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Classification: Basic
Concepts and
Techniques

Humans have an innate ability to classify things into categories, e.g., mundane
tasks such as filtering spam email messages or more specialized tasks such
as recognizing celestial objects in telescope images (see Figure 3.1). While
manual classification often suffices for small and simple data sets with only
a few attributes, larger and more complex data sets require an automated
solution.

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 3.1. Classification of galaxies from telescope images taken from the NASA website.
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Figure 3.2. A schematic illustration of a classification task.

This chapter introduces the basic concepts of classification and describes
some of its key issues such as model overfitting, model selection, and model
evaluation. While these topics are illustrated using a classification technique
known as decision tree induction, most of the discussion in this chapter is
also applicable to other classification techniques, many of which are covered
in Chapter 4.

3.1 Basic Concepts

Figure 3.2 illustrates the general idea behind classification. The data for a
classification task consists of a collection of instances (records). Each such
instance is characterized by the tuple (x, y), where x is the set of attribute
values that describe the instance and y is the class label of the instance. The
attribute set x can contain attributes of any type, while the class label y must
be categorical.

A classification model is an abstract representation of the relationship
between the attribute set and the class label. As will be seen in the next
two chapters, the model can be represented in many ways, e.g., as a tree, a
probability table, or simply, a vector of real-valued parameters. More formally,
we can express it mathematically as a target function f that takes as input the
attribute set x and produces an output corresponding to the predicted class
label. The model is said to classify an instance (x, y) correctly if f(x) = y.

Table 3.1. Examples of classification tasks.

Task Attribute set Class label

Spam filtering Features extracted from email message
header and content

spam or non-spam

Tumor identification Features extracted from magnetic reso-
nance imaging (MRI) scans

malignant or benign

Galaxy classification Features extracted from telescope images elliptical, spiral, or
irregular-shaped
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Table 3.2. A sample data for the vertebrate classification problem.

Vertebrate Body Skin Gives Aquatic Aerial Has Hiber- Class
Name Temperature Cover Birth Creature Creature Legs nates Label
human warm-blooded hair yes no no yes no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no no fish
whale warm-blooded hair yes yes no no no mammal
frog cold-blooded none no semi no yes yes amphibian
komodo
dragon

cold-blooded scales no no no yes no reptile

bat warm-blooded hair yes no yes yes yes mammal
pigeon warm-blooded feathers no no yes yes no bird
cat warm-blooded fur yes no no yes no mammal
leopard
shark

cold-blooded scales yes yes no no no fish

turtle cold-blooded scales no semi no yes no reptile
penguin warm-blooded feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no yes no no no fish
salamander cold-blooded none no semi no yes yes amphibian

Table 3.1 shows examples of attribute sets and class labels for various
classification tasks. Spam filtering and tumor identification are examples of
binary classification problems, in which each data instance can be categorized
into one of two classes. If the number of classes is larger than 2, as in the galaxy
classification example, then it is called a multiclass classification problem.

We illustrate the basic concepts of classification in this chapter with the
following two examples.

Example 3.1. [Vertebrate Classification] Table 3.2 shows a sample data
set for classifying vertebrates into mammals, reptiles, birds, fishes, and am-
phibians. The attribute set includes characteristics of the vertebrate such as
its body temperature, skin cover, and ability to fly. The data set can also be
used for a binary classification task such as mammal classification, by grouping
the reptiles, birds, fishes, and amphibians into a single category called non-
mammals.

Example 3.2. [Loan Borrower Classification] Consider the problem of
predicting whether a loan borrower will repay the loan or default on the loan
payments. The data set used to build the classification model is shown in Table
3.3. The attribute set includes personal information of the borrower such as
marital status and annual income, while the class label indicates whether the
borrower had defaulted on the loan payments.
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Table 3.3. A sample data for the loan borrower classification problem.

ID Home Owner Marital Status Annual Income Defaulted?

1 Yes Single 125000 No

2 No Married 100000 No

3 No Single 70000 No

4 Yes Married 120000 No

5 No Divorced 95000 Yes

6 No Single 60000 No

7 Yes Divorced 220000 No

8 No Single 85000 Yes

9 No Married 75000 No

10 No Single 90000 Yes

A classification model serves two important roles in data mining. First, it is
used as a predictive model to classify previously unlabeled instances. A good
classification model must provide accurate predictions with a fast response
time. Second, it serves as a descriptive model to identify the characteristics
that distinguish instances from different classes. This is particularly useful
for critical applications, such as medical diagnosis, where it is insufficient to
have a model that makes a prediction without justifying how it reaches such
a decision.

For example, a classification model induced from the vertebrate data set
shown in Table 3.2 can be used to predict the class label of the following
vertebrate:

Vertebrate Body Skin Gives Aquatic Aerial Has Hiber- Class
Name Temperature Cover Birth Creature Creature Legs nates Label
gila monster cold-blooded scales no no no yes yes ?

In addition, it can be used as a descriptive model to help determine charac-
teristics that define a vertebrate as a mammal, a reptile, a bird, a fish, or an
amphibian. For example, the model may identify mammals as warm-blooded
vertebrates that give birth to their young.

There are several points worth noting regarding the previous example.
First, although all the attributes shown in Table 3.2 are qualitative, there are
no restrictions on the type of attributes that can be used as predictor variables.
The class label, on the other hand, must be of nominal type. This distinguishes
classification from other predictive modeling tasks such as regression, where
the predicted value is often quantitative. More information about regression
can be found in Appendix D.

Another point worth noting is that not all attributes may be relevant
to the classification task. For example, the average length or weight of a
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vertebrate may not be useful for classifying mammals, as these attributes
can show same value for both mammals and non-mammals. Such an attribute
is typically discarded during preprocessing. The remaining attributes might
not be able to distinguish the classes by themselves, and thus, must be used in
concert with other attributes. For instance, the Body Temperature attribute
is insufficient to distinguish mammals from other vertebrates. When it is used
together with Gives Birth, the classification of mammals improves signifi-
cantly. However, when additional attributes, such as Skin Cover are included,
the model becomes overly specific and no longer covers all mammals. Finding
the optimal combination of attributes that best discriminates instances from
different classes is the key challenge in building classification models.

3.2 General Framework for Classification

Classification is the task of assigning labels to unlabeled data instances and a
classifier is used to perform such a task. A classifier is typically described in
terms of a model as illustrated in the previous section. The model is created
using a given a set of instances, known as the training set, which contains at-
tribute values as well as class labels for each instance. The systematic approach
for learning a classification model given a training set is known as a learning
algorithm. The process of using a learning algorithm to build a classification
model from the training data is known as induction. This process is also
often described as “learning a model” or “building a model.” This process of
applying a classification model on unseen test instances to predict their class
labels is known as deduction. Thus, the process of classification involves two
steps: applying a learning algorithm to training data to learn a model, and
then applying the model to assign labels to unlabeled instances. Figure 3.3
illustrates the general framework for classification.

A classification technique refers to a general approach to classification,
e.g., the decision tree technique that we will study in this chapter. This
classification technique like most others, consists of a family of related models
and a number of algorithms for learning these models. In Chapter 4, we
will study additional classification techniques, including neural networks and
support vector machines.

A couple notes on terminology. First, the terms “classifier” and “model”
are often taken to be synonymous. If a classification technique builds a single,
global model, then this is fine. However, while every model defines a classifier,
not every classifier is defined by a single model. Some classifiers, such as k-
nearest neighbor classifiers, do not build an explicit model (Section 4.3), while
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Figure 3.3. General framework for building a classification model.

other classifiers, such as ensemble classifiers, combine the output of a collection
of models (Section 4.10). Second, the term “classifier” is often used in a more
general sense to refer to a classification technique. Thus, for example, “decision
tree classifier” can refer to the decision tree classification technique or a specific
classifier built using that technique. Fortunately, the meaning of “classifier”
is usually clear from the context.

In the general framework shown in Figure 3.3, the induction and deduction
steps should be performed separately. In fact, as will be discussed later in
Section 3.6, the training and test sets should be independent of each other
to ensure that the induced model can accurately predict the class labels of
instances it has never encountered before. Models that deliver such predictive
insights are said to have good generalization performance. The perfor-
mance of a model (classifier) can be evaluated by comparing the predicted
labels against the true labels of instances. This information can be summarized
in a table called a confusion matrix. Table 3.4 depicts the confusion matrix
for a binary classification problem. Each entry fij denotes the number of
instances from class i predicted to be of class j. For example, f01 is the
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Table 3.4. Confusion matrix for a binary classification problem.

Predicted Class
Class = 1 Class = 0

Actual Class = 1 f11 f10
Class Class = 0 f01 f00

number of instances from class 0 incorrectly predicted as class 1. The number
of correct predictions made by the model is (f11 + f00) and the number of
incorrect predictions is (f10 + f01).

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information into a
single number makes it more convenient to compare the relative performance
of different models. This can be done using an evaluation metric such as
accuracy, which is computed in the following way:

Accuracy =
Number of correct predictions

Total number of predictions
. (3.1)

For binary classification problems, the accuracy of a model is given by

Accuracy =
f11 + f00

f11 + f10 + f01 + f00
. (3.2)

Error rate is another related metric, which is defined as follows for binary
classification problems:

Error rate =
Number of wrong predictions

Total number of predictions
=

f10 + f01
f11 + f10 + f01 + f00

. (3.3)

The learning algorithms of most classification techniques are designed to learn
models that attain the highest accuracy, or equivalently, the lowest error rate
when applied to the test set. We will revisit the topic of model evaluation in
Section 3.6.

3.3 Decision Tree Classifier

This section introduces a simple classification technique known as the de-
cision tree classifier. To illustrate how a decision tree works, consider the
classification problem of distinguishing mammals from non-mammals using
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the vertebrate data set shown in Table 3.2. Suppose a new species is discovered
by scientists. How can we tell whether it is a mammal or a non-mammal? One
approach is to pose a series of questions about the characteristics of the species.
The first question we may ask is whether the species is cold- or warm-blooded.
If it is cold-blooded, then it is definitely not a mammal. Otherwise, it is either
a bird or a mammal. In the latter case, we need to ask a follow-up question:
Do the females of the species give birth to their young? Those that do give
birth are definitely mammals, while those that do not are likely to be non-
mammals (with the exception of egg-laying mammals such as the platypus
and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted questions about the attributes of the test
instance. Each time we receive an answer, we could ask a follow-up question
until we can conclusively decide on its class label. The series of questions and
their possible answers can be organized into a hierarchical structure called a
decision tree. Figure 3.4 shows an example of the decision tree for the mammal
classification problem. The tree has three types of nodes:

• A root node, with no incoming links and zero or more outgoing links.

• Internal nodes, each of which has exactly one incoming link and two
or more outgoing links.

• Leaf or terminal nodes, each of which has exactly one incoming link
and no outgoing links.

Every leaf node in the decision tree is associated with a class label. The
non-terminal nodes, which include the root and internal nodes, contain
attribute test conditions that are typically defined using a single attribute.
Each possible outcome of the attribute test condition is associated with exactly
one child of this node. For example, the root node of the tree shown in
Figure 3.4 uses the attribute Body Temperature to define an attribute test
condition that has two outcomes, warm and cold, resulting in two child nodes.

Given a decision tree, classifying a test instance is straightforward. Starting
from the root node, we apply its attribute test condition and follow the
appropriate branch based on the outcome of the test. This will lead us either
to another internal node, for which a new attribute test condition is applied, or
to a leaf node. Once a leaf node is reached, we assign the class label associated
with the node to the test instance. As an illustration, Figure 3.5 traces the
path used to predict the class label of a flamingo. The path terminates at a
leaf node labeled as Non-mammals.
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Body
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Figure 3.4. A decision tree for the mammal classification problem.
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Figure 3.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to
the Non-mammals class.

