
�

� �

�

A

Linear Algebra

This appendix provides a brief introduction to linear algebra with a focus on
topics that are relevant to the material in this text. We begin by describing
vectors, which can be used to represent both data objects and attributes. We
then discuss matrices, which can be used both to represent data sets and to
describe transformations on them.

A.1 Vectors

A.1.1 Definition

In Euclidean space, such as the ordinary two- and three-dimensional space
with which we are familiar, a vector is a quantity that has magnitude and
direction. It is traditionally represented as an arrow that has a length equal
to its magnitude and an orientation given by its direction. Figure A.1(a) shows
two vectors: vector u, which has a length of 1 and is parallel to the y axis,
and vector v, which has a length of 2 and a direction of 45◦ with respect to
the x axis. (We shall use lowercase bold letters, such as u and v, to represent
vectors. They are often also represented by italic lowercase letters, such as u
and v.) Since a point can be regarded as a displacement from the origin in a
particular direction, it can be represented by a vector from the origin to the
point.

A.1.2 Vector Addition and Multiplication by a Scalar

Various operations can be performed on vectors. (In what follows, we assume
that the vectors are all from the same space, i.e., have the same dimensional-
ity.) For instance, vectors can be added and subtracted. This is best illustrated

�

� �

�

842

(a) Two vectors. (b) Their difference. (c) Their sum.

u u u

u – v

 u + v

v
v

v

Figure A.1. Two vectors and their sum and difference.

graphically, and vector subtraction and addition are shown in Figures A.1(b)
and A.1(c), respectively. Like the addition of numbers, vector addition has
some familiar properties. If u, v, andw are three vectors, then these properties
can be described as follows:

• Commutativity of vector addition. The order of addition does not
matter. u+ v = v + u.

• Associativity of vector addition. The grouping of vectors during
addition does not matter. (u+ v) +w = u+ (v +w).

• Existence of an identity element for vector addition. There exists
a zero vector, simply denoted as 0, which is the identity element. For
any vector u, u+ 0 = u.

• Existence of additive inverses for vector addition. For every
vector u, there is an inverse vector −u such that u+ (−u) = 0.

Another important operation is the multiplication of a vector by a number,
which, in the context of linear algebra, is typically called a scalar. Scalar
multiplication changes the magnitude of the vector; the direction is unchanged
if the scalar is positive and is reversed if the scalar is negative. If u and v are
vectors and α and β are scalars (numbers), then the properties of the scalar
multiplication of vectors can be described as follows:

�

� �

�

843

• Associativity of scalar multiplication. The order of multiplication
by two scalars does not matter. α(βu) = (αβ)u.

• Distributivity of scalar addition over multiplication of a scalar
by a vector. Adding two scalars and then multiplying the resulting
sum by a vector is the same as multiplying each scalar by the vector and
then adding the two resultant vectors. (α+ β)u = αu+ βu .

• Distributivity of scalar multiplication over vector addition.Add-
ing two vectors and then multiplying the sum by a scalar is the same
as multiplying each vector by the scalar and then adding. α(u + v) =
αu+ αv.

• Existence of scalar identity. If α = 1, then for any vector u, αu = u.

A.1.3 Vector Spaces

A vector space is a set of vectors, along with an associated set of scalars
(e.g., the real numbers) that satisfies the properties given above and that is
closed under vector addition and multiplication by a scalar. (By closed, we
mean that every result of vector addition and/or scalar multiplication results
in a vector in the original set.) Vector spaces have the property that any vector
can be represented as a linear combination of a small set of vectors, which
are known as a basis. More specifically, if u1, . . . ,un are the basis vectors,
then we can find a set of n scalars {α1, . . . , αn} for any vector v, so that
v =

∑n
i=1 αiui. We say that the basis vectors span the vector space. The

dimension of a vector space is the minimum number of vectors that are
necessary to form a basis. Typically, the basis vectors are taken to have unit
length.

The basis vectors are usually orthogonal. The orthogonality of vectors is
an extension of the two-dimensional notion of perpendicular lines and will be
defined more precisely later on. Conceptually, orthogonal vectors are unrelated
or independent. If basis vectors are mutually orthogonal, then expressing a
vector as a linear combination of basis vectors effectively decomposes the
vector into a number of independent components.

Thus, a vector in an n-dimensional space can be considered to be an n-
tuple of scalars (numbers). To provide a concrete illustration, consider two-
dimensional Euclidean space, where each point is associated with a vector that
represents the displacement of the point from the origin. The displacement
vector to any point can be written as the sum of a displacement in the x

�

� �

�

844

direction and a displacement in the y direction, which are, respectively, the x
and y coordinates of the point.

We will refer to the components of a vector v by using the notation v =
(v1, v2, . . . , vn−1, vn). (With reference to the equation, v =

∑n
i=1 αiui, vi =

αi.) Note that vi is a component of v, while vi is one of a set of vectors.
With a component view of vectors, the addition of vectors becomes simple

to understand; to add two vectors, we simply add corresponding components.
For example, (2,3) + (4,2) = (6,5). To multiply a vector by a scalar, we
multiply each component by the scalar, e.g., 3 * (2,3) = (6,9).

A.1.4 The Dot Product, Orthogonality, and Orthogonal
Projections

We now define what it means for two vectors to be orthogonal. For simplicity,
we restrict ourselves to Euclidean vector spaces, although the definitions and
results are easily generalized. We begin by defining the dot product of two
vectors.

Definition A.1 (Dot Product). The dot product u · v of two vectors, u and
v, is given by the following equation:

u · v =

n∑
i=1

uivi. (A.1)

In words, the dot product of two vectors is computed by multiplying
corresponding components of a vector and then adding the resulting products.
For instance, (2, 3) · (4, 1) = 2 ∗ 4 + 3 ∗ 1 = 11.

In Euclidean space it can be shown that the dot product of two (non-zero)
vectors is 0 if and only if they are perpendicular. Geometrically, two vectors
define a plane, and their dot product is 0 if and only if the angle (in the plane)
between the two vectors is 90◦. We say that such vectors are orthogonal.

The dot product can also be used to compute the length of a vector in
Euclidean space, namely, length(u) =

√
u · u. The length of a vector is also

known as its L2 norm and is written as ||u||. Given a vector u, we can find
a vector that is pointing in the same direction as u, but is of unit length, by
dividing each component of u by its length; i.e., by computing u/||u||. We say
that we have normalized the vector to have an L2 norm of 1.

Given the notation for the norm of a vector, the dot product of a vector
can be written as

u · v = ||u|| ||v|| cos(θ), (A.2)

�

� �

�

845

v
u

vu

θ

Figure A.2. Orthogonal projection of vector v in the direction of vector u.

where θ is the angle between the two vectors. By grouping terms and reorder-
ing, this can be rewritten as

u · v = (||v|| cos(θ)) ||u|| = vu ||u||, (A.3)

where vu = ||v|| cos(θ) represents the length of v in the direction of u as
illustrated in Figure A.2. If u is a unit vector, then the dot product is the
component of v in the direction of u. We refer to this as the orthogonal
projection of v onto u. Of course, it is also true that if v is a unit vector,
then the dot product is the projection of u in the direction of v.

An important consequence of this is that, given a set of orthogonal vectors
of norm 1 that form a basis of a vector space, we can find the components of
any vector with respect to that basis by taking the dot product of the vector
with each basis vector.

A concept that is closely related to that of orthogonality is the notion of
linear independence.

Definition A.2 (Linear Independence). A set of vectors is linearly indepen-
dent if no vector in the set can be written as a linear combination of the other
vectors in another set.

If a set of vectors is not linearly independent, then they are linearly
dependent. Note that we want our basis to consist of a set of vectors such that
no vector is linearly dependent with respect to the remaining basis vectors,
because if this were so, then we could eliminate that vector and still have a

�

� �

�

846

set of vectors that span the entire vector space. If we choose our basis vectors
to be mutually orthogonal (independent), then we automatically obtain a
linearly independent set since any two vectors that are orthogonal are linearly
independent.

A.1.5 Vectors and Data Analysis

Although vectors were originally introduced to deal with quantities such as
force, velocity, and acceleration, they have proven useful for representing and
understanding many other kinds of data. In particular, we can often regard a
data object or an attribute as a vector. For example, Chapter 2 described a
data set that consisted of 150 Iris flowers that were characterized by four
attributes: sepal length, sepal width, petal length, and petal width. Each
flower can be regarded as a four dimensional vector, and each attribute can be
regarded as a 150 dimensional vector. As another example, a document can be
represented as a vector, where each component corresponds to a term (word)
and the value of each component is the number of times the term appears in
the document. This yields a very sparse, high-dimensional vector, where by
sparse, we mean that most of the entries of the vector are 0.

Once we have represented our data objects as vectors, we can perform var-
ious operations on the data that derive from a vector viewpoint. For example,
using various vector operations, we can compute the similarity or distance of
two vectors. In particular, the cosine similarity of two vectors is defined as

cos(u,v) =
u

||u|| ·
v

||v|| . (A.4)

This similarity measure does not take into account the magnitude (length) of
the vectors, but is only concerned with the degree to which two vectors point
in the same direction. In terms of documents, this means that two documents
are the same if they contain the same terms in the same proportion. Terms
that do not appear in both documents play no role in computing similarity.

We can also simply define the distance between two vectors (points). If
u and v are vectors, then the Euclidean distance between the two vectors
(points) is simply

dist(u,v) =
√
(u− v) · (u− v). (A.5)

This type of measure is more appropriate for the Iris data, since the magnitude
of the various components of the vectors does make a difference in whether
they are considered to be similar.

�

� �

�

847

Also, for vector data, it is meaningful to compute the mean of the set of
vectors, which is accomplished by computing the mean of each component.
Indeed, some clustering approaches, such as K-means (Chapter 7) work by
dividing the data objects into groups (clusters) and characterizing each cluster
by the mean of the data objects (data vectors). The idea is that a good cluster
is one in which the data objects in the cluster are close to the mean, where
closeness is measured by Euclidean distance for data like the Iris data and by
cosine similarity for data like document data.

Other common operations that are performed on data can also be thought
of as operations on vectors. Consider dimensionality reduction. In the sim-
plest approach, some of the components of the data vector are eliminated,
while leaving the others unchanged. Other dimensionality reduction techniques
produce a new set of components (attributes) for the data vector that are
linear combinations of the previous components. Still other methods change
the vectors in more complicated ways. Dimensionality reduction is discussed
further in Appendix B.

For certain areas of data analysis, such as statistics, the analysis techniques
are expressed mathematically in terms of operations on data vectors and the
data matrices that contain these data vectors. Thus, a vector representation
brings with it powerful mathematical tools that can be used to represent,
transform, and analyze the data.

In the remainder of this appendix, we will complete the story, by discussing
matrices.

A.2 Matrices

A.2.1 Matrices: Definitions

A matrix is a tabular representation of a set of numbers as a collection of
rows and columns. We will use uppercase bold letters, such as A, to represent
matrices. (Uppercase italic letters, such as A, are also used.) The term “m by
n matrix” is commonly used to refer to a matrix with m rows and n columns.
For example, the matrix A, shown below, is a 2 by 3 matrix. If m = n, we say
that the matrix is a square matrix. The transpose of A is written as AT

and is produced by interchanging the rows and columns of A.

A =

[
2 6 1
7 5 2

]
AT =

⎡⎣2 7
6 5
1 2

⎤⎦

�

� �

�

848

The matrix entries are represented by subscripted, lowercase letters. For
matrix A, for example, aij is the entry in the ith row and jth column. Rows
are numbered from top to bottom and columns from left to right. As a specific
illustration, a21 = 7 is the entry in the second row and first column of A.

Each row or column of a matrix defines a vector. For a matrix A, the ith

row vector can be represented using the notation ai∗ and the jth column
vector using the notation a∗j . Using the previous example, a2∗ = [7 5 2],
while a∗3 = [1 2]T . Notice that row and column vectors are matrices and must
be distinguished; i.e., a row vector and column vector that have the same
number of entries and the same values represent different matrices.

A.2.2 Matrices: Addition and Multiplication by a Scalar

Like vectors, matrices can be added by adding their corresponding entries
(components). (Here we are assuming that the matrices have the same number
of rows and columns.) More specifically, if A and B are two matrices having
dimensions m by n, then the sum of A and B is defined as follows:

Definition A.3 (Matrix Addition). The sum of two m by n matrices, A and
B, is an m by n matrix C, whose entries are given by the following equation:

cij = aij + bij . (A.6)

For example, [
3 1
1 2

]
+

[
5 4
2 9

]
=

[
8 5
3 11

]
.

Matrix addition has the following properties:

• Commutativity of matrix addition. The order of addition does not
matter. A+B = B+A.

• Associativity of matrix addition. The grouping of matrices during
addition does not matter. (A+B) +C = A+ (B+C) .

• Existence of an identity element for matrix addition. There exists
a zero matrix, having all 0 entries and simply denoted as 0, which is
the identity element. For any matrix A, A+ 0 = A.

• Existence of additive inverses for matrix addition. For every
matrix A there is a matrix −A such that A+(−A) = 0. The entries of
−A are −aij .

�

� �

�

849

As with vectors, we can also multiply a matrix by a scalar.

Definition A.4 (Scalar Multiplication of a Matrix). The product of a scalar
α and a matrix A is the matrix B = αA, whose entries are given by the
following equation.

bij = αaij (A.7)

Scalar multiplication has properties that are very similar to those of mul-
tiplying a vector by a scalar.

