT's static knowledge has to be manually updated by human analysts
each time a new suspicious behavior is detected. In contrast, MINDS anomaly detec-
tion module is adaptive in nature, and it is particularly successful in detecting anoma-
lous behavior originating from a compromised machine (e.g. attacker breaks into a
machine, installs unauthorized software and uses it to launch attacks on other ma-
chines). Such behavior is often undetected by SNORT's signatures.

5 Summarization of Anomalous Connections

While improving detection rate and reducing false alarm rate for attacks is a continu-
ing objective for intrusion detection schemes, this task alone is not sufficient if the
rate of network traffic is very high. For example, suppose a security analyst examines
the output of an anomaly detector every 10 minutes during which two million connec-
tions are established at the University of Minnesota network. Even if a hundred of
these connections are reported as anomalous, it is impracticable for the analyst to
examine them in 10 minutes. Thus, there is a need for an approach whereby anoma-
lous connections can be summarized into patterns that capture the essence of the
anomalous behavior. In addition to making the human analyst’s task manageable, this
also had had the advantage of providing templates from which signatures of novel
attacks can be built for augmenting the database of signature-based intrusion detec-
tion systems.

5.1. Association Pattern Analysis

MINDS uses a data mining technique called association pattern analysis [3, 21, 28] to
achieve summarization of detected attacks. An example of this is shown in Figure 5,
where ten connections are summarized into a frequent itemset. Note that connection
parameters that provide no information are eliminated. This reduces information
overloading for the security analyst.

Figure 5. Association rule that desribe scanning activity on port 139

{SrcIP=X.Y.Z.95, DestPort=139}
Summarization

SrcIP Start time Dest IP Dest
Port

Number
of bytes

X.Y.Z.95 11:07:20 A.B.C.223 139 192
X.Y.Z.95 11:13:56 A.B.C.219 139 195
X.Y.Z.95 11:14:29 A.B.C.217 139 180
X.Y.Z.95 11:14:30 A.B.C.255 139 199
X.Y.Z.95 11:14:32 A.B.C.254 139 186
X.Y.Z.95 11:14:35 A.B.C.253 139 177
X.Y.Z.95 11:14:36 A.B.C.252 139 172
X.Y.Z.95 11:14:38 A.B.C.251 139 192
X.Y.Z.95 11:14:41 A.B.C.250 139 195
X.Y.Z.95 11:14:44 A.B.C.249 139 163

10

The overall architecture of our association pattern analysis module is shown in
Figure 6. Connections that have high anomaly scores are mostly likely to be
scans/attacks and those with low anomaly scores are most likely to be normal traffic.
As a result, MINDS chooses connections that have the top percentage of anomaly
scores to be the attack class and the bottom percentage of anomaly scores to be the
normal class. Connections with intermediate anomaly scores will be ignored. In our
experiments, we choose connections that have the top 10% anomaly score to be the
anomaly class and the bottom 30% anomaly score to be the normal class. Connections
with intermediate anomaly scores are ignored. Next, the association pattern generator
is applied to each class and the patterns are ranked according to the various measures
described above. The extracted patterns can be used to create summaries and profiles
for normal and anomaly connections.

Once the profiles for the attack class have been established, a follow-up analysis is
often performed to study the nature of the anomalous connections. A typical follow-
up analysis involves connecting via telnet to the suspected computer at the specific
port and examining the returned information. Another possibility of analyzing the
suspected computer is to start capturing packets on that machine at the particular port
and to investigate the contents of the packets.

MINDS
Anomaly
Detection
System R1: TCP, DstPort=1863 → Anomaly

…
…

R100: TCP, DstPort=80 → Normal

Discriminating Association
Pattern Generator

• Build normal profile
• Study changes in normal

behavior
• Create summary for anomalies
• Understand nature of

anomalies

Update
Knowledge

Base

Anomaly

Normal

Anomaly
Scores

Figure 6. MINDS association analysis module

5.2. Evaluation of attack summaries on real network data

In this section, we report some of the highest ranked (most discriminative) patterns
generated by MINDS association pattern analysis module. These patterns represent a
summary of the most frequently occurring and discriminating anomalous traffic
flagged by MINDS anomaly detection module.