3.3.1 A Basic Algorithm to Build a Decision Tree

Many possible decision trees that can be constructed from a particular data
set. While some trees are better than others, finding an optimal one is com-
putationally expensive due to the exponential size of the search space. Effi-
cient algorithms have been developed to induce a reasonably accurate, albeit
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suboptimal, decision tree in a reasonable amount of time. These algorithms
usually employ a greedy strategy to grow the decision tree in a top-down
fashion by making a series of locally optimal decisions about which attribute
to use when partitioning the training data. One of the earliest method is
Hunt’s algorithm, which is the basis for many current implementations
of decision tree classifiers, including ID3, C4.5, and CART. This subsection
presents Hunt’s algorithm and describes some of the design issues that must
be considered when building a decision tree.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion. The tree
initially contains a single root node that is associated with all the training
instances. If a node is associated with instances from more than one class,
it is expanded using an attribute test condition that is determined using a
splitting criterion. A child leaf node is created for each outcome of the
attribute test condition and the instances associated with the parent node are
distributed to the children based on the test outcomes. This node expansion
step can then be recursively applied to each child node, as long as it has
labels of more than one class. If all the instances associated with a leaf node
have identical class labels, then the node is not expanded any further. Each
leaf node is assigned a class label that occurs most frequently in the training
instances associated with the node.

To illustrate how the algorithm works, consider the training set shown
in Table 3.3 for the loan borrower classification problem. Suppose we apply
Hunt’s algorithm to fit the training data. The tree initially contains only a
single leaf node as shown in Figure 3.6(a). This node is labeled as Defaulted =

No, since the majority of the borrowers did not default on their loan payments.
The training error of this tree is 30% as three out of the ten training instances
have the class label Defaulted = Yes. The leaf node can therefore be further
expanded because it contains training instances from more than one class.

Let Home Owner be the attribute chosen to split the training instances. The
justification for choosing this attribute as the attribute test condition will
be discussed later. The resulting binary split on the Home Owner attribute
is shown in Figure 3.6(b). All the training instances for which Home Owner

= Yes are propagated to the left child of the root node and the rest are
propagated to the right child. Hunt’s algorithm is then recursively applied to
each child. The left child becomes a leaf node labeled Defaulted = No, since
all instances associated with this node have identical class label Defaulted
= No. The right child has instances from each class label. Hence, we split it



�

� �

�

3.3 Decision Tree Classifier 123

(a)

(c) (d)

Defaulted = No

(b)

Defaulted = No Defaulted = No
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Married

Yes No

Figure 3.6. Hunt’s algorithm for building decision trees.

further. The resulting subtrees after recursively expanding the right child are
shown in Figures 3.6(c) and (d).

Hunt’s algorithm, as described above, makes some simplifying assump-
tions that are often not true in practice. In the following, we describe these
assumptions and briefly discuss some of the possible ways for handling them.

1. Some of the child nodes created in Hunt’s algorithm can be empty if
none of the training instances have the particular attribute values. One
way to handle this is by declaring each of them as a leaf node with
a class label that occurs most frequently among the training instances
associated with their parent nodes.

2. If all training instances associated with a node have identical attribute
values but different class labels, it is not possible to expand this node
any further. One way to handle this case is to declare it a leaf node
and assign it the class label that occurs most frequently in the training
instances associated with this node.
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Design Issues of Decision Tree Induction

Hunt’s algorithm is a generic procedure for growing decision trees in a greedy
fashion. To implement the algorithm, there are two key design issues that must
be addressed.

1. What is the splitting criterion? At each recursive step, an attribute
must be selected to partition the training instances associated with a
node into smaller subsets associated with its child nodes. The splitting
criterion determines which attribute is chosen as the test condition and
how the training instances should be distributed to the child nodes. This
will be discussed in Sections 3.3.2 and 3.3.3.

2. What is the stopping criterion? The basic algorithm stops expand-
ing a node only when all the training instances associated with the node
have the same class labels or have identical attribute values. Although
these conditions are sufficient, there are reasons to stop expanding a node
much earlier even if the leaf node contains training instances from more
than one class. This process is called early termination and the condition
used to determine when a node should be stopped from expanding is
called a stopping criterion. The advantages of early termination are
discussed in Section 3.4.

3.3.2 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute
types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 3.7.

Nominal Attributes Since a nominal attribute can have many values, its
attribute test condition can be expressed in two ways, as a multiway split or
a binary split as shown in Figure 3.8. For a multiway split (Figure 3.8(a)),
the number of outcomes depends on the number of distinct values for the
corresponding attribute. For example, if an attribute such as marital status
has three distinct values—single, married, or divorced—its test condition will
produce a three-way split. It is also possible to create a binary split by
partitioning all values taken by the nominal attribute into two groups. For
example, some decision tree algorithms, such as CART, produce only binary
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Figure 3.7. Attribute test condition for a binary attribute.
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Figure 3.8. Attribute test conditions for nominal attributes.

splits by considering all 2k−1 − 1 ways of creating a binary partition of k
attribute values. Figure 3.8(b) illustrates three different ways of grouping the
attribute values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multi-
way splits. Ordinal attribute values can be grouped as long as the grouping
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Shirt
Size

{Small,
Medium}

{Large,
Extra Large}

(a)

Shirt
Size

{Small} {Medium, Large,
Extra Large}

(b)

Shirt
Size

{Small,
Large}

{Medium,
Extra Large}

(c)

Figure 3.9. Different ways of grouping ordinal attribute values.

does not violate the order property of the attribute values. Figure 3.9 illus-
trates various ways of splitting training records based on the Shirt Size

attribute. The groupings shown in Figures 3.9(a) and (b) preserve the order
among the attribute values, whereas the grouping shown in Figure 3.9(c)
violates this property because it combines the attribute values Small and
Large into the same partition while Medium and Extra Large are combined
into another partition.

Continuous Attributes For continuous attributes, the attribute test con-
dition can be expressed as a comparison test (e.g., A < v) producing a binary
split, or as a range query of the form vi ≤ A < vi+1, for i = 1, . . . , k,
producing a multiway split. The difference between these approaches is shown
in Figure 3.10. For the binary split, any possible value v between the minimum
and maximum attribute values in the training data can be used for construct-
ing the comparison test A < v. However, it is sufficient to only consider
distinct attribute values in the training set as candidate split positions. For the
multiway split, any possible collection of attribute value ranges can be used,
as long as they are mutually exclusive and cover the entire range of attribute
values between the minimum and maximum values observed in the training set.
One approach for constructing multiway splits is to apply the discretization
strategies described in Section 2.3.6 on page 63. After discretization, a new
ordinal value is assigned to each discretized interval, and the attribute test
condition is then defined using this newly constructed ordinal attribute.
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(b)(a)
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> 80K< 10K

Figure 3.10. Test condition for continuous attributes.

3.3.3 Measures for Selecting an Attribute Test Condition

There are many measures that can be used to determine the goodness of an
attribute test condition. These measures try to give preference to attribute
test conditions that partition the training instances into purer subsets in the
child nodes, which mostly have the same class labels. Having purer nodes is
useful since a node that has all of its training instances from the same class
does not need to be expanded further. In contrast, an impure node containing
training instances from multiple classes is likely to require several levels of node
expansions, thereby increasing the depth of the tree considerably. Larger trees
are less desirable as they are more susceptible to model overfitting, a condition
that may degrade the classification performance on unseen instances, as will
be discussed in Section 3.4. They are also difficult to interpret and incur more
training and test time as compared to smaller trees.

In the following, we present different ways of measuring the impurity of a
node and the collective impurity of its child nodes, both of which will be used
to identify the best attribute test condition for a node.

Impurity Measure for a Single Node

The impurity of a node measures how dissimilar the class labels are for the data
instances belonging to a common node. Following are examples of measures
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that can be used to evaluate the impurity of a node t:

Entropy = −
c−1∑
i=0

pi(t) log2 pi(t), (3.4)

Gini index = 1−
c−1∑
i=0

pi(t)
2, (3.5)

Classification error = 1−max
i

[pi(t)], (3.6)

where pi(t) is the relative frequency of training instances that belong to class
i at node t, c is the total number of classes, and 0 log2 0 = 0 in entropy
calculations. All three measures give a zero impurity value if a node contains
instances from a single class and maximum impurity if the node has equal
proportion of instances from multiple classes.

Figure 3.11 compares the relative magnitude of the impurity measures
when applied to binary classification problems. Since there are only two classes,
p0(t) + p1(t) = 1. The horizontal axis p refers to the fraction of instances that
belong to one of the two classes. Observe that all three measures attain their
maximum value when the class distribution is uniform (i.e., p0(t) = p1(t) =
0.5) and minimum value when all the instances belong to a single class (i.e.,
either p0(t) or p1(t) equals to 1). The following examples illustrate how the
values of the impurity measures vary as we alter the class distribution.

Node N1 Count
Class=0 0
Class=1 6

Gini = 1− (0/6)2 − (6/6)2 = 0
Entropy = −(0/6) log2(0/6)− (6/6) log2(6/6) = 0
Error = 1−max[0/6, 6/6] = 0

Node N2 Count
Class=0 1
Class=1 5

Gini = 1− (1/6)2 − (5/6)2 = 0.278
Entropy = −(1/6) log2(1/6)− (5/6) log2(5/6) = 0.650
Error = 1−max[1/6, 5/6] = 0.167

Node N3 Count
Class=0 3
Class=1 3

Gini = 1− (3/6)2 − (3/6)2 = 0.5
Entropy = −(3/6) log2(3/6)− (3/6) log2(3/6) = 1
Error = 1−max[3/6, 3/6] = 0.5

Based on these calculations, node N1 has the lowest impurity value, fol-
lowed by N2 and N3. This example, along with Figure 3.11, shows the consis-
tency among the impurity measures, i.e., if a node N1 has lower entropy than
node N2, then the Gini index and error rate of N1 will also be lower than that
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Figure 3.11. Comparison among the impurity measures for binary classification problems.

of N2. Despite their agreement, the attribute chosen as splitting criterion by
the impurity measures can still be different (see Exercise 6 on page 187).

Collective Impurity of Child Nodes

Consider an attribute test condition that splits a node containing N training
instances into k children, {v1, v2, · · · , vk}, where every child node represents
a partition of the data resulting from one of the k outcomes of the attribute
test condition. Let N(vj) be the number of training instances associated with
a child node vj , whose impurity value is I(vj). Since a training instance in the
parent node reaches node vj for a fraction of N(vj)/N times, the collective
impurity of the child nodes can be computed by taking a weighted sum of the
impurities of the child nodes, as follows:

I(children) =
k∑

j=1

N(vj)

N
I(vj), (3.7)

Example 3.3. [Weighted Entropy] Consider the candidate attribute test
condition shown in Figures 3.12(a) and (b) for the loan borrower classification
problem. Splitting on the Home Owner attribute will generate two child nodes
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Figure 3.12. Examples of candidate attribute test conditions.

whose weighted entropy can be calculated as follows:

I(Home Owner = yes) = −0

3
log2

0

3
− 3

3
log2

3

3
= 0

I(Home Owner = no) = −3

7
log2

3

7
− 4

7
log2

4

7
= 0.985

I(Home Owner) =
3

10
× 0 +

7

10
× 0.985 = 0.690

Splitting on Marital Status, on the other hand, leads to three child nodes
with a weighted entropy given by

I(Marital Status = Single) = −2

5
log2

2

5
− 3

5
log2

3

5
= 0.971

I(Marital Status = Married) = −0

3
log2

0

3
− 3

3
log2

3

3
= 0

I(Marital Status = Divorced) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1.000

I(Marital Status) =
5

10
× 0.971 +

3

10
× 0 +

2

10
× 1 = 0.686

Thus, Marital Status has a lower weighted entropy than Home Owner.

Identifying the best attribute test condition

To determine the goodness of an attribute test condition, we need to compare
the degree of impurity of the parent node (before splitting) with the weighted
degree of impurity of the child nodes (after splitting). The larger their differ-
ence, the better the test condition. This difference, Δ, also termed as the gain
in purity of an attribute test condition, can be defined as follows:

Δ = I(parent)− I(children), (3.8)
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Figure 3.13. Splitting criteria for the loan borrower classification problem using Gini index.

where I(parent) is the impurity of a node before splitting and I(children) is
the weighted impurity measure after splitting. It can be shown that the gain
is non-negative since I(parent) ≥ I(children) for any reasonable measure such
as those presented above. The higher the gain, the purer are the classes in the
child nodes relative to the parent node. The splitting criterion in the decision
tree learning algorithm selects the attribute test condition that shows the
maximum gain. Note that maximizing the gain at a given node is equivalent
to minimizing the weighted impurity measure of its children since I(parent)
is the same for all candidate attribute test conditions. Finally, when entropy
is used as the impurity measure, the difference in entropy is commonly known
as information gain, Δinfo.

In the following, we present illustrative approaches for identifying the best
attribute test condition given qualitative or quantitative attributes.