• Associativity of scalar multiplication. The order of multiplication
by two scalars does not matter. α(βA) = (αβ)A.

• Distributivity of scalar addition over multiplication of a scalar
by a matrix. Adding two scalars and then multiplying the sum by a
matrix is the same as multiplying each scalar times the matrix and then
adding the two resultant matrices. (α+ β)A = αA+ βA .

• Distributivity of scalar multiplication over matrix addition.
Adding two matrices and then multiplying the sum by a scalar is the
same as multiplying each matrix by the scalar and then adding. α(A+
B) = αA+ αB.

• Existence of scalar identity. If α = 1, then for any matrix A, αA =
A.

None of the previous properties should be surprising since we can think
of a matrix as being composed of row or column vectors, and hence, matrix
addition or the multiplication by a scalar amounts to adding corresponding
row or column vectors or multiplying them by a scalar.

A.2.3 Matrices: Multiplication

We can define a multiplication operation for matrices. We begin by defining
multiplication between a matrix and a vector.

Definition A.5 (Multiplication of a Matrix by a Column Vector). The prod-
uct of an m by n matrix A and an n by 1 column matrix u is the m by 1
column matrix v = Au, whose entries are given by the following equation.

vi = ai∗ · u (A.8)

�

� �

�

850

In other words, we take the dot product of the transpose of u with each
row vector of A. In the following example, notice that the number of rows in
u must be the same as the number of columns of A.[

3 1
1 2

] [
5
2

]
=

[
17
9

]
We can similarly define the multiplication of a matrix by a row vector on

the left side.

Definition A.6 (Multiplication of a Matrix by a Row Vector). The product
of a 1 by m row matrix u and an m by n matrix A is the 1 by n row matrix
v = uA, whose entries are given by the following equation.

vi = u · (a∗j)T (A.9)

In other words, we take the dot product of the row vector with the trans-
pose of each column vector of A. An example is given below.

[
1 2

] [5 4
2 9

]
=
[
9 22

]
We define the product of two matrices as an extension to the above idea.

Definition A.7. The product of an m by n matrix A and an n by p matrix
B is the m by p matrix C = AB, whose entries are given by the equation

cij = ai∗ · (b∗j)T (A.10)

In words, the ijth entry of C is the dot product of the ith row vector of A
and the transpose of the jth column vector of B.[

3 1
1 2

] [
5 4
2 9

]
=

[
17 21
9 22

]
Matrix multiplication has the following properties:

• Associativity of matrix multiplication. The order of multiplication
of matrices does not matter. (AB)C = A(BC).

• Distributivity of matrix multiplication. Matrix multiplication is
distributive with respect to matrix addition. A(B + C) = AB + AC
and (B+C)A = BA+CA.

�

� �

�

851

• Existence of an identity element for matrix multiplication. If
Ip is the p by p matrix with 1’s only on the diagonal and 0 elsewhere,
then for any m by n matrix A, AIn = A and ImA = A. (Note that the
identity matrix is an example of a diagonal matrix, which is a matrix
whose off diagonal entries are all 0, i.e., aij = 0, if i �= j.)

In general, matrix multiplication is not commutative, i.e., AB �= BA.

A.2.4 Linear Transformations and Inverse Matrices

If we have an n by 1 column vector u, then we can view the multiplication
of an m by n matrix A by this vector on the right as a transformation of u
into an m-dimensional column vector v = Au. Similarly, if we multiply A
by a (row) vector u = [u1, . . . , um] on the left, then we can view this as a
transformation of u into an n-dimensional row vector v = uA. Thus, we can
view any m by n matrix A as a function that maps one vector space onto
another.

In many cases, the transformation (matrix) can be described in easily
understood terms.

• A scaling matrix leaves the direction of the vector unchanged, but
changes its length. This is equivalent to multiplying by a matrix that is
the identity matrix multiplied by a scalar.

• A rotation matrix changes the direction of a vector, but leaves the
magnitude of the vector unchanged. This amounts to a change of coor-
dinate system.

• A reflection matrix reflects a vector across one or more coordinate
axes. This would be equivalent to multiplying some of the entries of the
vector by −1, while leaving the other entries unchanged.

• A projection matrix takes vectors into a lower dimensional subspace.
The simplest example is the modified identity matrix where one or more
of the 1’s on the diagonal have been changed into 0’s. Such a matrix
eliminates the vector components corresponding to those zero entries,
while preserving all others.

Of course, a single matrix can do two kinds of transformations at once, e.g.,
scaling and rotation.

Following are a few properties of matrices when viewed as functions that
map vectors from one vector space to another.

�

� �

�

852

• Matrices are linear transformations, i.e., A(αu+βv) = αAu+βAv
and (αu+ βv)A = αuA+ βvA.

• The set of all transformed row vectors of a matrix A is called the row
space of A because the row vectors of the matrix, or some subset of
them, form a basis for the subspace of transformed row vectors. This is
evident from the following equation, which expresses the product of a 1
by m row vector u = [u1, . . . , um] and an m by n matrix A as a linear
combination of the rows of the matrix.

v = uA =
m∑
i=1

uiai∗ (A.11)

The dimension of the row space tells us the number of linearly indepen-
dent rows of A.

• The set of all transformed column vectors is called the column space
of A. The column vectors of the matrix, or some subset of them, form
a basis for the subspace of transformed column vectors. This is clear
from the following equation, which expresses the product of an n by 1
column vector u = [u1, . . . , un]

T and an m by n matrix A as a linear
combination of the columns of the matrix.

v = Au =

n∑
j=1

uja∗j (A.12)

The dimension of the column space tells us the number of linearly
independent columns of A.

• The left nullspace is the set of row vectors that the matrix maps to 0.

• The right nullspace (or more commonly, just nullspace) is the set of
column vectors that the matrix maps to 0.

Note that the rank of a matrix is the minimum of the dimensionality of
the row space and column space and is often used to characterize a matrix.
For instance, if we take a single 1 by n row vector and duplicate it m times
to create an m by n matrix, we would only have a matrix of rank 1.

A question of practical and theoretical importance is whether matrices,
like real numbers, have multiplicative inverses. First, we note that because of
the nature of matrix multiplication (i.e., dimensions have to match), a matrix

�

� �

�

853

must be square if it is to have an inverse matrix. Thus, for anm bymmatrix
A, we are asking if we can find a matrix A−1 such that AA−1 = A−1A = Im.
The answer is that some square matrices have inverses and some do not.

More abstractly, an m by m matrix has an inverse only if both of its null
spaces contain only the 0 vector, or if, equivalently, the row and column spaces
are both of dimension m. (This is equivalent to the rank of the matrix being
m.) Conceptually, an m by m matrix has an inverse if and only if it uniquely
maps every non-zero m-dimensional row (column) vector onto a unique, non-
zero m-dimensional row (column) vector.

The existence of an inverse matrix is important when solving various
matrix equations.

A.2.5 Eigenvalue and Singular Value Decomposition

We now discuss a very important area of linear algebra: eigenvalues and
eigenvectors. Eigenvalues and eigenvectors, along with the related concept
of singular values and singular vectors, capture the structure of matrices by
allowing us to factor or decompose matrices and express them in a standard
format. For that reason, these concepts are useful in the solution of mathe-
matical equations and for dimensionality and noise reduction. We begin with
the definition of eigenvalues and eigenvectors.

Definition A.8 (Eigenvectors and Eigenvalues). The eigenvalues and eigen-
vectors of an n by n matrix A are, respectively, the scalar values λ and the
vectors u that are solutions to the following equation.

Au = λu (A.13)

In other words, eigenvectors are the vectors that are unchanged, except
for magnitude, when multiplied byA. The eigenvalues are the scaling factors.
This equation can also be written as (A− λI)u = 0.

For square matrices, it is possible to decompose the matrix using eigenval-
ues and eigenvectors.
Theorem A.1. Assume that A is an n by n matrix with n independent (or-
thogonal) eigenvectors, u1, . . . , un and n corresponding eigenvalues, λ1, . . . , λn.
Let U be the matrix whose columns are these eigenvectors, i.e., U = [u1, . . . ,un]
and let Λ be a diagonal matrix, whose diagonal entries are the λi, 1 ≤ i ≤ n.
Then A can be expressed as

A = UΛU−1. (A.14)

�

� �

�

854

Thus, A can be decomposed into a product of three matrices. u is known
as the eigenvector matrix and Λ as the eigenvalue matrix.

More generally, an arbitrary matrix can be decomposed in a similar way.
Specifically, any m by n matrix A can be factored into the product of three
matrices as described by the following theorem.
Theorem A.2. Assume that A is an m by n matrix. Then A can be expressed
as follows

A = UΣVT . (A.15)

Where U is m by m, Σ is m by n, and V is n by n. U and V are orthonormal
matrices, i.e., their columns are of unit length and are mutually orthogonal.
Thus, UUT = Im and VVT = In. Σ is a diagonal matrix whose diagonal
entries are non-negative and are sorted so that the larger entries appear first,
i.e., σi,i ≥ σi+1,i+1

The column vectors of V, v1, . . . ,vn are the right singular vectors,
while the columns of U are the left singular vectors. The diagonal elements
of Σ, the singular value matrix, are typically written as σ1, . . . , σn and are
called the singular values of A. (This use of σ should not be confused with
the use of σ to represent the standard deviation of a variable.) There are at
most rank(A) ≤ min(m,n) non-zero singular values.

It can be shown that the eigenvectors ofATA are the right singular vectors
(i.e., the columns of V), while the eigenvectors of AAT are the left singular
vectors (i.e., the columns of U). The non-zero eigenvalues of ATA and AAT

are the σ2i , i.e., the squares of the singular values. Indeed, the eigenvalue
decomposition of a square matrix can be regarded as a special case of singular
value decomposition.

The singular value decomposition (SVD) of a matrix can also be expressed
with the following equation. Note that while uiv

T
i might look like a dot

product, it is not, and the result is a rank 1 m by n matrix.

A =

rank(A)∑
i=1

σiuiv
T
i (A.16)

The importance of the above representation is that every matrix can be
expressed as a sum of rank 1 matrices that are weighted by singular values.
Since singular values, which are sorted in non-increasing order, often decline
rapidly in magnitude, it is possible to obtain a good approximation of a matrix
by using only a few singular values and singular vectors. This is useful for
dimensionality reduction and will be discussed further in Appendix B.

�

� �

�

855

A.2.6 Matrices and Data Analysis

We can represent a data set as a data matrix, where each row is a data
object and each column is an attribute. (We can, with equal validity, have
attributes as rows and objects as columns.) Matrix representation provides a
compact and well-structured representation for our data and permits the easy
manipulation of the objects or attributes of the data through various matrix
operations.

Systems of linear equations are one very common example of the usefulness
of the matrix representation of data. A system of linear equations can be
written as the matrix equation Ax = b and solved using matrix operations.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm

In particular, if A has an inverse, the system of equations has a solution
x = A−1b. If not, then the system of equations has either no solution or an
infinite number of solutions. Note that in this case, our rows (data objects)
were equations and our columns were variables (attributes).

For many statistical and data analysis problems, we want to solve linear
systems of equations, but these equations cannot be solved in the manner
just described. For example, we may have a data matrix where the rows
represent patients and the columns represent characteristics of the patients—
height, weight, and age—and their response to a particular medication, e.g., a
change in blood pressure. We want to express blood pressure (the independent
variable) as a linear function of the other (dependent) variables, and we can
write a matrix equation in much the same way as above. However, if we have
more patients than variables—the usual case—the inverse of the matrix does
not exist.

In this case, we still want to find the best solution for the set of equations.
This means that we want to find the best linear combination of the inde-
pendent variables for predicting the dependent variable. Using linear algebra
terminology, we want to find the vector Ax that is as close to B as possible;
in other words, we want to minimize ||b − Ax||, which is the length of the
vector b−Ax. This is known as the least squares problem. Many statistical
techniques (e.g., linear regression, which is discussed in Appendix D) require

�

� �

�

856

the solution of a least squares problem. It can be shown that the least squares
solution of the equation Ax = b is x = (ATA)−1ATb.

Singular value and eigenvalue decomposition are also very useful in an-
alyzing data, particularly in the area of dimensionality reduction, which is
discussed in Appendix B. Note that noise reduction can also occur as a side
effect of dimensionality reduction.

While we have given a few examples of the application of linear algebra,
we have omitted many more. Examples of other areas where linear algebra is
important in the formulation and solution of problems include solving systems
of differential equations, optimization problems (such as linear programming),
and graph partitioning.

A.3 Bibliographic Notes

There are many books that provide good coverage of linear algebra, including
those by Demmel [758], Golub and Van Loan [759], and Strang [760].

Bibliography
[758] J. W. Demmel. Applied Numerical Linear Algebra. SIAM Press, September 1997.

[759] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 3rd edition, November 1996.

[760] G. Strang. Linear Algebra and Its Applications. Harcourt Brace & Company, Orlando,
FL, 3rd edition, 1986.

�

� �

�

B

Dimensionality
Reduction

This appendix considers various techniques for dimensionality reduction. The
goal is to expose the reader to the issues involved and to describe some
of the more common approaches. We begin with a discussion of Principal
Components Analysis (PCA) and Singular Value Decomposition (SVD). These
methods are described in some detail since they are among the most commonly
used approaches and we can build on the discussion of linear algebra in
Appendix A. However, there are many other approaches that are also employed
for dimensionality reduction, and thus, we provide a quick overview of several
other techniques. We conclude with a short review of important issues.