Example 1:
SrcIP=IP1,DstPort=80,Protocol=TCP, Flag=SYN, NoPackets: 3, NoBytes=120…180 (c1=256, c2 = 1)

SrcIP=IP1,DstIP=IP2,DstPort=80,Protocol=TCP, Flag=SYN, NoPackets=3, NoBytes=120…180 (c1=177,c2=0)

The first rule indicates that the source of the anomalous connections originates
from IP1, the destination port is 80, the protocol used is TCP with tcpflags set to

SYN, the number of packets is 3, and the total number of bytes is between 120 and
180. Furthermore, this pattern is observed 256 (c1 = 256) among the anomalous con-
nections and only once (c2=1) in the normal connections. Therefore, it has a high
ratio and precision, which is why it is ranked among the top few anomalies found by
the system.

At first glance, the first rule indicates a Web scan since it appears mostly in the
anomaly class with a fixed source IP address but not with a fixed destination IP ad-
dress. However, the second rule suggests that an attack was later launched to one of
the specific machines since the pattern originates from the same source IP address but
has a specific destination IP address and covers only anomalous connections. Further
analysis confirms that a scan has been performed from the source IP address IP1,
followed by an attack on a specific machine that was previously identified by the
attacker to be vulnerable.

The example above illustrates how a group of similar association patterns can be
used to summarize the details of an attack. It can also show the potential vulnerable
spots of the system. For example, the first rule reported above could have been gen-
erated for a code-red attack type, while the fact that the pattern is only observed in
anomalous connections suggests there might be a vulnerability related to port 80 that
the intruder attempt to exploit.

Example 2
DstIP= IP3, DstPort=8888, Protocol=TCP (c1=369, c2=0)
DstIP= IP3, DstPort=8888, Protocol=TCP, Flag=SYN (c1=291, c2=0)

This pattern indicates a high number of anomalous TCP connections on port 8888
to a specific machine. Fol-low-up analysis of the connections covered by the pattern
indicates possible existence of a machine that is running a variation of the KaZaA
file-sharing protocol. KaZaA file sharing software is typically used for sharing audio,
video, and software files, which are very often illegal copies.

Example 3:
SrcIP= IP4, DstPort=27374, Protocol=TCP, Flag=SYN, NoPackets=4, NoBytes=189…200 (c1=582, c2=2)
SrcIP= IP4, DstPort=12345, NoPackets=4, NoBytes=189…200 (c1=580, c2=3)
SrcIP= IP5, DstPort=27374, Protocol=TCP, Flag=SYN, NoPackets=3, NoBytes=144 (c1=694, c2=3)

The patterns above indicate a number of scans on port 27374 (which is a signature
for the SubSeven worm) and on port 12345 (which is a signature for the NetBus
worm). Further analysis has shown that there are no fewer than five machines scan-
ning for one or both of these ports within an arbitrary time window.

Example 4:
DstPort=6667, Protocol=TCP (c1=254, c2=1)
The pattern above implies an unusually large number of network connections in-

volving the destination port 6667, which is the port where the IRC (Internet Relay
Chat) server is typically run. Thorough analysis reveals that there are many small
packets from/to various IRC servers around the world. Although IRC traffic is not
unusual, the fact that it is flagged as anomalous is interesting. This might indicate that
the IRC server has been taken down (e.g. by a DOS attack) or it is a rogue or unau-
thorized IRC server (it could be involved in some hacking activity).

6 Conclusions and Future Work

The overall goal for MINDS is to be a general framework and system for detecting
attacks and threats to computer systems. Data generated from network traffic moni-
tor-ing tends to have very high volume, dimensionality and heterogeneity. Coupled
with the low frequency of occurrence of attacks, this makes standard data mining
algo-rithms unsuitable for detecting attacks. In addition, cyber attacks may be
launched from several different locations and targeted to many different destinations,
thus creat-ing a need to analyze network data from several locations/networks in
order to detect these distributed attacks. According to our initial analysis, the intru-
sions detected by MINDS are complementary to those of SNORT – a signature-based
system. This im-plies that the two can be combined to increase overall attack cover-
age. In addition, MINDS will have a visualization tool to aid the analyst in better
understanding anoma-lous/suspicious behavior detected by the anomaly detection
engine.