Splitting of Qualitative Attributes

Consider the first two candidate splits shown in Figure 3.12 involving qualita-
tive attributes Home Owner and Marital Status. The initial class distribution
at the parent node is (0.3, 0.7), since there are 3 instances of class Yes and 7
instances of class No in the training data. Thus,

I(parent) = − 3

10
log2

3

10
− 7

10
log2

7

10
= 0.881
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The information gains for Home Owner and Marital Status are each given
by

Δinfo(Home Owner) = 0.881− 0.690 = 0.191

Δinfo(Marital Status) = 0.881− 0.686 = 0.195

The information gain for Marital Status is thus higher due to its lower
weighted entropy, which will thus be considered for splitting.

Binary Splitting of Qualitative Attributes

Consider building a decision tree using only binary splits and the Gini index as
the impurity measure. Figure 3.13 shows examples of four candidate splitting
criteria for the Home Owner and Marital Status attributes. Since there are 3
borrowers in the training set who defaulted and 7 others who repaid their loan
(see Table in Figure 3.13), the Gini index of the parent node before splitting
is

1−
(

3

10

)2

−
(

7

10

)2

= 0.420.

If Home Owner is chosen as the splitting attribute, the Gini index for the child
nodes N1 and N2 are 0 and 0.490, respectively. The weighted average Gini index
for the children is

(3/10)× 0 + (7/10)× 0.490 = 0.343,

where the weights represent the proportion of training instances assigned to
each child. The gain using Home Owner as splitting attribute is 0.420 - 0.343 =
0.077. Similarly, we can apply a binary split on the Marital Status attribute.
However, since Marital Status is a nominal attribute with three outcomes,
there are three possible ways to group the attribute values into a binary split.
The weighted average Gini index of the children for each candidate binary
split is shown in Figure 3.13. Based on these results, Home Owner and the last
binary split using Marital Status are clearly the best candidates, since they
both produce the lowest weighted average Gini index. Binary splits can also
be used for ordinal attributes, if the binary partitioning of the attribute values
does not violate the ordering property of the values.

Binary Splitting of Quantitative Attributes

Consider the problem of identifying the best binary split Annual Income ≤ τ
for the preceding loan approval classification problem. As discussed previously,
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Class No No No Yes Yes Yes No No No No 

 Annual Income (in ‘ 000s) 

60 70 75 85 90 95 100 120 125 220 

 55 65 72.5 80 87.5 92.5 97.5 110 122.5 172.5 230 

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 

 

Split Positions

Sorted Values

Figure 3.14. Splitting continuous attributes.

even though τ can take any value between the minimum and maximum values
of annual income in the training set, it is sufficient to only consider the annual
income values observed in the training set as candidate split positions. For
each candidate τ , the training set is scanned once to count the number of
borrowers with annual income less than or greater than τ along with their
class proportions. We can then compute the Gini index at each candidate
split position and choose the τ that produces the lowest value. Computing the
Gini index at each candidate split position requires O(N) operations, where
N is the number of training instances. Since there are at most N possible
candidates, the overall complexity of this brute-force method is O(N2). It is
possible to reduce the complexity of this problem to O(N logN) by using a
method described as follows (see illustration in Figure 3.14). In this method,
we first sort the training instances based on their annual income, a one-time
cost that requires O(N logN) operations. The candidate split positions are
given by the midpoints between every two adjacent sorted values: $55,000,
$65,000, $72,500, and so on. For the first candidate, since none of the instances
has an annual income less than or equal to $55,000, the Gini index for the child
node with Annual Income < $55,000 is equal to zero. In contrast, there are 3
training instances of class Yes and 7 instances of class No with annual income
greater than $55,000. The Gini index for this node is 0.420. The weighted
average Gini index for the first candidate split position, τ = $55, 000, is equal
to 0× 0 + 1× 0.420 = 0.420.

For the next candidate, τ = $65, 000, the class distribution of its child
nodes can be obtained with a simple update of the distribution for the previous
candidate. This is because, as τ increases from $55,000 to $65,000, there is
only one training instance affected by the change. By examining the class label
of the affected training instance, the new class distribution is obtained. For
example, as τ increases to $65,000, there is only one borrower in the training
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set, with an annual income of $60,000, affected by this change. Since the class
label for the borrower is No, the count for class No increases from 0 to 1 (for
Annual Income ≤ $65,000) and decreases from 7 to 6 (for Annual Income >
$65,000), as shown in Figure 3.14. The distribution for the Yes class remains
unaffected. The updated Gini index for this candidate split position is 0.400.

This procedure is repeated until the Gini index for all candidates are found.
The best split position corresponds to the one that produces the lowest Gini
index, which occurs at τ = $97, 500. Since the Gini index at each candidate
split position can be computed in O(1) time, the complexity of finding the
best split position is O(N) once all the values are kept sorted, a one-time
operation that takes O(N logN) time. The overall complexity of this method
is thus O(N logN), which is much smaller than the O(N2) time taken by the
brute-force method. The amount of computation can be further reduced by
considering only candidate split positions located between two adjacent sorted
instances with different class labels. For example, we do not need to consider
candidate split positions located between $60,000 and $75,000 because all three
instances with annual income in this range ($60,000, $70,000, and $75,000)
have the same class labels. Choosing a split position within this range only
increases the degree of impurity, compared to a split position located outside
this range. Therefore, the candidate split positions at τ = $65, 000 and τ =
$72, 500 can be ignored. Similarly, we do not need to consider the candidate
split positions at $87,500, $92,500, $110,000, $122,500, and $172,500 because
they are located between two adjacent instances with the same labels. This
strategy reduces the number of candidate split positions to consider from 9 to
2 (excluding the two boundary cases τ = $55, 000 and τ = $230, 000).

Gain Ratio

One potential limitation of impurity measures such as entropy and Gini index
is that they tend to favor qualitative attributes with large number of distinct
values. Figure 3.12 shows three candidate attributes for partitioning the data
set given in Table 3.3. As previously mentioned, the attribute Marital Status

is a better choice than the attribute Home Owner, because it provides a larger
information gain. However, if we compare them against Customer ID, the
latter produces the purest partitions with the maximum information gain,
since the weighted entropy and Gini index is equal to zero for its children.
Yet, Customer ID is not a good attribute for splitting because it has a unique
value for each instance. Even though a test condition involving Customer ID

will accurately classify every instance in the training data, we cannot use such
a test condition on new test instances with Customer ID values that haven’t
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been seen before during training. This example suggests having a low impurity
value alone is insufficient to find a good attribute test condition for a node. As
we will see later in Section 3.4, having more number of child nodes can make a
decision tree more complex and consequently more susceptible to overfitting.
Hence, the number of children produced by the splitting attribute should also
be taken into consideration while deciding the best attribute test condition.

There are two ways to overcome this problem. One way is to generate
only binary decision trees, thus avoiding the difficulty of handling attributes
with varying number of partitions. This strategy is employed by decision tree
classifiers such as CART. Another way is to modify the splitting criterion to
take into account the number of partitions produced by the attribute. For
example, in the C4.5 decision tree algorithm, a measure known as gain ratio
is used to compensate for attributes that produce a large number of child
nodes. This measure is computed as follows:

Gain ratio =
Δinfo

Split Info
=

Entropy(Parent)−∑k
i=1

N(vi)
N Entropy(vi)

−∑k
i=1

N(vi)
N log2

N(vi)
N

(3.9)

where N(vi) is the number of instances assigned to node vi and k is the total
number of splits. The split information measures the entropy of splitting a
node into its child nodes and evaluates if the split results in a larger number
of equally-sized child nodes or not. For example, if every partition has the
same number of instances, then ∀i : N(vi)/N = 1/k and the split information
would be equal to log2 k. Thus, if an attribute produces a large number of
splits, its split information is also large, which in turn, reduces the gain ratio.

Example 3.4. [Gain Ratio] Consider the data set given in Exercise 2 on
page 185. We want to select the best attribute test condition among the
following three attributes: Gender, Car Type, and Customer ID. The entropy
before splitting is

Entropy(parent) = −10

20
log2

10

20
− 10

20
log2

10

20
= 1.

If Gender is used as attribute test condition:

Entropy(children) =
10

20

[
− 6

10
log2

6

10
− 4

10
log2

4

10

]
× 2 = 0.971

Gain Ratio =
1− 0.971

−10
20 log2

10
20 − 10

20 log2
10
20

=
0.029

1
= 0.029
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If Car Type is used as attribute test condition:

Entropy(children) =
4

20

[
− 1

4
log2

1

4
− 3

4
log2

3

4

]
+

8

20
× 0

+
8

20

[
− 1

8
log2

1

8
− 7

8
log2

7

8

]
= 0.380

Gain Ratio =
1− 0.380

− 4
20 log2

4
20 − 8

20 log2
8
20 − 8

20 log2
8
20

=
0.620

1.52
= 0.41

Finally, if Customer ID is used as attribute test condition:

Entropy(children) =
1

20

[
− 1

1
log2

1

1
− 0

1
log2

0

1

]
× 20 = 0

Gain Ratio =
1− 0

− 1
20 log2

1
20 × 20

=
1

4.32
= 0.23

Thus, even though Customer ID has the highest information gain, its gain
ratio is lower than Car Type since it produces a larger number of splits.

3.3.4 Algorithm for Decision Tree Induction

Algorithm 3.1 presents a pseudocode for decision tree induction algorithm. The
input to this algorithm is a set of training instances E along with the attribute
set F . The algorithm works by recursively selecting the best attribute to split
the data (Step 7) and expanding the nodes of the tree (Steps 11 and 12)
until the stopping criterion is met (Step 1). The details of this algorithm are
explained below.

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree either has a test condition, denoted as
node.test cond, or a class label, denoted as node.label.

2. The find best split() function determines the attribute test condi-
tion for partitioning the training instances associated with a node. The
splitting attribute chosen depends on the impurity measure used. The
popular measures include entropy and the Gini index.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node t, let p(i|t) denote the fraction of training
instances from class i associated with the node t. The label assigned
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Algorithm 3.1 A skeleton decision tree induction algorithm.

TreeGrowth (E, F )
1: if stopping cond(E,F ) = true then
2: leaf = createNode().
3: leaf.label = Classify(E).
4: return leaf .
5: else
6: root = createNode().
7: root.test cond = find best split(E, F ).
8: let V = {v|v is a possible outcome of root.test cond }.
9: for each v ∈ V do

10: Ev = {e | root.test cond(e) = v and e ∈ E}.
11: child = TreeGrowth(Ev, F ).
12: add child as descendent of root and label the edge (root→ child) as v.
13: end for
14: end if
15: return root.

to the leaf node is typically the one that occurs most frequently in the
training instances that are associated with this node.

leaf.label = argmax
i

p(i|t), (3.10)

where the argmax operator returns the class i that maximizes p(i|t).
Besides providing the information needed to determine the class label of
a leaf node, p(i|t) can also be used as a rough estimate of the probability
that an instance assigned to the leaf node t belongs to class i. Sections
4.11.2 and 4.11.4 in the next chapter describe how such probability
estimates can be used to determine the performance of a decision tree
under different cost functions.

4. The stopping cond() function is used to terminate the tree-growing
process by checking whether all the instances have identical class label
or attribute values. Since decision tree classifiers employ a top-down,
recursive partitioning approach for building a model, the number of
training instances associated with a node decreases as the depth of the
tree increases. As a result, a leaf node may contain too few training
instances to make a statistically significant decision about its class label.
This is known as the data fragmentation problem. One way to avoid
this problem is to disallow splitting of a node when the number of
instances associated with the node fall below a certain threshold. A
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Session IP Address Timestamp Protocol Status Referrer User AgentNumber
of Bytes

Requested Web PageRequest
Method

08/Aug/2004
10:15:21

160.11.11.111 GET http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 6424 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:34

160.11.11.111 GET http://www.cs.umn.edu/
~kumar/MINDS

http://www.cs.umn.edu/
~kumar

http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 41378 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:41

160.11.11.111 GET

08/Aug/2004
10:16:11

160.11.11.111 GET

08/Aug/2004
10:16:15

35.9.2.22 GET

http://www.cs.umn.edu/
~kumar/MINDS/MINDS
_papers.htm
http://www.cs.umn.edu/
~kumar/papers/papers.
html
http://www.cs.umn.edu/
~steinbac

http://www.cs.umn.edu/
~kumar/MINDS

HTTP/1.1 200

HTTP/1.1 200

HTTP/1.0

Attribute Name Description

200

1018516

7463

3149

Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US;
rv:1.7) Gecko/20040616

(a) Example of a Web server log.

http://www.cs.umn.edu/~kumar

MINDS
papers/papers.html

MINDS/MINDS_papers.htm

(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

totalPages Total number of pages retrieved in a Web session
Total number of image pages retrieved in a Web session
Total amount of time spent by Web site visitor
The same page requested more than once in a Web session
Errors in requesting for Web pages

Breadth of Web traversal
Depth of Web traversal
Session with multiple IP addresses
Session with multiple user agents

Percentage of requests made using GET method
Percentage of requests made using POST method
Percentage of requests made using HEAD method

TotalTime
RepeatedAccess
ErrorRequest

Breadth
Depth
MultilP
MultiAgent

GET
POST
HEAD

ImagePages

Figure 3.15. Input data for web robot detection.

more systematic way to control the size of a decision tree (number of
leaf nodes) will be discussed in Section 3.5.4.