B.1 PCA and SVD

PCA and SVD are two closely related techniques. For PCA, the mean of the
data is removed, while for SVD, it is not. These techniques have been widely
used for decades in a number of fields. In the following discussion, we will
assume that the reader is familiar with linear algebra at the level presented
in Appendix A.

B.1.1 Principal Components Analysis (PCA)

The goal of PCA is to find a new set of dimensions (attributes) that better
captures the variability of the data. More specifically, the first dimension is
chosen to capture as much of the variability as possible. The second dimension
is orthogonal to the first, and, subject to that constraint, captures as much of
the remaining variability as possible, and so on.

�

� �

�

858

PCA has several appealing characteristics. First, it tends to identify the
strongest patterns in the data. Hence, PCA can be used as a pattern-finding
technique. Second, often most of the variability of the data can be captured
by a small fraction of the total set of dimensions. As a result, dimensionality
reduction using PCA can result in relatively low-dimensional data and it may
be possible to apply techniques that don’t work well with high-dimensional
data. Third, since the noise in the data is (hopefully) weaker than the patterns,
dimensionality reduction can eliminate much of the noise. This is beneficial
both for data mining and other data analysis algorithms.

We briefly describe the mathematical basis of PCA and then present an
example.

Mathematical Details

Statisticians summarize the variability of a collection of multivariate data; i.e.,
data that has multiple continuous attributes, by computing the covariance
matrix S of the data.

Definition B.1. Given an m by n data matrix D, whose m rows are data
objects and whose n columns are attributes, the covariance matrix of D is the
matrix S, which has entries sij defined as

sij = covariance(d∗i,d∗j). (B.1)

In words, sij is the covariance of the ith and jth attributes (columns) of the
data.

The covariance of two attributes is defined in Appendix C, and is a measure
of how strongly the attributes vary together. If i = j, i.e., the attributes are the
same, then the covariance is the variance of the attribute. If the data matrix
D is preprocessed so that the mean of each attribute is 0, then S = DTD.

A goal of PCA is to find a transformation of the data that satisfies the
following properties:

1. Each pair of new attributes has 0 covariance (for distinct attributes).

2. The attributes are ordered with respect to how much of the variance of
the data each attribute captures.

3. The first attribute captures as much of the variance of the data as
possible.

�

� �

�

B.1 PCA and SVD 859

4. Subject to the orthogonality requirement, each successive attribute cap-
tures as much of the remaining variance as possible.

A transformation of the data that has these properties can be obtained by
using eigenvalue analysis of the covariance matrix. Let λ1, . . . , λn be the
eigenvalues of S. The eigenvalues are all non-negative and can be ordered such
that λ1 ≥ λ2 ≥ . . . λm−1 ≥ λm. (Covariance matrices are examples of what are
called positive semidefinite matrices, which, among other properties, have
non-negative eigenvalues.) Let U = [u1, . . . ,un] be the matrix of eigenvectors
of S. These eigenvectors are ordered so that the ith eigenvector corresponds
to the ith largest eigenvalue. Finally, assume that data matrix D has been
preprocessed so that the mean of each attribute (column) is 0. We can make
the following statements.

• The data matrix D′ = DU is the set of transformed data that satisfies
the conditions posed above.

• Each new attribute is a linear combination of the original attributes.
Specifically, the weights of the linear combination for the ith attribute
are the components of the ith eigenvector. This follows from the fact that
the jth column of D′ is given by Duj and the definition of matrix-vector
multiplication given in Equation A.12.

• The variance of the ith new attribute is λi.

• The sum of the variance of the original attributes is equal to the sum of
the variance of the new attributes.

• The new attributes are called principal components; i.e., the first new
attribute is the first principal component, the second new attribute is
the second principal component, and so on.

The eigenvector associated with the largest eigenvalue indicates the direc-
tion in which the data has the most variance. In other words, if all of the data
vectors are projected onto the line defined by this vector, the resulting values
would have the maximum variance with respect to all possible directions.
The eigenvector associated with the second largest eigenvalue is the direction
(orthogonal to that of the first eigenvector) in which the data has the largest
remaining variance.

The eigenvectors of S define a new set of axes. Indeed, PCA can be viewed
as a rotation of the original coordinate axes to a new set of axes that are
aligned with the variability in the data. The total variability of the data is
preserved, but the new attributes are now uncorrelated.

�

� �

�

860

–4 –2 0 2 4 6 8 10

–2

–4

0

2

4

6

8

x

y

–6 –4 –2 0 2 4 6
–5

–4

–3

–2

–1

0

1

2

3

4

5

x

y

(a) Original points. (b) Points after transformation.

Figure B.1. Using PCA to transform the data.

Example B.1 (Two-Dimensional Data). We illustrate the use of PCA for
aligning the axes in the directions of the maximum variability of the data.
Figure B.1 shows a set of 1000 two-dimensional data points, before and after
a PCA transformation. The total variance for the original set of points is the
sum of the variance of the x and y attributes, which is equal to 2.84 + 2.95
= 5.79. After transformation, the variance is 4.81 + 0.98 = 5.79.

Example B.2 (Iris Data). This example uses the Iris data set to demonstrate
the use of PCA for dimensionality reduction. This data set contains 150 data
objects (flowers); there are 50 flowers from each of three different Iris species:
Setosa, Versicolour, and Virginica. Each flower is described by four attributes:
sepal length, sepal width, petal length, and petal width.

Figure B.2(a) shows a plot of the fraction of the overall variance accounted
for by each eigenvalue (principal component) of the covariance matrix. This
type of plot is known as a scree plot and is useful for determining how many
principal components need to be kept to capture most of the variability of
the data. For the Iris data, the first principal component accounts for most of
the variation (92.5%), the second for only 5.3%, and the last two components
for just 2.2%. Thus, keeping only the first two principal components preserves
most of the variability in the data set. Figure B.2(b) shows a scatter plot of the
Iris data based on the first two principal components. Note that the Setosa
flowers are well separated from the Versicolour and Virginica flowers. The
latter two sets of flowers, while much closer to each other, are still relatively
well separated.

�

� �

�

B.1 PCA and SVD 861

1 2 3 4
Eigenvalue

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fr
ac

tio
n

of
 v

ar
ia

nc
e

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

–4 –3 –2 –1 0 1 2 3 4

First Principal Componet

Setosa
Versicolour
Virginica

1.5

1

0.5

0

–0.5

–1

–1.5

(a) Fraction of variance accounted for by each principal component.

(b) Plot of first two principal components of Iris data.

Figure B.2. PCA applied to the Iris data set.

�

� �

�

862

B.1.2 SVD

PCA is equivalent to an SVD analysis of the data matrix, once the mean
of each variable has been removed. Nonetheless, it is informative to look at
dimensionality reduction from the SVD point of view, since it is not always
desirable to remove the mean from data, especially if the data is relatively
sparse.

Mathematical Details

From Appendix A, we know that an m by n matrix A can be written as

A =

rank(A)∑
i=1

σiuiv
T
i = UΣVT . (B.2)

where σi is the ith singular value of A (the ith diagonal entry of Σ), ui is
the ith left singular vector of A (the ith column of U), and the vi is the ith

right singular vector of A (the ith column of V). (See Section A.2.5.) An SVD
decomposition of a data matrix has the following properties.

• Patterns among the attributes are captured by the right singular vectors,
i.e., the columns of V.

• Patterns among the objects are captured by the left singular vectors,
i.e., the columns of U.

• A matrix A can be successively approximated in an optimal manner by
taking, in order, the terms of Equation B.2. We do not explain what
we mean by optimal, but refer the reader to the Bibliographic Notes.
Informally, the larger a singular value, the larger the fraction of a matrix
that is accounted for by the singular value and its associated singular
vectors.

• To obtain a new data matrix with k attributes, we compute the matrix
D′ = D ∗ [v1,v2, . . . ,vk]. It might seem from the previous discussion
that we would take the matrix that results from the first k terms of
Equation A.12. However, while the resulting matrix is of rank k, it still
has n columns (attributes).

Example B.3 (Document Data). SVD decomposition can be used to analyze
document data. The data for this example consists of 3204 newspaper articles

�

� �

�

B.1 PCA and SVD 863

from the Los Angeles Times. These articles come from 6 different sections:
Entertainment, Financial, Foreign, Metro, National, and Sports. The data
matrix is a document-term matrix, where each row represents a document
and each column is a term (word). The value of the ijth entry is the number
of times the jth term occurs in the ith document. The data was processed
using standard techniques to remove common words, to adjust for the different
frequencies with which terms appear, and to adjust for the different lengths
of documents. (See Section 2.3.7 for more details.)

An SVD analysis of the data was performed to find the first 100 singular
values and vectors. (For many data sets, it is too expensive to find a full SVD
or PCA decomposition and often pointless since relatively few of the singular
values or eigenvalues are required to capture the structure of the matrix.)
The largest singular value is associated with common terms that are frequent,
but not eliminated by the preprocessing. (It can happen that the strongest
patterns represent noise or uninteresting patterns.)

However, the patterns associated with other singular values were more
interesting. For example, the following are the top 10 terms (words) associated
with the strongest components in the second right singular vector:
game, score, lead, team, play, rebound, season, coach, league,

goal

These are all terms associated with sports. Not surprisingly, the documents
associated with the strongest components of the second left singular vector
are predominantly from the Sports section.

The top 10 terms associated with the strongest components in the third
right singular vector are the following:
earn, million, quarter, bank, rose, billion, stock, company,

corporation, revenue

These are all financial terms, and, not surprisingly, the documents associated
with the strongest components in the third left singular vector are predomi-
nantly from the Financial section.

We reduced the dimensionality of the data using the second and third
singular vectors, i.e., D′ = D ∗ [v2,v3]. In other words, all documents were
expressed in terms of two attributes, one relating to Sports and one relating to
Finance. A scatter plot of documents is given by Figure B.3. For clarity, non-
Sports, non-Financial documents have been eliminated. The Sports documents
are shown in a lighter shade of gray, while the Financial documents are a
darker gray. The two different categories of documents are well separated for
the most part. Indeed, the Sports documents do not vary much with respect
to the Financial variable (component 3) and the Financial documents do not
vary much with respect to the Sports variable (component 2).

�

� �

�

864

–0.2 –0.1 0 0.1 0.2 0.3 0.4

0

0.1

–1

0.2

0.3

0.4

0.5

0.6

Second Singular Component

T
hi

rd
 S

in
gu

la
r

C
om

po
ne

nt

Financial Documents

Sports Documents

Figure B.3. Plot of Sports and Financial documents from the LA Times using the second and third
singular values.

B.2 Other Dimensionality Reduction Techniques

In this section, we review a few other dimensionality reduction techniques.
These techniques will be discussed more briefly, with a focus on their general
motivation and approach.

B.2.1 Factor Analysis

For PCA and SVD, the new attributes that are produced are linear combina-
tions of the original variables. With factor analysis, the goal is to express the
original variables as linear combinations of a small number of hidden or la-
tent attributes. The motivation is based on the following observation. Often
there are characteristics of data objects that are hard to measure directly, but
that seem to be related to measurable characteristics. One common example
is intelligence and performance on various types of IQ tests. Another common
example is the connection between performance in various athletic events and
an athlete’s speed and strength. If a small number of attributes can be found
that group and summarize the original attributes, then we will have achieved
both a reduction in dimensionality and an increase in our understanding of
the data.

�

� �

�

B.2 Other Dimensionality Reduction Techniques 865

The motivation for factor analysis is sometimes also explained in terms
of the covariance or correlation matrix of the data. Suppose that a group of
attributes are not very highly correlated to other attributes, but are strongly
correlated to one another, perhaps because they measure the same underlying
quantity. In this case, it would seem desirable to develop techniques that could
find a single underlying attribute that summarizes each such group.

For example, consider a data set that records the performance of a group
of athletes in the ten separate events that comprise the decathlon. We might
find that athletes tend to show the same performance in all events that
emphasize speed; i.e., slow athletes are consistently slow and fast athletes
are consistently fast. Likewise, we might find that an athlete’s behavior in an
event that requires strength indicates how he or she will perform in another
event that emphasizes strength. Hence, we might hypothesize that an athlete’s
performance in any given event is really determined by the nature of the event
and two underlying factors: speed and strength. Factor analysis attempts to
discover such relationships.

More formally, let f1, f2, . . . , fp be the latent factors, i.e., the underlying
or hidden attributes. Note that these are the new attributes and have a value
for each object. If the original data matrix is D, an m by n matrix, then the
new data matrix is F = [f1, f2, . . . , fp], which is an m by p matrix. (Note that
f∗j = fj .) The ij

th entry of F is fij , the j
th component of fi.

Assume that the mean of each attribute is 0. If di∗ is the ith row of
the original data matrix D, then fi∗ is the corresponding row of the new
data matrix, F. The standard factor analysis model assumes the following
relationship between the old and new data objects:

dT
i∗ = ΛfTi∗ + εεε (B.3)

or equivalently by

dij = λj1fi1 + λj2fi2, . . . , λjpfip + εi. (B.4)

Λ, which has entries λkl, is an n by p matrix of factor loadings that
indicate, for each of the original attributes, how the original value depends
on the latent factors, i.e., the new attributes. To illustrate, in the decathlon
example, there would be two latent factors: speed and strength. These cor-
respond to columns of F. Each athlete would be represented by a row of
F with entries recording the athlete’s speed and strength. Each column of
D would correspond to one of the ten events of the decathlon, while each
row again corresponds to an athlete. The ijth entry of D is the performance

�

� �

�

866

of the ith athlete in the jth event. Λ would be a 10 by 2 matrix. If the
first column of D records the performance of the athletes on the 100-meter
dash, then the performance of athlete i in the 100-meter dash is written as
di1 = λ11fi1+λ12fi2, where fi1 is a value indicating the speed of athlete i and
fi2 is a value indicating the strength of athlete i. λ11 and λ12 indicate how
an athlete’s speed and strength, respectively, should be weighted to predict
an athlete’s performance in the 100 meter dash. We would expect that λ11
would be relatively large compared to λ12. Note that these weights are the
same across all objects (athletes).