Figure 7. Three types of threats that can be detected by MINDS anomaly detection module

The key anomaly detection approach used by MINDS is based on the analysis of
unusual behavior, and is thus suitable for detecting many types of threats. Figure 7
shows three such types. First type of threats correspond to outsider attacks that repre-
sent deviations from normal connection behavior. Second threat type is insider attack,
where an authorized user logs into a system with malicious intent. However, the mali-
cious behavior shown by such a user is often at variance with normal procedures, and
our behavior-analysis based approach can pick it up as anomalous behavior, report-
ing it as a possible attack. Since no security mechanism is fool proof, an undetected
suc-cessful outsider becomes equivalent to an insider attack, and the same ideas ap-
ply. Third threat type corresponds to a situation where a virus/worm has entered an
envi-ronment – either undetected by a perimeter protection mechanism such as virus
scan of attachments, or through bringing in of an infected portable hardware device,
e.g. a laptop. The unusual behavior shown by such a machine can potentially be de-
tected by our approach of analyzing anomalous behavior.

A number of applications outside of intrusion detection have similar characteris-
tics, e.g. detecting credit card and insurance frauds, early signs of potential disasters
in industrial process control, early detection of unusual medical conditions – e.g.
cardiac arrhythmia, etc. We plan to explore the use of our techniques to such prob-
lems.

 MINDS Research
• Defining normal behavior
• Feature extraction
• Similarity functions
• Outlier detection
• Result summarization
• Detection of attacks origi-

nating from multiple sites
Worm/virus detection
after infection

Insider attack
• Policy violation

Outsider attack
• Network intrusion

Acknowledgments

This work was partially supported by Army High Performance Computing Research
Center contract number DAAD19-01-2-0014. The content of the work does not nec-
essarily reflect the position or policy of the government and no official endorsement
should be inferred. Access to computing facilities was provided by the AHPCRC and
the Minnesota Supercomputing Institute.

References

1. C. C. Aggarwal, P. Yu, Outlier Detection for High Dimensional Data, Proceedings of the
ACM SIGMOD Conference, 2001.

2. Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A., Valdes, A.: Detecting Unusual Program
Behavior Using the Statistical Component of the Next-Generation Intrusion Detection Ex-
pert System (NIDES), Technical Report SRI-CSL-95-06, Computer Science Laboratory,
SRI International, Menlo Park, CA, 1995.

3. D. Barbara, N. Wu, S. Jajodia, Detecting Novel Network Intrusions Using Bayes Estima-
tors, First SIAM Conference on Data Mining, Chicago, IL, 2001.

4. E. Bloedorn, et al., Data Mining for Network Intrusion Detection: How to Get Started,
MITRE Technical Report, August 2001.

5. M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, LOF: Identifying Density-Based Local
Outliers, Proceedings of the ACM SIGMOD Conference, 2000.

6. Cabrera, J. B. D., Ravichandran, B., Mehra, R. K.: Statistical Traffic Modeling For Net-
work Intrusion Detection, Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, San Francisco,
CA, 2000.

7. D.E. Denning, An Intrusion Detection Model, IEEE Transactions on Software Engineering,
SE-13:222-232, 1987.

8. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo, A Geometric Framework for Unsu-
pervised Anomaly Detection: Detecting Intrusions in Unlabeled Data, Data Mining for Se-
curity Applications, Kluwer 2002.

9. W. Fan, S. J. Stolfo, J. Zhang, P. K. Chan, AdaCost: Misclassification Cost-sensitive
Boosting, Proceedings of the Sixteenth International Conference on Machine Learning, 97-
105, Bled, Slovenia, 1999.

10. A. Ghosh, A. Schwartzbard, A study in Using Neural Networks for Anomaly and Misuse
Detection, Proceedings of the Eighth USENIX Security Symposium, 141--151, Washing-
ton, DC, August 1999.

11. Incident Storm Center, www.incidents.org.
12. H.S. Javitz, and A. Valdes, The NIDES Statistical Component: Description and Justifica-

tion, Technical Report, Computer Science Laboratory, SRI International, 1993.
13. K.S.Jones: A Statistical Interpretation Of Term Specificity And Its Application In Re-

trieval, Journal of Documentation, 28 (1) 11-21, 1972.
14. M. Joshi, V. Kumar, R. Agarwal, Evaluating Boosting Algorithms to Classify Rare Classes:

Comparison and Improvements, First IEEE International Conference on Data Mining, San
Jose, CA, 2001.

15. M. Joshi, R. Agarwal, V. Kumar, Predicting Rare Classes: Can Boosting Make Any Weak
Learner Strong?, Proceedings of Eight ACM Conference ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 2002.

16. M. Joshi, R. Agarwal, V. Kumar, PNrule, Mining Needles in a Haystack: Classifying Rare
Classes via Two-Phase Rule Induction, Proceedings of ACM SIGMOD Conference on
Management of Data, May 2001.