3.3.5 Example Application: Web Robot Detection

Consider the task of distinguishing the access patterns of web robots from
those generated by human users. A web robot (also known as a web crawler) is
a software program that automatically retrieves files from one or more websites
by following the hyperlinks extracted from an initial set of seed URLs. These
programs have been deployed for various purposes, from gathering web pages
on behalf of search engines to more malicious activities such as spamming and
committing click frauds in online advertisements.

The web robot detection problem can be cast as a binary classification
task. The input data for the classification task is a web server log, a sample
of which is shown in Figure 3.15(a). Each line in the log file corresponds to a
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request made by a client (i.e., a human user or a web robot) to the web server.
The fields recorded in the web log include the client’s IP address, timestamp of
the request, URL of the requested file, size of the file, and user agent, which
is a field that contains identifying information about the client. For human
users, the user agent field specifies the type of web browser or mobile device
used to fetch the files, whereas for web robots, it should technically contain
the name of the crawler program. However, web robots may conceal their true
identities by declaring their user agent fields to be identical to known browsers.
Therefore, user agent is not a reliable field to detect web robots.

The first step toward building a classification model is to precisely define a
data instance and associated attributes. A simple approach is to consider each
log entry as a data instance and use the appropriate fields in the log file as its
attribute set. This approach, however, is inadequate for several reasons. First,
many of the attributes are nominal-valued and have a wide range of domain
values. For example, the number of unique client IP addresses, URLs, and
referrers in a log file can be very large. These attributes are undesirable for
building a decision tree because their split information is extremely high (see
Equation (3.9)). In addition, it might not be possible to classify test instances
containing IP addresses, URLs, or referrers that are not present in the training
data. Finally, by considering each log entry as a separate data instance, we
disregard the sequence of web pages retrieved by the client—a critical piece
of information that can help distinguish web robot accesses from those of a
human user.

A better alternative is to consider each web session as a data instance.
A web session is a sequence of requests made by a client during a given
visit to the website. Each web session can be modeled as a directed graph,
in which the nodes correspond to web pages and the edges correspond to
hyperlinks connecting one web page to another. Figure 3.15(b) shows a graph-
ical representation of the first web session given in the log file. Every web
session can be characterized using some meaningful attributes about the graph
that contain discriminatory information. Figure 3.15(c) shows some of the
attributes extracted from the graph, including the depth and breadth of its
corresponding tree rooted at the entry point to the website. For example, the
depth and breadth of the tree shown in Figure 3.15(b) are both equal to two.

The derived attributes shown in Figure 3.15(c) are more informative than
the original attributes given in the log file because they characterize the
behavior of the client at the website. Using this approach, a data set containing
2916 instances was created, with equal numbers of sessions due to web robots
(class 1) and human users (class 0). 10% of the data were reserved for training
while the remaining 90% were used for testing. The induced decision tree is
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shown in Figure 3.16, which has an error rate equal to 3.8% on the training
set and 5.3% on the test set. In addition to its low error rate, the tree also
reveals some interesting properties that can help discriminate web robots from
human users:

1. Accesses by web robots tend to be broad but shallow, whereas accesses
by human users tend to be more focused (narrow but deep).

2. Web robots seldom retrieve the image pages associated with a web page.

3. Sessions due to web robots tend to be long and contain a large number
of requested pages.

4. Web robots are more likely to make repeated requests for the same web
page than human users since the web pages retrieved by human users
are often cached by the browser.

3.3.6 Characteristics of Decision Tree Classifiers

The following is a summary of the important characteristics of decision tree
induction algorithms.

1. Applicability:Decision trees are a nonparametric approach for building
classification models. This approach does not require any prior assump-
tion about the probability distribution governing the class and attributes
of the data, and thus, is applicable to a wide variety of data sets. It is also
applicable to both categorical and continuous data without requiring the
attributes to be transformed into a common representation via binariza-
tion, normalization, or standardization. Unlike some binary classifiers
described in Chapter 4, it can also deal with multiclass problems without
the need to decompose them into multiple binary classification tasks.
Another appealing feature of decision tree classifiers is that the induced
trees, especially the shorter ones, are relatively easy to interpret. The
accuracies of the trees are also quite comparable to other classification
techniques for many simple data sets.

2. Expressiveness: A decision tree provides a universal representation
for discrete-valued functions. In other words, it can encode any func-
tion of discrete-valued attributes. This is because every discrete-valued
function can be represented as an assignment table, where every unique
combination of discrete attributes is assigned a class label. Since every
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Decision Tree:
depth = 1:
|  breadth> 7 :   class 1
|  breadth<= 7:
|  |  breadth <= 3:
|  |  |  ImagePages> 0.375:   class 0
|  |  |  ImagePages<= 0.375:
|  |  |  |  totalPages<= 6:   class 1
|  |  |  |  totalPages> 6:
|  |  |  |  |  breadth <= 1:   class 1
|  |  |  |  |  breadth > 1:   class 0
|  |  width > 3:
|  |  |  MultilP = 0:
|  |  |  |  ImagePages<= 0.1333:   class 1
|  |  |  |  ImagePages> 0.1333:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:   class 1
|  |  |  MultilP = 1:
|  |  |  |  TotalTime <= 361:   class 0
|  |  |  |  TotalTime > 361:   class 1
depth> 1:
|  MultiAgent = 0:
|  |  depth > 2:   class 0
|  |  depth < 2:
|  |  |  MultilP = 1:   class 0
|  |  |  MultilP = 0:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:
|  |  |  |  |  RepeatedAccess <= 0.322:   class 0
|  |  |  |  |  RepeatedAccess > 0.322:   class 1
|  MultiAgent = 1:
|  |  totalPages <= 81:   class 0
|  |  totalPages > 81:   class 1

Figure 3.16. Decision tree model for web robot detection.

combination of attributes can be represented as a leaf in the decision
tree, we can always find a decision tree whose label assignments at the
leaf nodes matches with the assignment table of the original function.
Decision trees can also help in providing compact representations of
functions when some of the unique combinations of attributes can be
represented by the same leaf node. For example, Figure 3.17 shows the
assignment table of the Boolean function (A∧B)∨(C∧D) involving four
binary attributes, resulting in a total of 24 = 16 possible assignments.
The tree shown in Figure 3.17 shows a compressed encoding of this
assignment table. Instead of requiring a fully-grown tree with 16 leaf
nodes, it is possible to encode the function using a simpler tree with
only 7 leaf nodes. Nevertheless, not all decision trees for discrete-valued
attributes can be simplified. One notable example is the parity function,
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A

B

0

0

0

1

1

1C

0

0 1

0

D

1

10

C

0 1

D

0

0 1

1

A B C D class
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Figure 3.17. Decision tree for the Boolean function (A ∧B) ∨ (C ∧D).

whose value is 1 when there is an even number of true values among
its Boolean attributes, and 0 otherwise. Accurate modeling of such a
function requires a full decision tree with 2d nodes, where d is the number
of Boolean attributes (see Exercise 1 on page 185).

3. Computational Efficiency: Since the number of possible decision trees
can be very large, many decision tree algorithms employ a heuristic-
based approach to guide their search in the vast hypothesis space. For
example, the algorithm presented in Section 3.3.4 uses a greedy, top-
down, recursive partitioning strategy for growing a decision tree. For
many data sets, such techniques quickly construct a reasonably good
decision tree even when the training set size is very large. Furthermore,
once a decision tree has been built, classifying a test record is extremely
fast, with a worst-case complexity of O(w), where w is the maximum
depth of the tree.

4. Handling Missing Values: A decision tree classifier can handle miss-
ing attribute values in a number of ways, both in the training and the
test sets. When there are missing values in the test set, the classifier
must decide which branch to follow if the value of a splitting node
attribute is missing for a given test instance. One approach, known
as the probabilistic split method, which is employed by the C4.5
decision tree classifier, distributes the data instance to every child of the
splitting node according to the probability that the missing attribute has
a particular value. In contrast, the CART algorithm uses the surrogate
split method, where the instance whose splitting attribute value is
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Figure 3.18. Methods for handling missing attribute values in decision tree classifier.

missing is assigned to one of the child nodes based on the value of
another non-missing surrogate attribute whose splits most resemble the
partitions made by the missing attribute. Another approach, known as
the separate class method is used by the CHAID algorithm, where
the missing value is treated as a separate categorical value distinct from
other values of the splitting attribute. Figure 3.18 shows an example of
the three different ways for handling missing values in a decision tree
classifier. Other strategies for dealing with missing values are based on
data preprocessing, where the instance with missing value is either im-
puted with the mode (for categorical attribute) or mean (for continuous
attribute) value or discarded before the classifier is trained.

During training, if an attribute v has missing values in some of the
training instances associated with a node, we need a way to measure
the gain in purity if v is used for splitting. One simple way is to exclude
instances with missing values of v in the counting of instances associated
with every child node, generated for every possible outcome of v. Further,
if v is chosen as the attribute test condition at a node, training instances
with missing values of v can be propagated to the child nodes using
any of the methods described above for handling missing values in test
instances.

5. Handling Interactions among Attributes: Attributes are consid-
ered interacting if they are able to distinguish between classes when
used together, but individually they provide little or no information.
Due to the greedy nature of the splitting criteria in decision trees, such
attributes could be passed over in favor of other attributes that are not as
useful. This could result in more complex decision trees than necessary.
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Hence, decision trees can perform poorly when there are interactions
among attributes.

To illustrate this point, consider the three-dimensional data shown in
Figure 3.19(a), which contains 2000 data points from one of two classes,
denoted as + and ◦ in the diagram. Figure 3.19(b) shows the distribution
of the two classes in the two-dimensional space involving attributes X
and Y , which is a noisy version of the XOR Boolean function. We
can see that even though the two classes are well-separated in this
two-dimensional space, neither of the two attributes contain sufficient
information to distinguish between the two classes when used alone.
For example, the entropies of the following attribute test conditions:
X ≤ 10 and Y ≤ 10, are close to 1, indicating that neither X nor Y
provide any reduction in the impurity measure when used individually.
X and Y thus represent a case of interaction among attributes. The
data set also contains a third attribute, Z, in which both classes are
distributed uniformly, as shown in Figures 3.19(c) and 3.19(d), and
hence, the entropy of any split involving Z is close to 1. As a result,
Z is as likely to be chosen for splitting as the interacting but useful
attributes, X and Y . For further illustration of this issue, readers are
referred to Example 3.7 in Section 3.4.1 and Exercise 7 at the end of
this chapter.

6. Handling Irrelevant Attributes: An attribute is irrelevant if it is not
useful for the classification task. Since irrelevant attributes are poorly
associated with the target class labels, they will provide little or no gain
in purity and thus will be passed over by other more relevant features.
Hence, the presence of a small number of irrelevant attributes will not
impact the decision tree construction process. However, not all attributes
that provide little to no gain are irrelevant (see Figure 3.19). Hence, if
the classification problem is complex (e.g., involving interactions among
attributes) and there are a large number of irrelevant attributes, then
some of these attributes may be accidentally chosen during the tree-
growing process, since they may provide a better gain than a relevant
attribute just by random chance. Feature selection techniques can help
to improve the accuracy of decision trees by eliminating the irrelevant
attributes during preprocessing. We will investigate the issue of too many
irrelevant attributes in Section 3.4.1.