Since all latent factors are involved in the determination of the value of
any original attribute, they are known as common factors. εεε is an error term
that accounts for the portion of the attributes that is not accounted for by the
common factors, and hence, the components of εεε are known as the specific
factors.

Example B.4 (Factor Analysis of Iris Data). This example is based on the
Iris data set. For this data, only a single factor could be found. The flowers in
the Iris data set are organized so that the first 50 flowers are of species Setosa,
the second 50 are Versicolour, and the last 50 are Virginica. This single factor
(attribute) is plotted against flower as shown in Figure B.4. This factor seems
to capture the distinction among the three species.

B.2.2 Locally Linear Embedding (LLE)

LLE is a technique for dimensionality reduction based on the idea of analyzing
overlapping local neighborhoods in order to determine the local structure. The
LLE algorithm is given below.

Algorithm B.1 LLE algorithm.
1: Find the nearest neighbors of each data point.
2: Express each point xi as a linear combination of the other points, i.e., xi =∑

j wijxj , where
∑

j wij = 1 and wij = 0 if xj is not a near neighbor of xi.
3: Find the coordinates of each point in lower-dimensional space of specified

dimension p by using the weights found in step 2.

In step 2, the weight matrix W, whose entries are wij , is found by minimiz-
ing the squared approximation error as measured by the following equation.
W can be found by solving a least squares problem. (Such problems were

�

� �

�

B.2 Other Dimensionality Reduction Techniques 867

0 50 100 150
–2

–1

0

1

2

Flower

La
te

nt
 F

ac
to

r

Setosa

Versicolour

Virginica

Figure B.4. Plot of the flower of the Iris data set versus the single latent factor.

discussed in Appendix A.)

error(W) =
∑
i

⎛⎝xi −
∑
j

wijxj

⎞⎠2

(B.5)

Step 3 performs the actual dimensionality reduction. Given the weight
matrix and a number of dimensions, p, specified by the user, the algorithm
constructs a “neighborhood preserving embedding” of the data into the lower-
dimensional space. If yi is the vector in the lower-dimensional space that
corresponds to xi and Y is the new data matrix whose ith row is yi, then this
can be accomplished by finding a Y that minimizes the following equation.

error(Y) =
∑
i

⎛⎝yi −
∑
j

wijyj

⎞⎠2

(B.6)

Example B.5. the use of LLE for dimensionality reduction is illustrated
using the Iris data set. Specifically, the data was projected to two dimensions.
A neighborhood of 30 points was used. A scatter plot of the projected data

�

� �

�

868

–4–5
–2

–1.5

1.5

–0.5

0

0.5

–1

1

–3 –2 –1 0 1 2 3 4
First New Attribute

Setosa
Versicolour
Viriginica

S
ec

on
d

N
ew

 A
ttr

ib
ut

e

Figure B.5. Plot of the flowers of the Iris data set based on two new attributes from LLE.

is shown in Figure B.5. The data can also be projected to one dimension. In
that case, it looks much like Figure B.4.

B.2.3 Multidimensional Scaling, FastMap, and ISOMAP

Multidimensional scaling is a technique that is often used for dimensionality
reduction. A number of variations of this technique have been proposed, but
the general strategy of these techniques is the same: Find a projection of the
data to a lower-dimensional space that preserves pairwise distances as well as
possible, as measured by an objective function. Because of this strategy, MDS
starts from a dissimilarity matrix, and thus, can be used even for data that
does not originally have a vector space representation, e.g., strings.

Standard MDS Techniques

We begin by describing the classical MDS approach for projecting data to a
p-dimensional space. Assume that we are given a distance matrix D, where
the entry dij is the distance between the ith and jth objects. Let d′ij be the
distance between the objects after they have been transformed. Classical MDS
tries to assign each object to a p-dimensional point such that a quantity called

�

� �

�

B.2 Other Dimensionality Reduction Techniques 869

stress is minimized, where stress is defined as

stress =

√√√√√∑
ij

(
d′ij − dij

)2
∑

ij d
2
ij

. (B.7)

The classical version of MDS is an example of metric MDS techniques,
which assume that the dissimilarities are continuous variables (interval or
ration). Non-metric MDS techniques assume that the data is categorical
(at best ordinal). We will not discuss the details of these algorithms, except
to say that the typical approach is to initially assign objects to p-dimensional
points in some manner and then try to modify the points to reduce the stress.

When classical MDS or some of the other standard variants of MDS are
applied to the Iris data set, they yield almost the same results as shown in
Figure B.2. Indeed, classical MDS for Euclidean distance is equivalent to PCA.

FastMap

A recent development in the area of MDS is the algorithm FastMap. It has
the same goal as other MDS techniques, but has two important differences.

• It is faster—linear complexity.

• It can operate incrementally.

The FastMap algorithm identifies a pair of objects and then computes the
distance of each remaining object in this direction. This can be accomplished
using only pairwise distances by employing certain facts of geometry, namely,
the law of cosines. This distance is taken as the value of the first attribute. The
objects are then projected onto an (n− 1)-dimensional subspace. Again, this
can be performed using only pairwise distances. The process is then repeated.

The FastMap algorithm is initially applied to an entire data set. However,
if we keep track of the pairs of objects that are chosen at each step, then
we can incrementally apply FastMap to a new object. The only information
needed is the distance of the new object to the selected pairs.

ISOMAP

MDS and PCA are not good at dimensionality reduction when the points have
a complicated, nonlinear relationship to one another. (An exceptions is kernel

�

� �

�

870

Figure B.6. Plot of Swiss roll data set.

PCA—see Bibliographic Notes.) ISOMAP, which is an extension of traditional
MDS, was developed to handle such data sets. An example of the type of data
set that it can handle is given in Figure B.6, which shows a plot of the “Swiss
roll” surface. A data set with this structure constitutes a two-dimensional
set of data in a three-dimensional space, but one that cannot be successfully
handled by PCA or MDS. However, ISOMAP can successfully analyze this
data set.

Algorithm B.2 outlines the basic ISOMAP algorithm. Nearest neighbors

Algorithm B.2 ISOMAP Algorithm.
1: Find the nearest neighbors of each data point and create a weighted graph by

connecting a point to its nearest neighbors. The nodes are the data points and
the weights of the links are the distances between points.

2: Redefine the distances between points to be the length of the shortest path
between the two points in the neighborhood graph.

3: Apply classical MDS to the new distance matrix.

can be defined, either by taking the k-nearest points, where k is a parameter,
or by taking all points within a specified radius of the point. The purpose
of step 2 is to compute the geodesic distance; i.e., the distance between two
points that stays on the surface, rather than the Euclidean distance. As an
example, the Euclidean distance between two cities on opposite sides of the
Earth is the length of a line segment that passes through the Earth, while the
geodesic distance between two cities is the length of the shortest arc on the
surface of the Earth.

�

� �

�

B.2 Other Dimensionality Reduction Techniques 871

–4–5 –3 –2 –1 0 1 2 3 4
First New Attribute

S
ec

on
d

N
ew

 A
ttr

ib
ut

e

Setosa
Versicolour
Virginica

0.8

0.6

0.4

0.2

0

–0.6

–0.4

–0.2

–0.8

–1

–1.2

Figure B.7. Plot of the flower of the Iris data set based on two new attributes from ISOMAP.

Example B.6. ISODATA was used to project the Iris data into two dimen-
sions. See Figure B.7. The result is similar to previous techniques.

B.2.4 Common Issues

As with other data analysis techniques, we can distinguish between different
dimensionality techniques in a number of areas. One key issue is the quality
of the result: Can a technique produce a reasonably faithful representation of
the data in a lower-dimensional space? Does this representation capture the
characteristics of the data that are important to the intended application (e.g.,
clusters), while eliminating aspects that are irrelevant or even detrimental
(e.g., noise)?

To a large extent, the answer depends on the kind of data and data
distributions that can be analyzed by the dimensionality reduction approach.
Techniques such as PCA, SVD, and factor analysis assume that there is a linear
relationship between the old and new sets of attributes. Although this may
be approximately true in many cases, there are many cases where a nonlinear
approach is necessary. In particular, algorithms such as ISOMAP and LLE
have been developed to deal with nonlinear relationships.

The time and space complexity of dimensionality reduction algorithms is
a key issue. Most of the algorithms that we have discussed have time and/or

�

� �

�

872

space complexity of O(m2) or higher, where m is the number of objects. This
limits their applicability to larger data sets, although sampling can sometimes
be used quite effectively. FastMap is the only algorithm presented here that
has linear time and space complexity.

Another important aspect of dimensionality reduction algorithms is whether
they produce the same answer every time they are run. PCA, SVD, and LLE
do. Factor analysis and the MDS techniques can produce different answers on
different runs. Many of the techniques that we did not discuss also have this
characteristic because they try to optimize some objective, and this requires a
search that may become trapped in a local minimum. Search-based approaches
can also have poor time complexity.

Finally, a key issue is determining the number of dimensions for the di-
mensionality reduction. The techniques that we have considered can typically
perform a dimensionality reduction to almost any number of dimensions. The
goodness of the reduction is typically measured by some quantity that can be
plotted, as in a scree plot. In some cases, this curve provides a clear indication
of the intrinsic dimensionality. In many other situations, a choice needs to be
made between a smaller number of dimensions and a larger approximation
error, and a smaller approximation error and more dimensions.

B.3 Bibliographic Notes

Dimensionality reduction is a broad topic, and the relevant references are
scattered across many fields. A comprehensive discussion of PCA can be
found in the book by Jolliffe [768], while an introduction to SVD is given
by Demmel [764] and other linear algebra texts. Kernel PCA is described by
Schölkopf et al. [771]. Many books on multivariate statistical analysis, such
as that by Anderson [761], also include discussions on PCA, as well as factor
analysis. More details on MDS can be found in the book by Kruskal and Wish
[769]. The FastMap algorithm was proposed by Faloutsos and Lin [766]. The
papers for LLE (Roweis and Saul [772]) and ISOMAP (Tenenbaum et al. [770])
appeared in the same issue of Science. MATLAB code for the ISOMAP and
LLE algorithms is available on the Web. Other articles that may be of interest
include those by M. Belkin and P. Niyogi [762], Donoho and Grimes [765], and
Ye et al. [773, 774]

There are many other techniques that are often used for dimensionality
reduction or are strongly related to it. These areas include principal curves
and surfaces, nonlinear PCA (including neural network approaches), vector
quantization, random projections, Independent Components Analysis (ICA),

�

� �

�

BIBLIOGRAPHY 873

Self-Organizing Maps (SOM), projection pursuit, regression-based approaches,
genetic algorithms, and optimization-based approaches such as simulated or
deterministic annealing. Descriptions of these areas and additional references
can be found in two surveys on dimensionality reduction by Fodor [767] and
Carreira-Perpinan [763]. SOM is discussed in Section 8.2.3.

Bibliography
[761] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, 2nd

edition, July 2003.

[762] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Technical Report TR 2002-01, Department of Computer Science and
Statistics, University of Chicago, January 2002.

[763] M. A. Carreira-Perpinan. A Review of Dimension Reduction Techniques. Technical
Report CS–96–09, Dept. of Computer Science, University of Sheffield, January 1997.

[764] J. W. Demmel. Applied Numerical Linear Algebra. SIAM Press, September 1997.

[765] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques
for high-dimensional data. PNAS, 100(10):5591–5596, 2003.

[766] C. Faloutsos and K.-I. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining
and Visualization of Traditional and Multimedia Datasets. In Proc. of the 1995 ACM
SIGMOD Intl. Conf. on Management of Data, pages 163–174, San Jose, California,
June 1995.

[767] I. K. Fodor. A survey of dimension reduction techniques. Technical Report UCRL-
ID-148494, LLNL, June 2002.

[768] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2nd edition, October
2002.

[769] J. B. Kruskal and M. Wish. Multidimensional Scaling. SAGE Publications, January
1978.

[770] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear
Embedding. Science, 290(5500):2323–2326, 2000.

[771] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear Component Analysis as a
Kernel Eigenvalue Problem. Neural Computation, 10(5):1299–1319, 1998.

[772] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A Global Geometric Framework
for Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[773] J. Ye, R. Janardan, and Q. Li. GPCA: an efficient dimension reduction scheme
for image compression and retrieval. In Proc. of the 10th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 354–363, Seattle, Washington, August 2004. ACM.

[774] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar. IDR/QR: an incremental
dimension reduction algorithm via QR decomposition. In Proc. of the 10th Intl. Conf.
on Knowledge Discovery and Data Mining, pages 364–373, Seattle, Washington, 2004.
ACM.

�

� �

�

�

� �

�

C

Probability and
Statistics

This appendix presents some of the basic concepts in probability and statistics
used throughout this book.

C.1 Probability

A random experiment is the act of measuring a process whose outcome
is uncertain. Examples include rolling a die, drawing from a deck of cards,
and monitoring the types of traffic across a network router. The set of all
possible outcomes of a random experiment is known as the sample space,
Ω. For example, Ω = {1, 2, 3, 4, 5, 6} is the sample space for rolling a die. An
event E corresponds to a subset of these outcomes, i.e., E ⊆ Ω. For example
E = {2, 4, 6} is the event of observing an even number when rolling a die.