17. M. Joshi, V. Kumar, CREDOS: Classification using Ripple Down Structure (A Case for
Rare Classes), in review.

18. E. Knorr, R. Ng, Algorithms for Mining Distance-based Outliers in Large Data Sets, Pro-
ceedings of the VLDB Conference, 1998.

19. A. Lazarevic, N. Chawla, L. Hall, K. Bowyer, SMOTEBoost: Improving the Prediction of
Minority Class in Boosting, AHPCRC Technical Report, 2002.

20. A. Lazarevic, L. Ertoz, A. Ozgur, V. Kumar, J. Srivastava: A Comparative Study of Anom-
aly Detection Schemes in Network Intrusion Detection, Proceedings of Third SIAM Inter-
national Conference on Data Mining, May, San Francisco, 2003.

21. W. Lee, S. J. Stolfo, Data Mining Approaches for Intrusion Detection, Proceedings of the
1998 USENIX Security Symposium, 1998.

22. W. Lee, D. Xiang: Information-Theoretic Measures for Anomaly Detection, IEEE Sympo-
sium on Security and Privacy, 2001.

23. R. P. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S. W. Webster, M.
Zissman, Re-sults of the 1999 DARPA Off-Line Intrusion Detection Evaluation, Proceed-
ings of the Second International Workshop on Recent Advances in Intrusion Detection
(RAID99), West Lafayette, IN, 1999.

24. R. Lippmann, R. Cunningham, Improving intrusion detection performance using keyword
selection and neural networks, Computer Networks, 34(4):597--603, 2000.

25. R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. P. Kendall, D. McClung, D. Weber,
S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman, Evaluating Intru-
sion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation, Pro-
ceedings DARPA Information Survivability Conference and Exposition (DISCEX) 2000,
Vol 2, pp. 12-26, IEEE Computer Society Press, Los Alamitos, CA, 2000.

26. J. Luo, Integrating Fuzzy Logic With Data Mining Methods for Intrusion Detection, Mas-
ter's thesis, Department of Computer Science, Mississippi State University, 1999.

27. M. Mahoney, P. Chan: Learning Nonstationary Models of Normal Network Traffic for
Detecting Novel Attacks, Proceedings of 8th International Conference on Knowledge Dis-
covery and Data Mining, 376-385, 2002.

28. S. Manganaris, M. Christensen, D. Serkle, and K. Hermix, A Data Mining Analysis of
RTID Alarms, Proceedings of the 2nd International Workshop on Recent Advances in In-
trusion Detection (RAID 99), West Lafayette, IN, September 1999.

29. J. McHugh, The 1998 Lincoln Laboratory IDS Evaluation (A Critique), Proceedings of the
Recent Advances in Intrusion Detection, 145-161, Toulouse, France, 2000.

30. Net flow tools, www.splintered.net/sw/flow-tools.
31. S. Ramaswamy, R. Rastogi, K. Shim, Efficient Algorithms for Mining Outliers from Large

Data Sets, Proceedings of the ACM SIGMOD Conference, 2000.
32. J. Ryan, M-J. Lin, R. Miikkulainen, Intrusion Detection with Neural Networks, Proceed-

ings of AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management,
72-77, AAAI Press, 1997.

33. C. Sinclair, L. Pierce, S. Matzner, An Application of Machine Learning to Network Intru-
sion Detection, Proceedings of the 15th Annual Computer Security Applications Confer-
ence, 371-377, Phoenix, AZ, December 1999.

34. R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, S. Zhou: Specification
Based Anomaly Detection: A New Approach for Detecting Network Intrusions, ACM Con-
ference on Computer and Communications Security, 2002.

35. SNORT Intrusion Detection System. www.snort.org.

36. S. Staniford, J. Hoagland, J. McAlerney, Practical Automated Detection of Stealthy
Portscans, Journal of Computer Security, vol. 10, No. 1-2, 105-136, 2002.

37. K. Yamanishi, J. Takeuchi, G. Williams, P. Milne, On-line Unsupervised Oultlier Detection
Using Finite Mixtures with Discounting Learning Algorithms, Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 320-
324, Boston, MA, 2000.

38. N. Ye, Q. Chen, An Anomaly Detection Technique Based on a Chi-Square Statistic for
Detecting Intrusions Into Information Systems, Quality and Reliability Engineering Inter-
national, 17(2): 105 - 112, 2001.