7. Handling Redundant Attributes: An attribute is redundant if it is
strongly correlated with another attribute in the data. Since redundant
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Figure 3.19. Example of a XOR data involving X and Y , along with an irrelevant attribute Z .

attributes show similar gains in purity if they are selected for splitting,
only one of them will be selected as an attribute test condition in the
decision tree algorithm. Decision trees can thus handle the presence of
redundant attributes.

8. Using Rectilinear Splits: The test conditions described so far in this
chapter involve using only a single attribute at a time. As a consequence,
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Figure 3.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

the tree-growing procedure can be viewed as the process of partitioning
the attribute space into disjoint regions until each region contains records
of the same class. The border between two neighboring regions of dif-
ferent classes is known as a decision boundary. Figure 3.20 shows the
decision tree as well as the decision boundary for a binary classifica-
tion problem. Since the test condition involves only a single attribute,
the decision boundaries are rectilinear; i.e., parallel to the coordinate
axes. This limits the expressiveness of decision trees in representing
decision boundaries of data sets with continuous attributes. Figure 3.21
shows a two-dimensional data set involving binary classes that cannot
be perfectly classified by a decision tree whose attribute test conditions
are defined based on single attributes. The binary classes in the data
set are generated from two skewed Gaussian distributions, centered at
(8,8) and (12,12), respectively. The true decision boundary is represented
by the diagonal dashed line, whereas the rectilinear decision boundary
produced by the decision tree classifier is shown by the thick solid line.
In contrast, an oblique decision tree may overcome this limitation by
allowing the test condition to be specified using more than one attribute.
For example, the binary classification data shown in Figure 3.21 can be
easily represented by an oblique decision tree with a single root node
with test condition

x+ y < 20.
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Figure 3.21. Example of data set that cannot be partitioned optimally using a decision tree with single
attribute test conditions. The true decision boundary is shown by the dashed line.

Although an oblique decision tree is more expressive and can produce
more compact trees, finding the optimal test condition is computation-
ally more expensive.

9. Choice of Impurity Measure: It should be noted that the choice of
impurity measure often has little effect on the performance of decision
tree classifiers since many of the impurity measures are quite consistent
with each other, as shown in Figure 3.11 on page 129. Instead, the
strategy used to prune the tree has a greater impact on the final tree
than the choice of impurity measure.

3.4 Model Overfitting

Methods presented so far try to learn classification models that show the
lowest error on the training set. However, as we will show in the following
example, even if a model fits well over the training data, it can still show poor
generalization performance, a phenomenon known as model overfitting.
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(b) Training set using 10% data.

Figure 3.22. Examples of training and test sets of a two-dimensional classification problem.
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(b) Varying tree size from 1 to 150.

Figure 3.23. Effect of varying tree size (number of leaf nodes) on training and test errors.

Example 3.5. [Overfitting and Underfitting of Decision Trees] Con-
sider the two-dimensional data set shown in Figure 3.22(a). The data set
contains instances that belong to two separate classes, represented as + and o,
respectively, where each class has 5400 instances. All instances belonging to
the o class were generated from a uniform distribution. For the + class, 5000
instances were generated from a Gaussian distribution centered at (10,10)
with unit variance, while the remaining 400 instances were sampled from the
same uniform distribution as the o class. We can see from Figure 3.22(a) that
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the + class can be largely distinguished from the o class by drawing a circle
of appropriate size centered at (10,10). To learn a classifier using this two-
dimensional data set, we randomly sampled 10% of the data for training and
used the remaining 90% for testing. The training set, shown in Figure 3.22(b),
looks quite representative of the overall data. We used Gini index as the
impurity measure to construct decision trees of increasing sizes (number of
leaf nodes), by recursively expanding a node into child nodes till every leaf
node was pure, as described in Section 3.3.4.

Figure 3.23(a) shows changes in the training and test error rates as the
size of the tree varies from 1 to 8. Both error rates are initially large when
the tree has only one or two leaf nodes. This situation is known as model
underfitting. Underfitting occurs when the learned decision tree is too sim-
plistic, and thus, incapable of fully representing the true relationship between
the attributes and the class labels. As we increase the tree size from 1 to 8, we
can observe two effects. First, both the error rates decrease since larger trees
are able to represent more complex decision boundaries. Second, the training
and test error rates are quite close to each other, which indicates that the
performance on the training set is fairly representative of the generalization
performance. As we further increase the size of the tree from 8 to 150, the
training error continues to steadily decrease till it eventually reaches zero, as
shown in Figure 3.23(b). However, in a striking contrast, the test error rate
ceases to decrease any further beyond a certain tree size, and then it begins
to increase. The training error rate thus grossly under-estimates the test error
rate once the tree becomes too large. Further, the gap between the training and
test error rates keeps on widening as we increase the tree size. This behavior,
which may seem counter-intuitive at first, can be attributed to the phenomena
of model overfitting.

3.4.1 Reasons for Model Overfitting

Model overfitting is the phenomena where, in the pursuit of minimizing the
training error rate, an overly complex model is selected that captures specific
patterns in the training data but fails to learn the true nature of relationships
between attributes and class labels in the overall data. To illustrate this, Figure
3.24 shows decision trees and their corresponding decision boundaries (shaded
rectangles represent regions assigned to the + class) for two trees of sizes
5 and 50. We can see that the decision tree of size 5 appears quite simple
and its decision boundaries provide a reasonable approximation to the ideal
decision boundary, which in this case corresponds to a circle centered around
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(d) Decision boundary for tree with
50 leaf nodes.

Figure 3.24. Decision trees with different model complexities.

the Gaussian distribution at (10, 10). Although its training and test error
rates are non-zero, they are very close to each other, which indicates that the
patterns learned in the training set should generalize well over the test set. On
the other hand, the decision tree of size 50 appears much more complex than
the tree of size 5, with complicated decision boundaries. For example, some of
its shaded rectangles (assigned the + class) attempt to cover narrow regions in
the input space that contain only one or two + training instances. Note that
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Figure 3.25. Performance of decision trees using 20% data for training (twice the original training size).

the prevalence of + instances in such regions is highly specific to the training
set, as these regions are mostly dominated by - instances in the overall data.
Hence, in an attempt to perfectly fit the training data, the decision tree of size
50 starts fine tuning itself to specific patterns in the training data, leading to
poor performance on an independently chosen test set.

There are a number of factors that influence model overfitting. In the
following, we provide brief descriptions of two of the major factors: limited
training size and high model complexity. Though they are not exhaustive, the
interplay between them can help explain most of the common model overfitting
phenomena in real-world applications.

Limited Training Size

Note that a training set consisting of a finite number of instances can only
provide a limited representation of the overall data. Hence, it is possible that
the patterns learned from a training set do not fully represent the true patterns
in the overall data, leading to model overfitting. In general, as we increase the
size of a training set (number of training instances), the patterns learned from
the training set start resembling the true patterns in the overall data. Hence,
the effect of overfitting can be reduced by increasing the training size, as
illustrated in the following example.
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Example 3.6. [Effect of Training Size] Suppose that we use twice the
number of training instances than what we had used in the experiments
conducted in Example 3.5. Specifically, we use 20% data for training and use
the remainder for testing. Figure 3.25(b) shows the training and test error rates
as the size of the tree is varied from 1 to 150. There are two major differences
in the trends shown in this figure and those shown in Figure 3.23(b) (using
only 10% of the data for training). First, even though the training error rate
decreases with increasing tree size in both figures, its rate of decrease is much
smaller when we use twice the training size. Second, for a given tree size, the
gap between the training and test error rates is much smaller when we use
twice the training size. These differences suggest that the patterns learned
using 20% of data for training are more generalizable than those learned using
10% of data for training.

Figure 3.25(a) shows the decision boundaries for the tree of size 50, learned
using 20% of data for training. In contrast to the tree of the same size learned
using 10% data for training (see Figure 3.24(d)), we can see that the decision
tree is not capturing specific patterns of noisy + instances in the training set.
Instead, the high model complexity of 50 leaf nodes is being effectively used
to learn the boundaries of the + instances centered at (10, 10).

High Model Complexity

Generally, a more complex model has a better ability to represent complex
patterns in the data. For example, decision trees with larger number of leaf
nodes can represent more complex decision boundaries than decision trees
with fewer leaf nodes. However, an overly complex model also has a tendency
to learn specific patterns in the training set that do not generalize well over
unseen instances. Models with high complexity should thus be judiciously used
to avoid overfitting.

One measure of model complexity is the number of “parameters” that
need to be inferred from the training set. For example, in the case of decision
tree induction, the attribute test conditions at internal nodes correspond to
the parameters of the model that need to be inferred from the training set. A
decision tree with larger number of attribute test conditions (and consequently
more leaf nodes) thus involves more “parameters” and hence is more complex.

Given a class of models with a certain number of parameters, a learning
algorithm attempts to select the best combination of parameter values that
maximizes an evaluation metric (e.g., accuracy) over the training set. If the
number of parameter value combinations (and hence the complexity) is large,
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the learning algorithm has to select the best combination from a large number
of possibilities, using a limited training set. In such cases, there is a high chance
for the learning algorithm to pick a spurious combination of parameters that
maximizes the evaluation metric just by random chance. This is similar to the
multiple comparisons problem (also referred as multiple testing problem)
in statistics.

As an illustration of the multiple comparisons problem, consider the task
of predicting whether the stock market will rise or fall in the next ten trading
days. If a stock analyst simply makes random guesses, the probability that
her prediction is correct on any trading day is 0.5. However, the probability
that she will predict correctly at least nine out of ten times is(

10
9

)
+
(
10
10

)
210

= 0.0107,

which is extremely low.
Suppose we are interested in choosing an investment advisor from a pool of

200 stock analysts. Our strategy is to select the analyst who makes the most
number of correct predictions in the next ten trading days. The flaw in this
strategy is that even if all the analysts make their predictions in a random
fashion, the probability that at least one of them makes at least nine correct
predictions is

1− (1− 0.0107)200 = 0.8847,

which is very high. Although each analyst has a low probability of predicting
at least nine times correctly, considered together, we have a high probability
of finding at least one analyst who can do so. However, there is no guarantee
in the future that such an analyst will continue to make accurate predictions
by random guessing.

How does the multiple comparisons problem relate to model overfitting? In
the context of learning a classification model, each combination of parameter
values corresponds to an analyst, while the number of training instances
corresponds to the number of days. Analogous to the task of selecting the best
analyst who makes the most accurate predictions on consecutive days, the task
of a learning algorithm is to select the best combination of parameters that
results in the highest accuracy on the training set. If the number of parameter
combinations is large but the training size is small, it is highly likely for the
learning algorithm to choose a spurious parameter combination that provides
high training accuracy just by random chance. In the following example, we
illustrate the phenomena of overfitting due to multiple comparisons in the
context of decision tree induction.
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Figure 3.26. Example of a two-dimensional (X-Y) data set.
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(b) After adding 100 irrelevant at-
tributes.

Figure 3.27. Training and test error rates illustrating the effect of multiple comparisons problem on
model overfitting.

Example 3.7. [Multiple Comparisons and Overfitting] Consider the
two-dimensional data set shown in Figure 3.26 containing 500 + and 500 o

instances, which is similar to the data shown in Figure 3.19. In this data set,
the distributions of both classes are well-separated in the two-dimensional (X-
Y) attribute space, but none of the two attributes (X or Y) are sufficiently
informative to be used alone for separating the two classes. Hence, splitting
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Figure 3.28. Decision tree with 6 leaf nodes using X and Y as attributes. Splits have been numbered
from 1 to 5 in order of other occurrence in the tree.

the data set based on any value of an X or Y attribute will provide close to
zero reduction in an impurity measure. However, if X and Y attributes are
used together in the splitting criterion (e.g., splitting X at 10 and Y at 10),
the two classes can be effectively separated.

Figure 3.27(a) shows the training and test error rates for learning decision
trees of varying sizes, when 30% of the data is used for training and the remain-
der of the data for testing. We can see that the two classes can be separated
using a small number of leaf nodes. Figure 3.28 shows the decision boundaries
for the tree with six leaf nodes, where the splits have been numbered according
to their order of appearance in the tree. Note that the even though splits 1
and 3 provide trivial gains, their consequent splits (2, 4, and 5) provide large
gains, resulting in effective discrimination of the two classes.