A probability P is a real-valued function defined on the sample space Ω
that satisfies the following properties:

1. For any event E ⊆ Ω, 0 ≤ P (E) ≤ 1.

2. P (Ω) = 1.

3. For any set of disjoint events, E1, E2, . . . , Ek ∈ Ω,

P (
k⋃

i=1

Ei) =
k∑

i=1

P (Ei).

The probability of an event E, which is written as P (E), is the fraction of
times event E is observed in a potentially unlimited number of experiments.

�

� �

�

876

In a random experiment, there is often a quantity of interest we want to
measure; e.g., counting the number of times a tail turns up when tossing a
coin fifty times or measuring the height of a person taking a roller coaster ride
at a theme park. Since the value of the quantity depends on the outcome
of a random experiment, the quantity of interest is known as a random
variable. The value of a random variable can be discrete or continuous. A
Bernoulli random variable, for example, is a discrete random variable whose
only possible values are 0 and 1.

For a discrete random variable X, the probability X takes on a particular
value ν is given by the total probability of all outcomes e in which X(e) = ν:

P (X = ν) = P (E = {e|e ∈ Ω, X(e) = ν}). (C.1)

The probability distribution of a discrete random variable X is also known as
its probability mass function.

Example C.1. Consider a random experiment where a fair coin is tossed
four times. There are 16 possible outcomes of this experiment: HHHH, HHHT,
HHTH, HTHH, THHH, HHTT, HTHT, THHT, HTTH, THTH, TTHH, HTTT,
THTT, TTHT, TTTH, and TTTT, where H (T) indicates that a head (tail)
is observed. Let X be a random variable that measures the number of times
a tail is observed in the experiment. The five possible values for X are 0, 1, 2,
3, and 4. The probability mass function for X is given by the following table:

X 0 1 2 3 4

P(X) 1/16 4/16 6/16 4/16 1/16

For example, P (X = 2) = 6/16 because there are six outcomes in which the
tail is observed twice during the four tosses.

On the other hand, if X is a continuous random variable, then the proba-
bility that X has a value between a and b is

P (a < x < b) =

∫ b

a
f(x)dx (C.2)

The function f(x) is known as the probability density function (pdf). Be-
cause f is a continuous distribution, the probability that X takes a particular
value x is always zero.

Table C.1 shows some of the well-known discrete and continuous proba-
bility functions. The notion of a probability (mass or density) function can

�

� �

�

C.1 Probability 877

Table C.1. Examples of probability functions. (Γ(n+ 1) = nΓ(n) and Γ(1) = 1)

Probability Function Parameters

Gaussian p(x) = 1√
2πσ

exp−
1
2

(x−μ)2

σ2 μ, σ

Binomial p(x) =
(
n
x

)
px(1− p)n−x n, p

Poisson p(x) = 1
x!θ

x exp−θ θ

Exponential p(x) = θ exp−θx θ

Gamma p(x) = λα

Γ(α)x
α−1 exp−λx λ, α

Chi-square p(x) = 1
2k/2Γ(k/2)

xk/2−1 exp−x/2 k

be extended to more than one random variable. For example, if X and Y are
random variables, then p(X,Y) denotes their joint probability function. The
random variables are independent of each other if P (X,Y) = P (X)×P (Y).
If two random variables are independent, it means that the value for one
variable has no impact on the value for the other.

Conditional probability is another useful concept for understanding
the dependencies among random variables. The conditional probability for
variable Y given X, denoted as P (Y |X), is defined as

P (Y |X) =
P (X,Y)

P (X)
. (C.3)

If X and Y are independent, then P (Y |X) = P (Y). The conditional proba-
bilities P (Y |X) and P (X|Y) can be expressed in terms of one another using
a formula known as the Bayes theorem:

P (Y |X) =
P (X|Y)P (Y)

P (X)
. (C.4)

If {X1, X2, . . . , Xk} is the set of mutually exclusive and exhaustive outcomes
of a random variable X, then the denominator of the above equation can be
expressed as follows:

P (X) =
k∑

i=1

P (X,Yi) =
k∑

i=1

P (X|Yi)P (Yi). (C.5)

�

� �

�

878

Equation C.5 is called the law of total probability.

C.1.1 Expected Values

The expected value of a function g of a random variable X, denoted as
E[g(X)], is the weighted-average value of g(X), where the weights are given
by the probability function for X. If X is a discrete random variable, then the
expected value can be computed as follows:

E[g(X] =
∑
i

g(xi)P (X = xi). (C.6)

On the other hand, if X is a continuous random variable,

E[g(X)] =

∫ ∞

−∞
g(X)f(X)dX, (C.7)

where f(X) is the probability density function for X. The remainder of this
section considers only the expected values for discrete random variables. The
corresponding expected values for continuous random variables are obtained
by replacing the summation with an integral.

There are several particularly useful expected values in probability theory.
First, if g(X) = X, then

μX = E[X] =
∑
i

xi P (X = xi). (C.8)

This expected value corresponds to the mean value of the random variable
X. Another useful expected value is when g(X) = (X − μX). The expected
value of this function is

σ2X = E[(X − μX)2] =
∑
i

(xi − μX)2 P (X = xi). (C.9)

This expected value corresponds to the variance of the random variable X.
The square root of the variance corresponds to the standard deviation of
the random variable X.

Example C.2. Consider the random experiment described in Example C.1.
The average number of tails expected to show up when a fair coin is tossed
four times is

μX = 0× 1/16 + 1× 4/16 + 2× 6/16 + 3× 4/16 + 4× 1/16 = 2. (C.10)

�

� �

�

C.2 Statistics 879

The variance for the number of tails expected to show up is

σ2X = (0− 2)2 × 1/16 + (1− 2)2 × 4/16 + (2− 2)2 × 6/16

+(3− 2)2 × 4/16 + (4− 2)2 × 1/16 = 1.

For pairs of random variables, a useful expected value to compute is the
covariance function, Cov, which is defined as follows:

Cov(X,Y) = E[(X − μX)(Y − μY)] (C.11)

Note that the variance of a random variable X is equivalent Cov(X,X). The
expected value of a function also has the following properties:

1. E[a] = a, if a is a constant.

2. E[aX] = aE[X].

3. E[aX + bY] = aE[X] + bE[Y].

Based on these properties, Equations C.9 and C.11 can be rewritten as follows:

σ2X = E[(X − μX)2] = E[X2]− E[X]2 (C.12)

Cov(X,Y) = E[XY]− E[X]E[Y] (C.13)

C.2 Statistics

To draw conclusions about a population, it is generally not feasible to gather
data from the entire population. Instead, we must make reasonable conclusions
about the population based on evidence gathered from sampled data. The
process of drawing reliable conclusions about the population based on sampled
data is known as statistical inference.

C.2.1 Point Estimation

The term statistic refers to a numeric quantity derived from sampled data.
Two examples of useful statistics include the sample mean (x) and the sample

�

� �

�

880

variance (s2X):

x =
1

N

N∑
i=1

Xi (C.14)

s2X =
1

N − 1

N∑
i=1

(Xi − x)2 (C.15)

The process of estimating the parameters of a population using sample statis-
tics is known as point estimation.

Example C.3. Let X1, X2, . . . , XN be a random sample of N independent
and identically distributed observations drawn from a population with mean
μX and variance σ2X . Let x be the sample mean. Then

E
[
X
]
= E

[
1

N

∑
i

Xi

]
=

1

N

∑
i

E
[
Xi

]
=

1

N
×NμX = μX , (C.16)

where E[Xi] = μX since all the observations come from the same distribution
with mean μX . This result suggests that the sample mean x approaches the
population mean μX , especially when N is sufficiently large. In statistical
terms, the sample mean is called an unbiased estimator of the population
mean. It is possible to show that the variance of the sample mean is

E

[(
x− E[x]

)2]
= σ2X/N. (C.17)

Because the population variance is usually unknown, the variance of the
sample mean is often approximated by replacing σ2X with the sample variance
s2X . The quantity sX/

√
N is known as the standard error of the mean.

C.2.2 Central Limit Theorem

The normal distribution is perhaps one of the most widely-used probability
distributions because there are many random phenomena that can be modeled
using this distribution. This is a consequence of a statistical principle known
as the central limit theorem.
Theorem C.1 (Central Limit Theorem). Consider a random sample of size
N drawn from a probability distribution with mean μX and variance σ2X . If x is
the sample mean, then the distribution of x approaches a normal distribution
with mean μX and variance σ2X/N when the sample size is large.

�

� �

�

C.2 Statistics 881

The central limit theorem holds regardless of the distribution from which
the random variable is drawn. For example, suppose we randomly draw N
independent examples from a data set with an unknown distribution. Let
Xi be a random variable that denotes whether the ith example is predicted
correctly by a given classifier; i.e., Xi = 1 if the example is classified correctly,
and 0 otherwise. The sample mean, X, denotes the expected accuracy of the
classifier. The central limit theorem suggests that the expected accuracy (i.e.,
the sample mean) tends to be normally distributed even though the distribu-
tion from which the examples are drawn may not be normally distributed.

C.2.3 Interval Estimation

When estimating the parameters of a population, it is useful to indicate the
reliability of the estimate. For example, suppose we are interested in estimating
the population mean μX from a set of randomly drawn observations. Using a
point estimate such as the sample mean, x, may not be sufficient, especially
when the sample size is small. Instead, it may be useful to provide an interval
that contains the population mean with high probability. The task of esti-
mating an interval in which the population parameter can be found is termed
interval estimation. Let θ be the population parameter to be estimated. If

P (θ1 < θ < θ2) = 1− α, (C.18)

then (θ1, θ2) is the confidence interval for θ at a confidence level of 1 − α.
Figure C.1 shows the 95% confidence interval for a parameter derived from a
normal distribution with mean 0 and variance 1. The shaded region under the
normal distribution has an area equal to 0.95. In other words, if we generate
a sample from this distribution, there is a 95% chance that the estimated
parameter falls between −2 and +2.

Consider a sequence of randomly drawn observations, X1, X2, . . . , XN . We
would like to estimate the population mean, μX , based upon the sample
mean, x, at 68% confidence interval. According to the central limit theorem,
x approaches a normal distribution with mean μX and variance σ2X/N when
N is sufficiently large. Such a distribution can be transformed into a standard
normal distribution (i.e., a normal distribution with mean 0 and variance 1)
in the following way:

Z =
x− μX

σX/
√
N

≈ x− μ

sX/
√
N

≈ ℵ(0, 1), (C.19)

where the population standard deviation is approximated by the standard
error of the sample mean. From the probability table of a standard normal

�

� �

�

882

–4 –3 –2 –1 0 1 2 3 4
0

1 – α

0.4

0.35

0.25

0.15

0.05

0.1

0.2

0.3

Figure C.1. Confidence interval of a parameter.

distribution, P (−1 < Z < 1) = 0.68. The probability can be rewritten in the
following way:

P (−sX/
√
N < x− μX < sX/

√
N) = 0.68,

or equivalently,

P (x− sX/
√
N < μX < x+ sX/

√
N) = 0.68.

Therefore, the 68% confidence interval for μX is x± sX/
√
N .

C.3 Hypothesis Testing

Hypothesis testing is a statistical inference procedure to determine whether a
conjecture or hypothesis should be accepted or rejected based on the evidence
gathered from data. Examples of hypothesis tests include verifying the quality
of patterns extracted by data mining algorithms and validating the significance
of the performance difference between two classification models.

In hypothesis testing, we are usually presented with two contrasting hy-
potheses, which are known, respectively, as the null hypothesis and the al-
ternative hypothesis. The general procedure for hypothesis testing consists
of the following four steps:

1. Formulate the null and alternative hypotheses to be tested.

2. Define a test statistic θ that determines whether the null hypothesis
should be accepted or rejected. The probability distribution associated
with the test statistic should be known.

�

� �

�

C.3 Hypothesis Testing 883

3. Compute the value of θ from the observed data. Use the knowledge of the
probability distribution to determine a quantity known as the p-value.

4. Define a significance level, α, which controls the range of θ values in
which the null hypothesis should be rejected. The range of values for θ
is known as the rejection region.

Consider an association pattern X derived using the algorithms presented
in Chapter 5. Suppose we are interested in evaluating the quality of the pattern
from a statistical perspective. The criterion for judging whether the pattern
is interesting depends on a quantity known as the support of the pattern (see
Equation 5.1), s(X). Support measures the fraction of records in which the
pattern is actually observed. X is considered interesting if s(X) > minsup,
where minsup is a user-specified minimum threshold.

The problem can be formulated into the hypothesis testing framework in
the following way. To validate the pattern X, we need to decide whether to
accept the null hypothesis, H0 : s(X) = minsup, or the alternative hypothesis
H1 : s(X) > minsup. If the null hypothesis is rejected, then X is considered
an interesting pattern. To perform the test, the probability distribution for
s(X) must also be known. We can apply the binomial distribution to model
this problem because determining the number of times pattern X appears in
N records is analogous to determining the number of heads that shows up
when tossing N coins. The former can be described by a binomial distribution
with mean s(X) and variance s(X)×(1−s(X))/N . The binomial distribution
can be further approximated using a normal distribution if N is sufficiently
large, which is typically the case in most market basket analysis problems.