Assume we add 100 irrelevant attributes to the two-dimensional X-Y data.
Learning a decision tree from this resultant data will be challenging because
the number of candidate attributes to choose for splitting at every internal
node will increase from two to 102. With such a large number of candidate
attribute test conditions to choose from, it is quite likely that spurious at-
tribute test conditions will be selected at internal nodes because of the multiple
comparisons problem. Figure 3.27(b) shows the training and test error rates
after adding 100 irrelevant attributes to the training set. We can see that the
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test error rate remains close to 0.5 even after using 50 leaf nodes, while the
training error rate keeps on declining and eventually becomes 0.

3.5 Model Selection

There are many possible classification models with varying levels of model
complexity that can be used to capture patterns in the training data. Among
these possibilities, we want to select the model that shows lowest generalization
error rate. The process of selecting a model with the right level of complexity,
which is expected to generalize well over unseen test instances, is known as
model selection. As described in the previous section, the training error
rate cannot be reliably used as the sole criterion for model selection. In the
following, we present three generic approaches to estimate the generalization
performance of a model that can be used for model selection. We conclude
this section by presenting specific strategies for using these approaches in the
context of decision tree induction.

3.5.1 Using a Validation Set

Note that we can always estimate the generalization error rate of a model by
using “out-of-sample” estimates, i.e. by evaluating the model on a separate
validation set that is not used for training the model. The error rate on
the validation set, termed as the validation error rate, is a better indicator of
generalization performance than the training error rate, since the validation
set has not been used for training the model. The validation error rate can be
used for model selection as follows.

Given a training set D.train, we can partition D.train into two smaller
subsets, D.tr and D.val, such that D.tr is used for training while D.val is used
as the validation set. For example, two-thirds of D.train can be reserved as
D.tr for training, while the remaining one-third is used as D.val for computing
validation error rate. For any choice of classification model m that is trained
on D.tr, we can estimate its validation error rate on D.val, errval(m). The
model that shows the lowest value of errval(m) can then be selected as the
preferred choice of model.

The use of validation set provides a generic approach for model selection.
However, one limitation of this approach is that it is sensitive to the sizes of
D.tr and D.val, obtained by partitioning D.train. If the size of D.tr is too
small, it may result in the learning of a poor classification model with sub-
standard performance, since a smaller training set will be less representative
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Figure 3.29. Class distribution of validation data for the two decision trees shown in Figure 3.30.

of the overall data. On the other hand, if the size of D.val is too small, the
validation error rate might not be reliable for selecting models, as it would be
computed over a small number of instances.

Example 3.8. [Validation Error] In the following example, we illustrate
one possible approach for using a validation set in decision tree induction.
Figure 3.29 shows the predicted labels at the leaf nodes of the decision trees
generated in Figure 3.30. The counts given beneath the leaf nodes represent
the proportion of data instances in the validation set that reach each of the
nodes. Based on the predicted labels of the nodes, the validation error rate
for the left tree is errval(TL) = 6/16 = 0.375, while the validation error rate
for the right tree is errval(TR) = 4/16 = 0.25. Based on their validation error
rates, the right tree is preferred over the left one.

3.5.2 Incorporating Model Complexity

Since the chance for model overfitting increases as the model becomes more
complex, a model selection approach should not only consider the training
error rate but also the model complexity. This strategy is inspired by a well-
known principle known as Occam’s razor or the principle of parsimony,
which suggests that given two models with the same errors, the simpler model
is preferred over the more complex model. A generic approach to account
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for model complexity while estimating generalization performance is formally
described as follows.

Given a training set D.train, let us consider learning a classification model
m that belongs to a certain class of models, M. For example, if M represents
the set of all possible decision trees, then m can correspond to a specific deci-
sion tree learned from the training set. We are interested in estimating the gen-
eralization error rate ofm, gen.error(m). As discussed previously, the training
error rate of m, train.error(m,D.train), can under-estimate gen.error(m)
when the model complexity is high. Hence, we represent gen.error(m) as a
function of not just the training error rate but also the model complexity of
M, complexity(M), as follows:

gen.error(m) = train.error(m,D.train) + α× complexity(M), (3.11)

where α is a hyper-parameter that strikes a balance between minimizing
training error and reducing model complexity. A higher value of α gives
more emphasis to the model complexity in the estimation of generalization
performance. To choose the right value of α, we can make use of the validation
set in a similar way as described in 3.5.1. For example, we can iterate through
a range of values of α and for every possible value, we can learn a model on
a subset of the training set, D.tr, and compute its validation error rate on a
separate subset, D.val. We can then select the value of α that provides the
lowest validation error rate.

Equation 3.11 provides one possible approach for incorporating model com-
plexity into the estimate of generalization performance. This approach is at
the heart of a number of techniques for estimating generalization performance,
such as the structural risk minimization principle, the Akaike’s Information
Criterion (AIC), and the Bayesian Information Criterion (BIC). The structural
risk minimization principle serves as the building block for learning support
vector machines, which will be discussed later in Chapter 4. For more details
on AIC and BIC, see the Bibliographic Notes.

In the following, we present two different approaches for estimating the
complexity of a model, complexity(M). While the former is specific to decision
trees, the latter is more generic and can be used with any class of models.

Estimating the Complexity of Decision Trees

In the context of decision trees, the complexity of a decision tree can be
estimated as the ratio of the number of leaf nodes to the number of training
instances. Let k be the number of leaf nodes and Ntrain be the number of
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training instances. The complexity of a decision tree can then be described
as k/Ntrain. This reflects the intuition that for a larger training size, we can
learn a decision tree with larger number of leaf nodes without it becoming
overly complex. The generalization error rate of a decision tree T can then be
computed using Equation 3.11 as follows:

errgen(T ) = err(T ) + Ω× k

Ntrain
,

where err(T ) is the training error of the decision tree and Ω is a hyper-
parameter that makes a trade-off between reducing training error and min-
imizing model complexity, similar to the use of α in Equation 3.11. Ω can
be viewed as the relative cost of adding a leaf node relative to incurring a
training error. In the literature on decision tree induction, the above approach
for estimating generalization error rate is also termed as the pessimistic
error estimate. It is called pessimistic as it assumes the generalization error
rate to be worse than the training error rate (by adding a penalty term for
model complexity). On the other hand, simply using the training error rate
as an estimate of the generalization error rate is called the optimistic error
estimate or the resubstitution estimate.

Example 3.9. [Generalization Error Estimates] Consider the two binary
decision trees, TL and TR, shown in Figure 3.30. Both trees are generated from
the same training data and TL is generated by expanding three leaf nodes
of TR. The counts shown in the leaf nodes of the trees represent the class
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Decision Tree, TL Decision Tree, TR

Figure 3.30. Example of two decision trees generated from the same training data.
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distribution of the training instances. If each leaf node is labeled according
to the majority class of training instances that reach the node, the training
error rate for the left tree will be err(TL) = 4/24 = 0.167, while the training
error rate for the right tree will be err(TR) = 6/24 = 0.25. Based on their
training error rates alone, TL would preferred over TR, even though TL is more
complex (contains larger number of leaf nodes) than TR.

Now, assume that the cost associated with each leaf node is Ω = 0.5. Then,
the generalization error estimate for TL will be

errgen(TL) =
4

24
+ 0.5× 7

24
=

7.5

24
= 0.3125

and the generalization error estimate for TR will be

errgen(TR) =
6

24
+ 0.5× 4

24
=

8

24
= 0.3333.

Since TL has a lower generalization error rate, it will still be preferred over TR.
Note that Ω = 0.5 implies that a node should always be expanded into its two
child nodes if it improves the prediction of at least one training instance, since
expanding a node is less costly than misclassifying a training instance. On the
other hand, if Ω = 1, then the generalization error rate for TL is errgen(TL) =
11/24 = 0.458 and for TR is errgen(TR) = 10/24 = 0.417. In this case, TR
will be preferred over TL because it has a lower generalization error rate.
This example illustrates that different choices of Ω can change our preference
of decision trees based on their generalization error estimates. However, for
a given choice of Ω, the pessimistic error estimate provides an approach for
modeling the generalization performance on unseen test instances. The value
of Ω can be selected with the help of a validation set.

Minimum Description Length Principle

Another way to incorporate model complexity is based on an information-
theoretic approach known as the minimum description length or MDL prin-
ciple. To illustrate this approach, consider the example shown in Figure 3.31.
In this example, both person A and person B are given a set of instances
with known attribute values x. Assume person A knows the class label y for
every instance, while person B has no such information. A would like to share
the class information with B by sending a message containing the labels. The
message would contain Θ(N) bits of information, where N is the number of
instances.
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Figure 3.31. An illustration of the minimum description length principle.

Alternatively, instead of sending the class labels explicitly, A can build
a classification model from the instances and transmit it to B. B can then
apply the model to determine the class labels of the instances. If the model is
100% accurate, then the cost for transmission is equal to the number of bits
required to encode the model. Otherwise, A must also transmit information
about which instances are misclassified by the model so that B can reproduce
the same class labels. Thus, the overall transmission cost, which is equal to
the total description length of the message, is

Cost(model, data) = Cost(data|model) + α× Cost(model), (3.12)

where the first term on the right-hand side is the number of bits needed
to encode the misclassified instances, while the second term is the number
of bits required to encode the model. There is also a hyper-parameter α
that trades-off the relative costs of the misclassified instances and the model.
Notice the familiarity between this equation and the generic equation for
generalization error rate presented in Equation 3.11. A good model must have
a total description length less than the number of bits required to encode the
entire sequence of class labels. Furthermore, given two competing models, the
model with lower total description length is preferred. An example showing
how to compute the total description length of a decision tree is given in
Exercise 10 on page 189.
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3.5.3 Estimating Statistical Bounds

Instead of using Equation 3.11 to estimate the generalization error rate of a
model, an alternative way is to apply a statistical correction to the training
error rate of the model that is indicative of its model complexity. This can
be done if the probability distribution of training error is available or can be
assumed. For example, the number of errors committed by a leaf node in a
decision tree can be assumed to follow a binomial distribution. We can thus
compute an upper bound limit to the observed training error rate that can be
used for model selection, as illustrated in the following example.

Example 3.10. [Statistical Bounds on Training Error] Consider the
left-most branch of the binary decision trees shown in Figure 3.30. Observe
that the left-most leaf node of TR has been expanded into two child nodes
in TL. Before splitting, the training error rate of the node is 2/7 = 0.286.
By approximating a binomial distribution with a normal distribution, the
following upper bound of the training error rate e can be derived:

eupper(N, e, α) =
e+

z2
α/2

2N + zα/2

√
e(1−e)

N +
z2
α/2

4N2

1 +
z2
α/2

N

, (3.13)

where α is the confidence level, zα/2 is the standardized value from a standard
normal distribution, and N is the total number of training instances used to
compute e. By replacing α = 25%, N = 7, and e = 2/7, the upper bound for
the error rate is eupper(7, 2/7, 0.25) = 0.503, which corresponds to 7× 0.503 =
3.521 errors. If we expand the node into its child nodes as shown in TL, the
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333,
respectively. Using Equation (3.13), the upper bounds of these error rates are
eupper(4, 1/4, 0.25) = 0.537 and eupper(3, 1/3, 0.25) = 0.650, respectively. The
overall training error of the child nodes is 4×0.537+3×0.650 = 4.098, which
is larger than the estimated error for the corresponding node in TR, suggesting
that it should not be split.

3.5.4 Model Selection for Decision Trees

Building on the generic approaches presented above, we present two commonly
used model selection strategies for decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing
algorithm is halted before generating a fully grown tree that perfectly fits
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the entire training data. To do this, a more restrictive stopping condition
must be used; e.g., stop expanding a leaf node when the observed gain in the
generalization error estimate falls below a certain threshold. This estimate of
the generalization error rate can be computed using any of the approaches
presented in the preceding three subsections, e.g., by using pessimistic error
estimates, by using validation error estimates, or by using statistical bounds.
The advantage of prepruning is that it avoids the computations associated with
generating overly complex subtrees that overfit the training data. However, one
major drawback of this method is that, even if no significant gain is obtained
using one of the existing splitting criterion, subsequent splitting may result
in better subtrees. Such subtrees would not be reached if prepruning is used
because of the greedy nature of decision tree induction.