Under the null hypothesis, s(X) is assumed to be normally distributed
with mean minsup and variance minsup× (1−minsup)/N . To test whether
the null hypothesis should be accepted or rejected, the following Z-statistic
can be used:

Z =
s(X)−minsup√

minsup× (1−minsup)/N
(C.20)

Z has a standard normal distribution with mean 0 and variance 1. The statistic
essentially measures the difference between the observed support s(X) and
the minsup threshold in units of standard deviations. Let N = 10000, s(X) =
11%, and minsup = 10%. The Z-statistic under the null hypothesis is Z =
(0.11 − 0.1)/

√
0.09/10000 = 3.33. From the probability table of a standard

normal distribution, a one-sided test with Z = 3.33 corresponds to a p-value
of 4.34× 10−4.

Suppose α = 0.001 is the desired significance level. α controls the probabil-
ity of falsely rejecting the null hypothesis even though the hypothesis is true

�

� �

�

884

(in the statistics literature, this is known as the Type 1 error). For example,
an α value of 0.01 suggests that there is one in a hundred chance the discovered
pattern is spurious. At each significance level α, there is a corresponding
threshold Zα, such that when the Z value of a pattern exceeds the threshold,
the pattern is considered statistically significant. The threshold Zα can be
looked up in a probability table for the standard normal distribution. For
example, the choice of α = 0.001 sets up a rejection region with Zα = 3.09.
Since p < α, or equivalently, Z > Zα, the null hypothesis is rejected and the
pattern is considered statistically interesting.

�

� �

�

D

Regression

Regression is a predictive modeling technique where the target variable to
be estimated is continuous. Examples of applications of regression include
predicting a stock market index using other economic indicators, forecasting
the amount of precipitation in a region based on characteristics of the jet
stream, projecting the total sales of a company based on the amount spent
for advertising, and estimating the age of a fossil according to the amount of
carbon-14 left in the organic material.

D.1 Preliminaries

Let D denote a data set that contains N observations,

D = {(xi, yi)| i = 1, 2, . . . , N}.

Each xi corresponds to the set of attributes of the ith observation (also
known as the explanatory variables) and yi corresponds to the target
(or response) variable. The explanatory attributes of a regression task can
be either discrete or continuous.

Definition D.1 (Regression). Regression is the task of learning a target
function f that maps each attribute set x into a continuous-valued output
y.

The goal of regression is to find a target function that can fit the input
data with minimum error. The error function for a regression task can be

�

� �

�

886

expressed in terms of the sum of absolute or squared error:

Absolute Error =
∑
i

|yi − f(xi)| (D.1)

Squared Error =
∑
i

(yi − f(xi))
2 (D.2)

D.2 Simple Linear Regression

Consider the physiological data shown in Figure D.1. The data corresponds to
measurements of heat flux and skin temperature of a person during sleep. Sup-
pose we are interested in predicting the skin temperature of a person based on
the heat flux measurements generated by a heat sensor. The two-dimensional
scatter plot shows that there is a strong linear relationship between the two
variables.

Heat Flux Skin Temperature Heat Flux Skin Temperature Heat Flux Skin Temperature
10.858 31.002 6.3221 31.581 4.3917 32.221
10.617 31.021 6.0325 31.618 4.2951 32.259
10.183 31.058 5.7429 31.674 4.2469 32.296
9.7003 31.095 5.5016 31.712 4.0056 32.334
9.652 31.133 5.2603 31.768 3.716 32.391

10.086 31.188 5.1638 31.825 3.523 32.448
9.459 31.226 5.0673 31.862 3.4265 32.505

8.3972 31.263 4.9708 31.919 3.3782 32.543
7.6251 31.319 4.8743 31.975 3.4265 32.6
7.1907 31.356 4.7777 32.013 3.3782 32.657
7.046 31.412 4.7295 32.07 3.3299 32.696

6.9494 31.468 4.633 32.126 3.3299 32.753
6.7081 31.524 4.4882 32.164 3.4265 32.791

33

32.5

32

31.5

31

30.5

S
ki

n
T

em
pe

ra
tu

re

3 4 5 6 7 8 9 10 11
Heat Flux

Figure D.1. Measurements of heat flux and skin temperature of a person.

�

� �

�

D.2 Simple Linear Regression 887

D.2.1 Least Square Method

Suppose we wish to fit the following linear model to the observed data:

f(x) = ω1x+ ω0, (D.3)

where ω0 and ω1 are parameters of the model and are called the regression
coefficients. A standard approach for doing this is to apply the method of
least squares, which attempts to find the parameters (ω0, ω1) that minimize
the sum of the squared error

SSE =

N∑
i=1

[yi − f(xi)]
2 =

N∑
i=1

[yi − ω1x− ω0]
2, (D.4)

which is also known as the residual sum of squares.
This optimization problem can be solved by taking the partial derivative

of E with respect to ω0 and ω1, setting them to zero, and solving the corre-
sponding system of linear equations.

∂E

∂ω0
= −2

N∑
i=1

[yi − ω1xi − ω0] = 0

∂E

∂ω1
= −2

N∑
i=1

[yi − ω1xi − ω0]xi = 0 (D.5)

These equations can be summarized by the following matrix equation,
which is also known as the normal equation:(

N
∑

i xi∑
i xi

∑
i x

2
i

)(
ω0

ω1

)
=

(∑
i yi∑

i xiyi

)
. (D.6)

Since
∑

i xi = 229.9,
∑

i x
2
i = 1569.2,

∑
i yi = 1242.9, and

∑
i xiyi = 7279.7,

the normal equations can be solved to obtain the following estimates for the
parameters. (

ω̂0

ω̂1

)
=

(
39 229.9

229.9 1569.2

)−1(
1242.9
7279.7

)
=

(
0.1881 −0.0276
−0.0276 0.0047

)(
1242.9
7279.7

)
=

(
33.1699
−0.2208

)

�

� �

�

888

Thus, the linear model that best fits the data in terms of minimizing the
SSE is

f(x) = 33.17− 0.22x.

Figure D.2 shows the line corresponding to this model.

33

32.5

32

31.5

31

30.5

S
ki

n
T

em
pe

ra
tu

re

3 4 5 6 7 8 9 10 11
Heat Flux

Skin Temp = 33.17 – 0.22 Heat Flux

Figure D.2. A linear model that fits the data given in Figure D.1.

We can show that the general solution to the normal equations given in
D.6 can be expressed as follow:

ω̂0 = y − ω̂1x

ω̂1 =
σxy
σxx

(D.7)

where x =
∑

i xi/N , y =
∑

i yi/N , and

σxy =
∑
i

(xi − x)(yi − y) (D.8)

σxx =
∑
i

(xi − x)2 (D.9)

σyy =
∑
i

(yi − y)2 (D.10)

Thus, linear model that results in the minimum squared error is given by

f(x) = y +
σxy
σxx

[x− x]. (D.11)

�

� �

�

D.2 Simple Linear Regression 889

In summary, the least squares method is a systematic approach to fit
a linear model to the response variable y by minimizing the squared error
between the true and estimated value of y. Although the model is relatively
simple, it seems to provide a reasonably accurate approximation because a
linear model is the first-order Taylor series approximation for any function
with continuous derivatives.

D.2.2 Analyzing Regression Errors

Some data sets may contain errors in their measurements of x and y. In
addition, there may exist confounding factors that affect the response variable
y, but are not included in the model specification. Because of this, the response
variable y in regression tasks can be non-deterministic, i.e., it may produce a
different value even though the same attribute set x is provided.

We can model this type of situation using a probabilistic approach, where
y is treated as a random variable:

y = f(x) + [y − f(x)]

= f(x) + ε. (D.12)

Both measurement errors and errors in model specification have been absorbed
into a random noise term, ε. The random noise present in data is typically
assumed to be independent and follow a certain probability distribution.

For example, if the random noise comes from a normal distribution with
zero mean and variance σ2, then

P (ε|x,Ω) =
1√
2πσ2

exp−
[y−f(x,Ω)]2

2σ2 (D.13)

log[P (ε|x,Ω)] = −1

2
(y − f(x,Ω))2 + constant (D.14)

This analysis shows that minimizing the SSE, [y−f(x,Ω]2, implicitly assumes
that the random noise follows a normal distribution. Furthermore, it can be
shown that the constant model, f(x,Ω) = c, that best minimizes this type of
error is the mean, i.e., c = y.

Another typical probability model for noise uses the Laplacian distribution:

P (ε|x,Ω) = c exp−c|y−f(x,Ω)| (D.15)

log[P (ε|x,Ω)] = −c|y − f(x,Ω)|+ constant (D.16)

�

� �

�

890

This suggests that minimizing the absolute error |y − f(x,Ω)| implicitly as-
sumes that the random noise follows a Laplacian distribution. The best con-
stant model for this case corresponds to f(x,Ω) = ỹ, the median value of
y.

Besides the SSE given in Equation D.4, we can also define two other types
of errors:

SST =
∑
i

(yi − y)2 (D.17)

SSM =
∑
i

(f(xi)− y)2 (D.18)

where SST is known as the total sum of squares and SSM is known as
the regression sum of squares. SST represents the prediction error when the
average value y is used as an estimate for the response variable. SSM , on
the other hand, represents the amount of error in the regression model. The
relationship among SST , SSE, and SSM is derived as follows:

SSE =
∑
i

[yi − y + y − f(xi)]
2

=
∑
i

[yi − y]2 +
∑
i

[f(xi)− y]2 + 2
∑
i

(yi − y)(y − f(xi))

=
∑
i

[yi − y]2 +
∑
i

[f(xi)− y]2 − 2
∑
i

(yi − y)ω1(xi − x)

=
∑
i

[yi − y]2 +
∑
i

[f(xi)− y]2 − 2
∑
i

ω2
1(xi − x)2

=
∑
i

[yi − y]2 −
∑
i

[f(xi)− y]2

= SST − SSM (D.19)

where we have applied the following relationships:

y − f(xi) = −ω1(xi − x)∑
i

[yi − y][xi − x] = σxy = ω1σxx = ω1

∑
i

[xi − x]2.

Thus, we can write SST = SSE + SSM .

�

� �

�

D.2 Simple Linear Regression 891

D.2.3 Analyzing Goodness of Fit

One way to measure the goodness of the fit is by computing the following
measure:

R2 =
SSM

SST
=

∑
i[f(xi)− y]2∑
i[yi − y]2

(D.20)

The R2 (or coefficient of determination) for a regression model may range
between 0 and 1. Its value is close to 1 if most of the variability observed in
the response variable can be explained by the regression model.

R2 is also related to the correlation coefficient, r, which measures the
strength of the linear relationship between the explanatory and response vari-
ables

r =
σxy√
σxxσxy

. (D.21)

From Equations D.9, D.10, and D.11, we can write

R2 =

∑
i[f(xi)− y]2∑
i[yi − y]2

=

∑
i[
σxy

σxx
(xi − x)]2

σyy

=
σ2xy

σ2xxσyy

∑
i

(xi − x)2

=
σ2xy

σ2xxσyy
σxx

=
σ2xy

σxxσyy
. (D.22)

The above analysis shows that the correlation coefficient is equivalent to the
square root of the coefficient of determination (except for its sign, which
depends on the direction of the relationship, whether positive or negative).

It is worth noting that R2 increases as we add more explanatory variables
into the model. One way to correct for the number of explanatory variables
added to the model is by using the following adjusted R2 measure:

Adjusted R2 = 1−
(
N − 1

N − d

)
(1−R2), (D.23)

where N is the number of data points and d+ 1 is the number of parameters
of the regression model.

�

� �

�

892

D.3 Multivariate Linear Regression

The normal equations can be written in a more compact form using the
following matrix notation. Let X = (1 x), where 1 = (1, 1, 1, . . .)T and
x = (x1, x2, . . . , xN)T . Then, we can show that

XTX =

(
1T1 1Tx
xT1 xTx

)
=

(
N

∑
i xi∑

i xi
∑

i x
2
i

)
, (D.24)

which is equivalent to the left-hand side matrix of the normal equation. Sim-
ilarly, if y = (y1, y2, . . . , yN)T , we can show that

(
1 x

)T
y =

(
1Ty
xTy

)
=

(∑
i yi∑

i xiyi

)
, (D.25)

which is equivalent to the right-hand side matrix of the normal equation. Sub-
stituting Equations D.24 and D.25 into Equation D.6 we obtain the following
equation:

XTXΩ = XTy, (D.26)

where Ω = (ω0, ω1)
T . We can solve for the parameters in Ω can as follows:

Ω = (XTX)−1XTy, (D.27)

The above notation is useful because it allows us to extend the linear
regression method to the multivariate case. More specifically, if the attribute
set consists of d explanatory attributes (x1, x2, . . . , xd), X becomes an N × d
design matrix:

X =

⎛⎜⎜⎝
1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
.
1 xN1 xN2 . . . xNd

⎞⎟⎟⎠ , (D.28)

while Ω = (ω0, ω1, . . . , ωd−1)
T is a d-dimensional vector. The parameters can

be computed by solving the matrix equation given in Equation D.26.

�

� �

�

D.4 Alternative Least-Square Regression Methods 893

D.4 Alternative Least-Square Regression Methods

The least squares method can also be used to find other types of regression
models that minimize the SSE. More specifically, if the regression model is

y = f(x,Ω) + ε (D.29)

= ω0 +
∑
i

ωigi(x) + ε, (D.30)

and the random noise is normally distributed, then we can apply the same
methodology as before to determine the parameter vector Ω. The gi’s can be
any type of basis functions, including polynomial, kernel, and other nonlinear
functions.