Post-pruning In this approach, the decision tree is initially grown to its
maximum size. This is followed by a tree-pruning step, which proceeds to trim
the fully grown tree in a bottom-up fashion. Trimming can be done by replac-
ing a subtree with (1) a new leaf node whose class label is determined from
the majority class of instances affiliated with the subtree (approach known as
subtree replacement), or (2) the most frequently used branch of the subtree
(approach known as subtree raising). The tree-pruning step terminates
when no further improvement in the generalization error estimate is observed
beyond a certain threshold. Again, the estimates of generalization error rate
can be computed using any of the approaches presented in the previous three
subsections. Post-pruning tends to give better results than prepruning because
it makes pruning decisions based on a fully grown tree, unlike prepruning,
which can suffer from premature termination of the tree-growing process.
However, for post-pruning, the additional computations needed to grow the
full tree may be wasted when the subtree is pruned.

Figure 3.32 illustrates the simplified decision tree model for the web robot
detection example given in Section 3.3.5. Notice that the subtree rooted at
depth = 1 has been replaced by one of its branches corresponding to breadth

<= 7, width > 3, and MultiP = 1, using subtree raising. On the other hand,
the subtree corresponding to depth > 1 and MultiAgent = 0 has been replaced
by a leaf node assigned to class 0, using subtree replacement. The subtree for
depth > 1 and MultiAgent = 1 remains intact.
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Decision Tree:

Simplified Decision Tree:

Subtree
Replacement

Subtree
Raising

depth = 1:
|  breadth> 7 :   class 1
|  breadth<= 7:
|  |  breadth <= 3:
|  |  |  ImagePages> 0.375:   class 0
|  |  |  ImagePages<= 0.375:
|  |  |  |  totalPages<= 6:   class 1
|  |  |  |  totalPages> 6:
|  |  |  |  |  breadth <= 1:   class 1
|  |  |  |  |  breadth > 1:   class 0
|  |  width > 3:
|  |  |  MultilP = 0:
|  |  |  |  ImagePages<= 0.1333:   class 1
|  |  |  |  ImagePages> 0.1333:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:   class 1
|  |  |  MultilP = 1:
|  |  |  |  TotalTime <= 361:   class 0
|  |  |  |  TotalTime > 361:   class 1
depth> 1:
|  MultiAgent = 0:
|  |  depth > 2:   class 0
|  |  depth <= 2:
|  |  |  MultilP = 1:   class 0
|  |  |  MultilP = 0:
|  |  |  |  breadth <= 6:   class 0
|  |  |  |  breadth > 6:
|  |  |  |  |  RepeatedAccess <= 0.322:   class 0
|  |  |  |  |  RepeatedAccess > 0.322:   class 1
|  MultiAgent = 1:
|  |  totalPages <= 81:   class 0
|  |  totalPages > 81:   class 1

depth = 1:
|  ImagePages <= 0.1333:   class 1
|  ImagePages > 0.1333:
|  |  breadth <= 6:   class 0
|  |  breadth > 6:   class 1
depth > 1:
|  MultiAgent = 0:   class 0
|  MultiAgent = 1:
|  |  totalPages <= 81:   class 0
|  |  totalPages > 81:   class 1

Figure 3.32. Post-pruning of the decision tree for web robot detection.

3.6 Model Evaluation

The previous section discussed several approaches for model selection that
can be used to learn a classification model from a training set D.train. Here
we discuss methods for estimating its generalization performance, i.e. its per-
formance on unseen instances outside of D.train. This process is known as
model evaluation.

Note that model selection approaches discussed in Section 3.5 also compute
an estimate of the generalization performance using the training set D.train.
However, these estimates are biased indicators of the performance on unseen
instances, since they were used to guide the selection of classification model.
For example, if we use the validation error rate for model selection (as de-
scribed in Section 3.5.1), the resulting model would be deliberately chosen to
minimize the errors on the validation set. The validation error rate may thus
under-estimate the true generalization error rate, and hence cannot be reliably
used for model evaluation.
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A correct approach for model evaluation would be to assess the perfor-
mance of a learned model on a labeled test set has not been used at any
stage of model selection. This can be achieved by partitioning the entire set
of labeled instances D, into two disjoint subsets, D.train, which is used for
model selection and D.test, which is used for computing the test error rate,
errtest. In the following, we present two different approaches for partitioning
D into D.train and D.test, and computing the test error rate, errtest.

3.6.1 Holdout Method

The most basic technique for partitioning a labeled data set is the holdout
method, where the labeled set D is randomly partitioned into two disjoint
sets, called the training set D.train and the test set D.test. A classification
model is then induced from D.train using the model selection approaches
presented in Section 3.5, and its error rate on D.test, errtest, is used as an
estimate of the generalization error rate. The proportion of data reserved for
training and for testing is typically at the discretion of the analysts, e.g.,
two-thirds for training and one-third for testing.

Similar to the trade-off faced while partitioning D.train into D.tr and
D.val in Section 3.5.1, choosing the right fraction of labeled data to be used
for training and testing is non-trivial. If the size of D.train is small, the
learned classification model may be improperly learned using an insufficient
number of training instances, resulting in a biased estimation of generalization
performance. On the other hand, if the size of D.test is small, errtest may be
less reliable as it would be computed over a small number of test instances.
Moreover, errtest can have a high variance as we change the random parti-
tioning of D into D.train and D.test.

The holdout method can be repeated several times to obtain a distribution
of the test error rates, an approach known as random subsampling or
repeated holdout method. This method produces a distribution of the error
rates that can be used to understand the variance of errtest.

3.6.2 Cross-Validation

Cross-validation is a widely-used model evaluation method that aims to make
effective use of all labeled instances in D for both training and testing. To
illustrate this method, suppose that we are given a labeled set that we have
randomly partitioned into three equal-sized subsets, S1, S2, and S3, as shown
in Figure 3.33. For the first run, we train a model using subsets S2 and S3
(shown as empty blocks) and test the model on subset S1. The test error rate
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Figure 3.33. Example demonstrating the technique of 3-fold cross-validation.

on S1, denoted as err(S1), is thus computed in the first run. Similarly, for
the second run, we use S1 and S3 as the training set and S2 as the test set,
to compute the test error rate, err(S2), on S2. Finally, we use S1 and S3 for
training in the third run, while S3 is used for testing, thus resulting in the test
error rate err(S3) for S3. The overall test error rate is obtained by summing
up the number of errors committed in each test subset across all runs and
dividing it by the total number of instances. This approach is called three-fold
cross-validation.

The k-fold cross-validation method generalizes this approach by segment-
ing the labeled data D (of size N) into k equal-sized partitions (or folds).
During the ith run, one of the partitions of D is chosen as D.test(i) for testing,
while the rest of the partitions are used as D.train(i) for training. A model
m(i) is learned using D.train(i) and applied on D.test(i) to obtain the sum
of test errors, errsum(i). This procedure is repeated k times. The total test
error rate, errtest, is then computed as

errtest =

∑k
i=1 errsum(i)

N
. (3.14)

Every instance in the data is thus used for testing exactly once and for training
exactly (k − 1) times. Also, every run uses (k − 1)/k fraction of the data for
training and 1/k fraction for testing.

The right choice of k in k-fold cross-validation depends on a number of
characteristics of the problem. A small value of k will result in a smaller
training set at every run, which will result in a larger estimate of generalization
error rate than what is expected of a model trained over the entire labeled
set. On the other hand, a high value of k results in a larger training set at
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every run, which reduces the bias in the estimate of generalization error rate.
In the extreme case, when k = N , every run uses exactly one data instance for
testing and the remainder of the data for testing. This special case of k-fold
cross-validation is called the leave-one-out approach. This approach has the
advantage of utilizing as much data as possible for training. However, leave-
one-out can produce quite misleading results in some special scenarios, as
illustrated in Exercise 11. Furthermore, leave-one-out can be computationally
expensive for large data sets as the cross-validation procedure needs to be
repeated N times. For most practical applications, the choice of k between 5
and 10 provides a reasonable approach for estimating the generalization error
rate, because each fold is able to make use of 80% to 90% of the labeled data
for training.

The k-fold cross-validation method, as described above, produces a single
estimate of the generalization error rate, without providing any information
about the variance of the estimate. To obtain this information, we can run
k-fold cross-validation for every possible partitioning of the data into k par-
titions, and obtain a distribution of test error rates computed for every such
partitioning. The average test error rate across all possible partitionings serves
as a more robust estimate of generalization error rate. This approach of
estimating the generalization error rate and its variance is known as the
complete cross-validation approach. Even though such an estimate is quite
robust, it is usually too expensive to consider all possible partitionings of a
large data set into k partitions. A more practical solution is to repeat the cross-
validation approach multiple times, using a different random partitioning of
the data into k partitions at every time, and use the average test error rate
as the estimate of generalization error rate. Note that since there is only
one possible partitioning for the leave-one-out approach, it is not possible to
estimate the variance of generalization error rate, which is another limitation
of this method.

The k-fold cross-validation does not guarantee that the fraction of positive
and negative instances in every partition of the data is equal to the fraction
observed in the overall data. A simple solution to this problem is to perform
a stratified sampling of the positive and negative instances into k partitions,
an approach called stratified cross-validation.

In k-fold cross-validation, a different model is learned at every run and
the performance of every one of the k models on their respective test folds
is then aggregated to compute the overall test error rate, errtest. Hence,
errtest does not reflect the generalization error rate of any of the k models.
Instead, it reflects the expected generalization error rate of the model selection
approach, when applied on a training set of the same size as one of the training
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folds (N(k− 1)/k). This is different than the errtest computed in the holdout
method, which exactly corresponds to the specific model learned over D.train.
Hence, although effectively utilizing every data instance in D for training and
testing, the errtest computed in the cross-validation method does not represent
the performance of a single model learned over a specific D.train.

Nonetheless, in practice, errtest is typically used as an estimate of the
generalization error of a model built on D. One motivation for this is that
when the size of the training folds is closer to the size of the overall data
(when k is large), then errtest resembles the expected performance of a model
learned over a data set of the same size as D. For example, when k is 10, every
training fold is 90% of the overall data. The errtest then should approach the
expected performance of a model learned over 90% of the overall data, which
will be close to the expected performance of a model learned over D.

3.7 Presence of Hyper-parameters

Hyper-parameters are parameters of learning algorithms that need to be de-
termined before learning the classification model. For instance, consider the
hyper-parameter α that appeared in Equation 3.11, which is repeated here for
convenience. This equation was used for estimating the generalization error
for a model selection approach that used an explicit representations of model
complexity. (See Section 3.5.2.)

gen.error(m) = train.error(m,D.train) + α× complexity(M)

For other examples of hyper-parameters, see Chapter 4.
Unlike regular model parameters, such as the test conditions in the internal

nodes of a decision tree, hyper-parameters such as α do not appear in the final
classification model that is used to classify unlabeled instances. However, the
values of hyper-parameters need to be determined during model selection—
a process known as hyper-parameter selection—and must be taken into
account during model evaluation. Fortunately, both tasks can be effectively ac-
complished via slight modifications of the cross-validation approach described
in the previous section.

3.7.1 Hyper-parameter Selection

In Section 3.5.2, a validation set was used to select α and this approach is
generally applicable for hyper-parameter section. Let p be the hyper-parameter
that needs to be selected from a finite range of values, P = {p1, p2, . . . pn}.
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Partition D.train into D.tr and D.val. For every choice of hyper-parameter
value pi, we can learn a model mi on D.tr, and apply this model on D.val
to obtain the validation error rate errval(pi). Let p

∗ be the hyper-parameter
value that provides the lowest validation error rate. We can then use the model
m∗ corresponding to p∗ as the final choice of classification model.

The above approach, although useful, uses only a subset of the data,
D.train, for training and a subset, D.val, for validation. The framework of
cross-validation, presented in Section 3.6.2, addresses both of those issues,
albeit in the context of model evaluation. Here we indicate how to use a cross-
validation approach for hyper-parameter selection. To illustrate this approach,
let us partition D.train into three folds as shown in Figure 3.34. At every run,
one of the folds is used as D.val for validation, and the remaining two folds are
used as D.tr for learning a model, for every choice of hyper-parameter value
pi. The overall validation error rate corresponding to each pi is computed
by summing the errors across all the three folds. We then select the hyper-
parameter value p∗ that provides the lowest validation error rate, and use it
to learn a model m∗ on the entire training set D.train.

Figure 3.34. Example demonstrating the 3-fold cross-validation framework for hyper-parameter
selection using D.train.