For example, suppose x is a two-dimensional feature vector and the re-
gression model is a polynomial function of degree 2

f(x1, x2,Ω) = ω0 + ω1x1 + ω2x2 + ω3x1x2 + ω4x
2
1 + ω5x

2
2. (D.31)

If we create the following design matrix:

X =

⎛⎜⎜⎝
1 x11 x12 x11x12 x211 x222
1 x21 x22 x21x22 x221 x222
.
1 xN1 xN2 xN1xN2 x2N1 x2N2

⎞⎟⎟⎠ , (D.32)

where xij is the jth attribute of the ith observation, then the regression prob-
lem becomes equivalent to solving Equation D.26. The least-square solution to
the parameter vector Ω is given by Equation D.27. By choosing the appropriate
design matrix, we can extend this method to any type of basis functions.

�

� �

�

�

� �

�

E

Optimization

Optimization is a methodology for finding the maximum or minimum value
of a function. It is an important topic in data mining because there are many
data mining tasks that can be cast as optimization problems. For example,
the K-means clustering algorithm described in Section 7.2.1 seeks to find a
set of clusters that minimizes the sum of the squared error (SSE). Similarly,
the method of least squares presented in Section D.2.1 is designed to learn
the regression coefficients that minimize the SSE of the model. This section
presents a brief overview of the various techniques used to solve optimization
problems.

E.1 Unconstrained Optimization

Suppose f(x) is a univariate function with continuous first-order and second-
order derivatives. In an unconstrained optimization problem, the task is to
locate the solution x∗ that maximizes or minimizes f(x) without imposing any
constraints on x∗. The solution x∗, which is known as a stationary point,
can be found by taking the first derivative of f and setting it to zero:

df

dx

∣∣∣∣
x=x∗

= 0.

f(x∗) can take a maximum or minimum value depending on the second-order
derivative of the function:

• x∗ is a maximum stationary point if d2f
dx2 < 0 at x = x∗.

• x∗ is a minimum stationary point if d2f
dx2 > 0 at x = x∗.

�

� �

�

896

• x∗ is a point of inflection when d2f
dx2 = 0 at x = x∗.

Figure E.1 illustrates an example of a function that contains all three station-
ary points (maximum, minimum, and point of inflection).

Maximum

Minimum

Point of
Inflection

Figure E.1. Stationary points of a function.

This definition can be extended to a multivariate function, f(x1, x2, . . ., xd),
where the condition for finding a stationary point x∗ = [x∗1, x∗2, . . . , x∗d]

T is

∂f

∂xi

∣∣∣∣
xi=x∗

i

= 0, ∀i = 1, 2, . . . , d. (E.1)

However, unlike univariate functions, it is more difficult to determine whether
x∗ corresponds to a maximum or minimum stationary point. The difficulty

arises because we need to consider the partial derivatives ∂2f
dxidxj

for all possible

pairs of i and j. The complete set of second-order partial derivatives is given
by the Hessian matrix

H(x) =

⎡⎢⎢⎢⎣
∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . . ∂2f
∂x2∂xd

.
∂2f

∂xd∂x1

∂2f
∂xd∂x2

. . . ∂2f
∂xd∂xd

⎤⎥⎥⎥⎦ . (E.2)

• A Hessian matrix H is positive definite if and only if xTHx > 0 for any
non-zero vector x. If H(x∗) is positive definite, then x∗ is a minimum
stationary point.

�

� �

�

E.1 Unconstrained Optimization 897

• A Hessian is negative definite if and only if xTHx < 0 for any non-zero
vector x. If H(x∗) is negative definite, then x∗ is a maximum stationary
point.

• A Hessian is indefinite if xTHx is positive for some value of x and
negative for others. A stationary point with indefinite Hessian is a sad-
dle point, which can have a minimum value in one direction, and a
maximum value in another.

Example E.1. Suppose f(x, y) = 3x2+2y3−2xy. Figure E.2 shows a plot of
this function. The conditions for finding the stationary points of this function
are

∂f

∂x
= 6x− 2y = 0

∂f

∂y
= 6y2 − 2x = 0 (E.3)

whose solutions are x∗ = y∗ = 0 or x∗ = 1/27, y∗ = 1/9.

−2

−1

0

1

2

−2−1012
−20

−10

0

10

20

30

40

x

y

f(x,y)

Figure E.2. Plot for the function f(x, y) = 3x2 + 2y3 − 2xy.

�

� �

�

898

The Hessian of f is

H(x, y) =

[
6 −2
−2 12y

]
.

At x = y = 0,

H(0, 0) =

[
6 −2
−2 0

]
.

Since [x y] H(0, 0) [x y]T = 6x2 − 4xy = 2x(3x − 2y), which can be either
positive or negative, the Hessian is indefinite and (0, 0) is a saddle point.

At x = 1/27, y = 1/9,

H(1/27, 1/9) =

[
6 −2
−2 12/9

]
.

Since [x y] H(1/27, 1/9) [x y]T = 4x2−2xy+4y2/3 = 4(x−y/4)2+13y2/4 > 0
for non-zero x and y, the Hessian is positive definite. Therefore, (1/27, 1/9) is
a minimum stationary point. The minimum value of f is -0.0014.

E.1.1 Numerical Methods

The preceding approach works if Equation E.1 can be solved analytically for
x∗. In many cases, finding analytical solutions is a very difficult problem, thus
necessitating the use of numerical methods to find approximate solutions.
Some of the numerical methods for finding the minimum value of a function
include golden search, Newton’s method, and gradient descent search. While
the techniques presented here are used to minimize the objective function f(x),
they are also applicable to maximization problems because a maximization
problem can be easily turned into a minimization problem by converting the
function f(x) to −f(x).

Golden Search Consider the unimodal distribution illustrated in Figure
E.3, where the minimum value is bracketed between a and b. The golden
search method iteratively finds successively smaller brackets that contain the
minimum value until the interval width is small enough to approximate the
stationary point. To determine the smaller brackets, two additional points, c
and d, are chosen so that the intervals (a, c, d) and (c, d, b) have equal width.
Let c− a = b− d = α(b− a) and d− c = β × (b− a). Therefore,

1 =
(b− d) + (d− c) + (c− a)

b− a
= α+ β + α,

�

� �

�

E.1 Unconstrained Optimization 899

a bc d

Figure E.3. Example of a unimodal function.

or equivalently,
β = 1− 2α. (E.4)

The widths are also chosen to obey the following condition so that a
recursive procedure can be applied:

d− c

b− c
=
c− a

b− a
,

or equivalently,
β

1− α
= α. (E.5)

Together, Equations E.4 and E.5 can be solved to yield α = 0.382 and
β = 0.236. By comparing f(c) with f(d), it is possible to detect whether
the minimum value occurs in the interval (a, c, d) or (c, d, b). The interval
that contains the minimum value is then recursively partitioned until the
interval width is small enough to approximate the minimum value, as shown
in Algorithm E.1.

The golden search method makes no assumption about the function, other
than it must be continuous and unimodal within the initial bracket [a, b]. It
converges linearly to the solution for the minimum value.

Newton’s Method Newton’s method is based on using a quadratic approx-
imation to the function f(x). By using a Taylor series expansion of f around

�

� �

�

900

Algorithm E.1 Golden search algorithm.

1: c = a+ 0.382(b− a).
2: while b− a > ε do
3: d = b− 0.382(b− a).
4: if f(d) > f(c) then
5: b = d.
6: else
7: a = c, c = d.
8: end if
9: end while

10: return c.

x0, the following expression is obtained:

f(x) ≈ f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2
f ′′(x0). (E.6)

Taking the derivative of the function with respect to x and setting it to zero
leads to the following equation:

f ′(x) = f ′(x0) + (x− x0)f
′′(x0) = 0

x = x0 − f ′(x0)
f ′′(x0)

. (E.7)

Equation E.7 can be used to update x until it converges to the location of
the minimum value. It can be shown that Newton’s method has quadratic
convergence, although it may fail to converge in some cases, especially when
the initial point x0 is located far away from the minimum point. A summary
of this method is given in Algorithm E.2

Algorithm E.2 Newton’s method.
1: Let x0 be the initial point.
2: while |f ′(x0)| > ε do

3: x = x0 − f ′(x0)
f ′′(x0)

.
4: x0 = x.
5: end while
6: return x.

Newton’s method can be extended to multivariate data by replacing the
first order derivative f ′(x) with the gradient operator ∇f(x) and the second

�

� �

�

E.1 Unconstrained Optimization 901

order derivative f ′′(x) with the Hessian matrix H:

x = x−H−1∇f(x).

However, instead of computing the inverse of the Hessian matrix, it is easier
to solve the following equation:

Hz = −∇f(x)

to obtain the vector z. The iterative formula for finding the stationary point
is modified to x = x+ z.

Gradient Descent Method Newton’s method is one of several incremental
methods to progressively locate the stationary point of a function using the
following update formula:

x = x+ λg(x)), (E.8)

The function g(x) determines the direction in which the search should proceed
and λ determines the step size.

The gradient descent method assumes that the function f(x) is differen-
tiable and computes the stationary point as follows:

x = x− λ∇f(x), (E.9)

In this method, the location of x is updated in the direction of the steepest
descent, which means that x is moved toward the decreasing value of f . Section
4.7.2 described how the gradient descent method can be used to learn the
weight parameters of an artificial neural network. A summary of this method
is given in Algorithm E.3. Notice that the algorithm looks very similar to
Algorithm E.2, except for the update formula.

Algorithm E.3 Gradient descent method.
1: Let x0 be the initial point.
2: while ‖∇f(x0)‖ > ε do
3: x = x0 − λ∇f(x).
4: x0 = x.
5: end while
6: return x.

�

� �

�

902

E.2 Constrained Optimization

This section examines how to solve an optimization problem when the vari-
ables are subjected to various types of constraints.

E.2.1 Equality Constraints

Consider the problem of finding the minimum value of f(x1, x2, . . . , xd) sub-
jected to equality constraints of the form

gi(x) = 0, i = 1, 2, . . . , p.

A method known as Lagrange multipliers can be used to solve the constrained
optimization problem. This method involves the following steps:

1. Define the Lagrangian, L(x, λ) = f(x) +
∑p

i=1 λigi(x), where λi is a
dummy variable called the Lagrange multiplier.

2. Set the first-order derivatives of the Lagrangian with respect to x and
the Lagrange multipliers to zero,

∂L

∂xi
= 0, ∀i = 1, 2, . . . , d

and
∂L

∂λi
= 0, ∀i = 1, 2, . . . , p.

3. Solve the (d + p) equations in step 2 to obtain the stationary point x∗

and the corresponding values for λi’s.

The following example illustrates how the Lagrange multiplier method
works.

Example E.2. Let f(x, y) = x + 2y. Suppose we want to minimize the
function f(x, y) subject to the constraint x2 + y2 − 4 = 0. The Lagrange
multiplier method can be used to solve this constrained optimization problem
in the following way.

First, we introduce the Lagrangian

L(x, y, λ) = x+ 2y + λ(x2 + y2 − 4),

�

� �

�

E.2 Constrained Optimization 903

where λ is the Lagrange multiplier. To determine its minimum value, we need
to differentiate the Lagrangian with respect to its parameters:

∂L

∂x
= 1 + 2λx = 0 (E.10)

∂L

∂y
= 2 + 2λy = 0 (E.11)

∂L

∂λ
= x2 + y2 − 4 = 0

Solving these equations yields λ = ±√5/4, x = ∓2/
√
5, and y = ∓4/

√
5.

When λ =
√
5/4, f(−2/

√
5,−4/

√
5) = −10/

√
5. Similarly, when λ = −√5/4,

f(2/
√
5, 4/

√
5) = 10/

√
5. Thus, the function f(x, y) has its minimum value at

x = −2/
√
5 and y = −4/

√
5.

E.2.2 Inequality Constraints

Consider the problem of finding the minimum value of f(x1, x2, . . . , xd) sub-
jected to inequality constraints of the form

hi(x) ≤ 0, i = 1, 2, . . . , q.

The method for solving this problem is quite similar to the Lagrange method
described above. However, the inequality constraints impose additional con-
ditions to the optimization problem. Specifically, the optimization problem
stated above leads to the following Lagrangian

L = f(x) +

q∑
i=1

λihi(x), (E.12)

and constraints known as the Karush-Kuhn-Tucker (KKT) conditions:

∂L

∂xi
= 0, ∀i = 1, 2, . . . , d (E.13)

hi(x) ≤ 0, ∀i = 1, 2, . . . , q (E.14)

λi ≥ 0, ∀i = 1, 2, . . . , q (E.15)

λihi(x) = 0, ∀i = 1, 2, . . . , q. (E.16)

Notice that the Lagrange multipliers are no longer unbounded in the presence
of inequality constraints.

�

� �

�

904

Example E.3. Suppose we want to minimize the function f(x, y) = (x −
1)2 + (y − 3)2 subject to the following constraints:

x+ y ≤ 2, and y ≥ x.

The Lagrangian for this problem is L = (x − 1)2 + (y − 3)2 + λ1(x + y −
2) + λ2(x− y) subjected to the following KKT constraints:

∂L

∂x
= 2(x− 1) + λ1 + λ2 = 0 (E.17)

∂L

∂y
= 2(y − 3) + λ1 − λ2 = 0 (E.18)

λ1(x+ y − 2) = 0 (E.19)

λ2(x− y) = 0 (E.20)

λ1 ≥ 0, λ2 ≥ 0, x+ y ≤ 2, y ≥ x (E.21)

To solve the above equations, we need to examine all the possible cases of
Equations E.19 and E.20.

Case 1: λ1 = 0, λ2 = 0. In this case, we obtain the following equations:

2(x− 1) = 0 and 2(y − 3) = 0,

whose solution is given by x = 1 and y = 3. Since x+ y = 4, this is not
a feasible solution because it violates the constraint x+ y ≤ 2.

Case 2: λ1 = 0, λ2 �= 0. In this case, we obtain the following equations:

x− y = 0, 2(x− 1) + λ2 = 0, 2(y − 3)− λ2 = 0,

whose solution is given by x = 2, y = 2, and λ2 = −2, which is not a
feasible solution because it violates the conditions λ2 ≥ 0 and x+y ≤ 2.

Case 3: λ1 �= 0, λ2 = 0. In this case, we obtain the following equations:

x+ y − 2 = 0, 2(x− 1) + λ1 = 0, −2(x+ 1) + λ1 = 0,

whose solution is given by x = 0, y = 2, and λ1 = 2, which is a feasible
solution.

�

� �

�

E.2 Constrained Optimization 905

Case 4: λ1 �= 0, λ2 �= 0. In this case, we obtain the following equations:

x+ y− 2 = 0, x− y = 0, 2(x− 1)+λ1+λ2 = 0, 2(y− 3)+λ1−λ2 = 0,

whose solution is x = 1, y = 1, λ1 = 2, and λ2 = −2, which is not a
feasible solution.

Therefore, the solution for this problem is x = 0 and y = 2.

Solving the KKT conditions can be quite a laborious task especially if the
number of constraining inequalities is large. In such cases, finding a closed-form
solution is no longer possible and it is necessary to use numerical techniques
such as linear and quadratic programming.

�

� �

�

�

� �

�

F

Big Data: Scaling Up
Data Mining
Algorithms

In this appendix, we review some of the common techniques used for scaling up
data mining algorithms. As mentioned in Chapter 1, scalability is an important
challenge as even simple counting problems such as finding the top-k most
popular items is computationally expensive when applied to massive data
sets. To illustrate this, consider the problem of detecting trending topics in
social media postings. Suppose each topic corresponds to a hashtag associated
with a social media content posted by users. Figure F.1(a) shows a continuous
stream of hashtags generated by various users. Our goal is to automatically
determine the most popular hashtags from the data stream.

Figure F.1. (a) A data stream of user-generated hashtags. (b) Counters for hashtag frequencies.

�

� �

�

908

0 500 1000 1500 2000 2500 3000 3500 4000

Sorted word

0

100

200

300

400

500

600

F
re

qu
en

cy

Figure F.2. A Zipf distribution of words that appear in a document corpus.

A simple solution to the problem is to maintain a set of counters for
the hashtag frequencies, as shown in Figure F.1(b). Specifically, the counter
is incremented each time its corresponding hashtag is observed in the data
stream. However, managing a large number of counters and sorting them to
identify the most popular hashtags can be a very expensive operation. This
appendix presents some of the general strategies that can be used to address
this problem. Although these strategies are presented in the context of the
hashtag popularity problem, they are generally applicable to many of the
data mining techniques presented in this book.

F.1 Sampling-based Approach

A sampling-based approach would estimate the popular hashtags based on a
small, random sample of the data. For example, assuming the data is uni-
formly distributed, one could periodically sample every k-th hashtag in the
data stream and count their respective frequencies. Alternatively, one could
generate a random number p for each hashtag and add the hashtag to the
sample if the random number exceeds a pre-defined threshold. Assuming the
hashtags follow a Zipf distribution such as the one shown in Figure F.2, both
sampling procedures can reduce the number of counters significantly as most
of the rare hashtags are likely to be omitted from the sample. While such
simple sampling strategies are sufficient for the hashtag popularity problem,
they may not be effective for more sophisticated data mining tasks that require
a finite sample size to fit in memory at all times. This is because the sample
size grows linearly with increasing length of the data stream for both sampling

�

� �

�

F.1 Sampling-based Approach 909

strategies. For example, if N is the length of the data stream, then the sample
size would be N/k for periodic sampling and N(1− p) for random sampling.

The linear growth in sample size may not be suitable for many data mining
algorithms that require the input data to reside in main memory. For such
algorithms, we would like to create a random sample that fits the amount
of memory available. While the sample composition may change dynamically
as new instances arrive in the data stream, the sample size needs to fixed.
This would allow the data mining algorithm to be periodically applied to the
sampled data. Let n be the desired sample size and N be the size of the
input data. To ensure uniform sampling, every instance must have the same
probability, n/N , to be included in the sample. If N is known, we can create
such a uniform sample by generating a random number p for each instance and
keep the instance in the sample if p ≥ n/N . However, if N is unknown or varies
dynamically (e.g., for a data stream), it would be impossible to determine the
probability by which an instance should be added to the sample data.

To overcome this problem, a procedure known as reservoir sampling [777]
can be used. The procedure ensures that every instance encountered so far
in the data stream has an equal probability of being included in the sample,
regardless of the length of the data stream. If n is the desired sample size and
N is the current length of the data stream, then the probability an instance
is kept in the sample would be:

p =

{
1, if n ≥ N ;
n
N , otherwise.

The reservoir sampling procedure works as follows. Assuming the instances
in the data stream arrive one at a time, we add the first n instances to the
sample. In this situation, every instance has an equal probability of 1 to be
included in the sample when the length of the data stream N is less than or
equal to n. Next, for each i-th arriving instance, where i > n, we generate a
random integer r between 1 and i. If r ≤ n, we replace the r-th instance within
the current sample with the new instance. Otherwise, the new instance will
be discarded. This ensures that the i-th arriving instance has a probability
of n/i to be included the sample. More importantly, it can be shown that
each instance currently in the sample also has the same probability of n/i
to remain in the sample. We can prove this by induction. Let Si be the set
of sampled instances after encountering the first i instances. The probability
that an existing instance x ∈ Si−1 remains in Si is

P (x ∈ Si) = P (x ∈ Si−1)× P (i �→ x),

�

� �

�

910

where the first term, P (x ∈ Si−1), refers to the probability x belongs to the
sample Si−1 whereas the second term P (i �→ x) refers to the probability that
x is not chosen to be replaced by the i-th instance. By induction, we assume
P (x ∈ Si−1) = n/(i − 1). Furthermore, P (i �→ x) = 1 − P (i → x), where
P (i → x) is the probability x is replaced by the i-th instance. The latter
happens when the following two conditions are satisfied:

1. The random number r associated with the i-th instance is less than or
equal to n.

2. The random number r associated with the i-th instance is the same as
the position occupied by x in the current sample Si−1.

The probability for the first condition is given by n/i whereas the probability
for the second condition is given by 1/n. Putting it together, we have

P (i �→ x) = 1− P (i→ x) = 1− n

i
× 1

n
= 1− 1

i

Thus, the probability that the item x remains in the sample Si is

P (x ∈ Si) = P (x ∈ Si−1)× P (i �→ x) =
n

i− 1

(
1− 1

i

)
=
n

i
,

which completes the proof.
Sampling-based approaches are useful when the patterns to be discovered

appear frequently in the data. The random sample must be representative of
the underlying characteristics of the input data. These approaches may not
be effective at detecting infrequent events such as anomalies or for modeling
rare classes in the data.

F.2 Parallel/Distributed Approach

Another way to scale up existing data mining algorithms is to allow multiple
processing nodes in a cluster of machines to analyze the input data. This
strategy is useful when the computational resources needed to apply the data
mining algorithm far exceeds the capacity provided by a single machine. The
massive data set can be initially split into smaller chunks. Each data chunk is
then assigned to one of the nodes in the cluster for local processing. The partial
results generated by all the processing nodes are then aggregated to obtain a
global solution to the computational problem. Such a strategy is employed by

�

� �

�

F.2 Parallel/Distributed Approach 911

Figure F.3. Frequency counting of hashtags using a MapReduce framework.

the MapReduce framework [775], which is a distributed computational model
for mining big data. The framework decomposes a large-scale computational
problem into two phases. During the map phase, each processing node in the
cluster would perform a local computation on the data chunks it owns. This
will be followed by a reduce phase, where the local results are aggregated to
obtain the final solution.

Figure F.3 illustrates an example application of MapReduce to the hashtag
popularity problem. The framework is implemented on a cluster of processing
nodes, which can be configured to serve as mappers or reducers (or both) of
the computational task. The advantage of using a distributed programming
model such as MapReduce is that it hides many of the implementation de-
tails, such as, process synchronization, load balancing, fault tolerance, and
so on, from programmers, thus simplifying the process of writing distributed
programs. Instead, the programmers need to focus only on how to decompose
the computational problem into a chain of map and reduce tasks.

For the hashtag popularity problem, the input stream can be split among
the mappers. Each mapper is responsible for counting the frequencies of hash-
tags assigned to the mapper. The mapper will then output a list of key-value
pairs, in which the key would correspond to a hashtag and the value corre-
sponds to its local frequency count. The key-value pairs are then distributed
to the reducers based on their key values. For example, with 2 reducers, all
hashtags that begin with #a through #m can be assigned to the first reducer
while those that begin with #n through #z can be assigned to the second
reducer (see Figure F.3). The reducers are responsible for summing up the
frequencies for each hashtag it receives from the mappers. The reducers will

�

� �

�

912

Figure F.4. A second MapReduce job for sorting the frequencies of keyword tags.

then output the hashtags along with their aggregated frequencies. Since we
are interested in identifying the most popular hashtags, a second MapReduce
job is needed, whereby each mapper will receive one of the reducer’s output
from the first job as its input data. The mapper transmits the frequency as
its key and the hashtag associated with the given frequency as its value. The
reducers will then collect all the hashtags with the same frequency, sort them,
and generate the sorted frequencies along with their list of hashtags as output
(see Figure F.4).

The MapReduce framework is generally applicable to more complex prob-
lems such as matrix computations and gradient-based optimization by design-
ing the appropriate mapper and reducer tasks. It is highly scalable especially
for embarrassingly parallel problems, where there are few dependencies among
the mapper or reducer tasks.

F.3 Online/Incremental Learning Approach

A third strategy for scaling up a data mining technique is to develop an online
implementation of the algorithm. Similar to the sampling-based approach,
online learning does not require the entire data to fit into main memory.
Instead, the algorithm derives an initial model from a subset of the input data
and then update the model incrementally with the remaining instances. This
distinguishes online learning from sampling-based approaches as the latter
completely ignores instances that were excluded from the data sample.

To illustrate the online learning approach, we consider the problem of
identifying popular hashtags from social media postings. Let d be the number

�

� �

�

F.3 Online/Incremental Learning Approach 913

of unique hashtags in the data and n& d is the size of memory buffer available
to store the counters for the hashtag frequencies. Due to the limited memory
size, it is not possible to store a counter for each hashtag. An online learning
algorithm such as Misra-Gries [776] can be applied to identify popular hashtags
despite the memory limitation.

For each newly arriving instance in the data stream, the algorithm pro-
cesses the new instance as follows:

1. Examine the hashtag of the instance. If the hashtag is already stored in
the memory buffer, go to Step 2. Otherwise, go to Step 3.

2. Increment the counter associated with the hashtag by 1. Go to Step 5.

3. If the memory buffer is not full, create a new counter for the hashtag
and initialize its count to 1. Go to Step 5. Otherwise, if the memory
buffer is full, go to Step 4.

4. Decrement the counter of every hashtag in the memory buffer by 1. If
the frequency reduces to 0, remove the hashtag and its counter from the
memory buffer. Go to Step 5.

5. Fetch the next instance from the data stream.

For example, consider the data stream shown in Figure F.5. Assume the
buffer can store the frequency counts for up to 2 hashtags only. Thus, the
buffer becomes full after observing the first two data instances. When the
third instance is processed, its hashtag, #health, already exists in the buffer.
So its frequency is incremented by 1, as shown in Figure F.5(c). When the
fourth instance is encountered, its hashtag, #weather, is not available in the
memory buffer. Therefore, we reduce the frequencies for all the hashtags in
memory by 1. One of the existing keyword tags, #stuffs, is removed from
the buffer since its frequency is equal to 0. This frees up the buffer to store
the frequency for the next new hashtag encountered in the data stream. After
processing the fifth instance, the state of the buffer is shown in Figure F.5(e).
As can be seen from the figure, the most popular keyword tag, #health,
remains in the memory buffer.

It can be theoretically proven that all popular hashtags whose frequencies
exceed �N/(n + 1)� are guaranteed to be in the memory buffer, where N is
the length of the data stream that has been processed so far. For the example
shown in Figure F.5, n = 2 and N = 5. Thus, all popular keyword tags whose
frequencies are above �5/3� = 1 will be in the memory buffer.

�

� �

�

914

Figure F.5. Example application of the Misra-Gries algorithm for finding popular hashtags.

The advantage of using online learning is that it is a single-pass algo-
rithm, which makes it scalable to processing massive data streams. Unlike
the sampling-based approach, online learning algorithms would process all
the instances in the input data stream, instead of a random sample from the
stream. Nevertheless, it provides only an approximate solution to the com-
putational problem, which means, its solution may include erroneous results.
For instance, not all hashtags that remain in the buffer after applying the
Misra-Gries algorithm to the data stream shown in Figure F.5 correspond to
popular hashtags (i.e., appear more than once).

Bibliography
[775] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

In Proc. of OSDI, pages 137–150, San Francisco, California, 2004.

[776] J. Misra and D. Gries. Finding Repeated Elements. Sci. Comput. Program., 2(2):
143–152, 1982.

[777] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37–57, 1985.