Algorithm 3.2 generalizes the above approach using a k-fold cross-validation
framework for hyper-parameter selection. At the ith run of cross-validation,
the data in the ith fold is used as D.val(i) for validation (Step 4), while the
remainder of the data in D.train is used as D.tr(i) for training (Step 5). Then
for every choice of hyper-parameter value pi, a model is learned on D.tr(i)
(Step 7), which is applied on D.val(i) to compute its validation error (Step
8). This is used to compute the validation error rate corresponding to models
learning using pi over all the folds (Step 11). The hyper-parameter value p∗

that provides the lowest validation error rate (Step 12) is now used to learn
the final model m∗ on the entire training set D.train (Step 13). Hence, at the
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Algorithm 3.2 Procedure model-select(k, P, D.train)

1: Ntrain = |D.train| {Size of D.train.}
2: Divide D.train into k partitions, D.train1 to D.traink.
3: for each run i = 1 to k do
4: D.val(i) = D.traini. {Partition used for validation.}
5: D.tr(i) = D.train \D.traini. {Partitions used for training.}
6: for each parameter p ∈ P do
7: m = model-train(p, D.tr(i)). {Train model}
8: errsum(p, i) = model-test(m, D.val(i)). {Sum of validation errors.}
9: end for

10: end for
11: errval(p) =

∑k
i errsum(p, i)/Ntrain. {Compute validation error rate.}

12: p∗ = argminp errval(p). {Select best hyper-parameter value.}
13: m∗ = model-train(p∗, D.train). {Learn final model on D.train}
14: return (p∗, m∗).

end of this algorithm, we obtain the best choice of the hyper-parameter value
as well as the final classification model (Step 14), both of which are obtained
by making an effective use of every data instance in D.train.

3.7.2 Nested Cross-Validation

The approach of the previous section provides a way to effectively use all the
instances in D.train to learn a classification model when hyper-parameter
selection is required. This approach can be applied over the entire data set D
to learn the final classification model. However, applying Algorithm 3.2 on D
would only return the final classification model m∗ but not an estimate of its
generalization performance, errtest. Recall that the validation error rates used
in Algorithm 3.2 cannot be used as estimates of generalization performance,
since they are used to guide the selection of the final model m∗. However, to
compute errtest, we can again use a cross-validation framework for evaluating
the performance on the entire data set D, as described originally in Section
3.6.2. In this approach, D is partitioned into D.train (for training) and D.test
(for testing) at every run of cross-validation. When hyper-parameters are
involved, we can use Algorithm 3.2 to train a model using D.train at every
run, thus “internally” using cross-validation for model selection. This approach
is called nested cross-validation or double cross-validation. Algorithm 3.3
describes the complete approach for estimating errtest using nested cross-
validation in the presence of hyper-parameters.

As an illustration of this approach, see Figure 3.35 where the labeled set D
is partitioned into D.train and D.test, using a 3-fold cross-validation method.
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D.test(i)

D.val(i,1)

D.val(i,2)

Figure 3.35. Example demonstrating 3-fold nested cross-validation for computing errtest.

At the ith run of this method, one of the folds is used as the test set, D.test(i),
while the remaining two folds are used as the training set, D.train(i). This is
represented in Figure 3.35 as the ith “outer” run. In order to select a model
using D.train(i), we again use an “inner” 3-fold cross-validation framework
that partitions D.train(i) into D.tr and D.val at every one of the three
inner runs (iterations). As described in Section 3.7, we can use the inner
cross-validation framework to select the best hyper-parameter value p∗(i) as
well as its resulting classification model m∗(i) learned over D.train(i). We
can then apply m∗(i) on D.test(i) to obtain the test error at the ith outer
run. By repeating this process for every outer run, we can compute the
average test error rate, errtest, over the entire labeled set D. Note that in
the above approach, the inner cross-validation framework is being used for
model selection while the outer cross-validation framework is being used for
model evaluation.

Algorithm 3.3 The nested cross-validation approach for computing errtest.
1: Divide D into k partitions, D1 to Dk.
2: for each outer run i = 1 to k do
3: D.test(i) = Di. {Partition used for testing.}
4: D.train(i) = D \Di. {Partitions used for model selection.}
5: (p∗(i), m∗(i)) = model-select(k, P, D.train(i)). {Inner cross-validation.}
6: errsum(i) = model-test(m∗(i), D.test(i)). {Sum of test errors.}
7: end for
8: errtest =

∑k
i errsum(i)/N . {Compute test error rate.}



�

� �

�

172 Chapter 3 Classification

3.8 Pitfalls of Model Selection and Evaluation

Model selection and evaluation, when used effectively, serve as excellent tools
for learning classification models and assessing their generalization perfor-
mance. However, when using them effectively in practical settings, there are
several pitfalls that can result in improper and often misleading conclusions.
Some of these pitfalls are simple to understand and easy to avoid, while others
are quite subtle in nature and difficult to catch. In the following, we present
two of these pitfalls and discuss best practices to avoid them.

3.8.1 Overlap between Training and Test Sets

One of the basic requirements of a clean model selection and evaluation setup
is that the data used for model selection (D.train) must be kept separate from
the data used for model evaluation (D.test). If there is any overlap between
the two, the test error rate errtest computed over D.test cannot be considered
representative of the performance on unseen instances. Comparing the effec-
tiveness of classification models using errtest can then be quite misleading, as
an overly complex model can show an inaccurately low value of errtest due to
model overfitting (see Exercise 12 at the end of this chapter).

To illustrate the importance of ensuring no overlap between D.train and
D.test, consider a labeled data set where all the attributes are irrelevant,
i.e. they have no relationship with the class labels. Using such attributes, we
should expect no classification model to perform better than random guessing.
However, if the test set involves even a small number of data instances that
were used for training, there is a possibility for an overly complex model
to show better performance than random, even though the attributes are
completely irrelevant. As we will see later in Chapter 10, this scenario can
actually be used as a criterion to detect overfitting due to improper setup of
experiment. If a model shows better performance than a random classifier even
when the attributes are irrelevant, it is an indication of a potential feedback
between the training and test sets.

3.8.2 Use of Validation Error as Generalization Error

The validation error rate errval serves an important role during model se-
lection, as it provides “out-of-sample” error estimates of models on D.val,
which is not used for training the models. Hence, errval serves as a better
metric than the training error rate for selecting models and hyper-parameter
values, as described in Sections 3.5.1 and 3.7, respectively. However, once the
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validation set has been used for selecting a classification model m∗, errval no
longer reflects the performance of m∗ on unseen instances.

To realize the pitfall in using validation error rate as an estimate of gen-
eralization performance, consider the problem of selecting a hyper-parameter
value p from a range of values P, using a validation set D.val. If the number of
possible values in P is quite large and the size of D.val is small, it is possible to
select a hyper-parameter value p∗ that shows favorable performance on D.val
just by random chance. Notice the similarity of this problem with the multiple
comparisons problem discussed in Section 3.4.1. Even though the classification
model m∗ learned using p∗ would show a low validation error rate, it would
lack generalizability on unseen test instances.

The correct approach for estimating the generalization error rate of a model
m∗ is to use an independently chosen test set D.test that hasn’t been used
in any way to influence the selection of m∗. As a rule of thumb, the test set
should never be examined during model selection, to ensure the absence of
any form of overfitting. If the insights gained from any portion of a labeled
data set help in improving the classification model even in an indirect way,
then that portion of data must be discarded during testing.

3.9 Model Comparison∗

One difficulty when comparing the performance of different classification mod-
els is whether the observed difference in their performance is statistically
significant. For example, consider a pair of classification models, MA andMB.
SupposeMA achieves 85% accuracy when evaluated on a test set containing 30
instances, while MB achieves 75% accuracy on a different test set containing
5000 instances. Based on this information, is MA a better model than MB?
This example raises two key questions regarding the statistical significance of
a performance metric:

1. AlthoughMA has a higher accuracy thanMB, it was tested on a smaller
test set. How much confidence do we have that the accuracy for MA is
actually 85%?

2. Is it possible to explain the difference in accuracies betweenMA andMB

as a result of variations in the composition of their test sets?

The first question relates to the issue of estimating the confidence interval
of model accuracy. The second question relates to the issue of testing the
statistical significance of the observed deviation. These issues are investigated
in the remainder of this section.
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3.9.1 Estimating the Confidence Interval for Accuracy

To determine its confidence interval, we need to establish the probability distri-
bution for sample accuracy. This section describes an approach for deriving the
confidence interval by modeling the classification task as a binomial random
experiment. The following describes characteristics of such an experiment:

1. The random experiment consists of N independent trials, where each
trial has two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability that X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1− p):

P (X = v) =

(
N

v

)
pv(1− p)N−v.

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

P (X = 20) =

(
50

20

)
0.520(1− 0.5)30 = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50×0.5 = 25, while its variance is 50×0.5×0.5 = 12.5.

The task of predicting the class labels of test instances can also be con-
sidered as a binomial experiment. Given a test set that contains N instances,
let X be the number of instances correctly predicted by a model and p be the
true accuracy of the model. If the prediction task is modeled as a binomial
experiment, then X has a binomial distribution with mean Np and variance
Np(1− p). It can be shown that the empirical accuracy, acc = X/N , also has
a binomial distribution with mean p and variance p(1 − p)/N (see Exercise
14). The binomial distribution can be approximated by a normal distribution
when N is sufficiently large. Based on the normal distribution, the confidence
interval for acc can be derived as follows:

P

(
− Zα/2 ≤

acc− p√
p(1− p)/N

≤ Z1−α/2

)
= 1− α, (3.15)
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where Zα/2 and Z1−α/2 are the upper and lower bounds obtained from a
standard normal distribution at confidence level (1 − α). Since a standard
normal distribution is symmetric around Z = 0, it follows that Zα/2 = Z1−α/2.
Rearranging this inequality leads to the following confidence interval for p:

2×N × acc+ Z2
α/2 ± Zα/2

√
Z2
α/2 + 4Nacc− 4Nacc2

2(N + Z2
α/2)

. (3.16)

The following table shows the values of Zα/2 at different confidence levels:

1− α 0.99 0.98 0.95 0.9 0.8 0.7 0.5

Zα/2 2.58 2.33 1.96 1.65 1.28 1.04 0.67

Example 3.11. [Confidence Interval for Accuracy] Consider a model
that has an accuracy of 80% when evaluated on 100 test instances. What is
the confidence interval for its true accuracy at a 95% confidence level? The
confidence level of 95% corresponds to Zα/2 = 1.96 according to the table
given above. Inserting this term into Equation 3.16 yields a confidence interval
between 71.1% and 86.7%. The following table shows the confidence interval
when the number of instances, N , increases:

N 20 50 100 500 1000 5000

Confidence 0.584 0.670 0.711 0.763 0.774 0.789
Interval − 0.919 − 0.888 − 0.867 − 0.833 − 0.824 − 0.811

Note that the confidence interval becomes tighter when N increases.

3.9.2 Comparing the Performance of Two Models

Consider a pair of models, M1 and M2, which are evaluated on two indepen-
dent test sets, D1 and D2. Let n1 denote the number of instances in D1 and
n2 denote the number of instances in D2. In addition, suppose the error rate
for M1 on D1 is e1 and the error rate for M2 on D2 is e2. Our goal is to test
whether the observed difference between e1 and e2 is statistically significant.

Assuming that n1 and n2 are sufficiently large, the error rates e1 and e2
can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e1 − e2, then d is also normally distributed
with mean dt, its true difference, and variance, σ2d. The variance of d can be
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computed as follows:

σ2d � σ̂2d =
e1(1− e1)

n1
+
e2(1− e2)

n2
, (3.17)

where e1(1 − e1)/n1 and e2(1 − e2)/n2 are the variances of the error rates.
Finally, at the (1− α)% confidence level, it can be shown that the confidence
interval for the true difference dt is given by the following equation:

dt = d± zα/2σ̂d. (3.18)

Example 3.12. [Significance Testing] Consider the problem described at
the beginning of this section. Model MA has an error rate of e1 = 0.15 when
applied to N1 = 30 test instances, while model MB has an error rate of
e2 = 0.25 when applied to N2 = 5000 test instances. The observed difference
in their error rates is d = |0.15−0.25| = 0.1. In this example, we are performing
a two-sided test to check whether dt = 0 or dt �= 0. The estimated variance of
the observed difference in error rates can be computed as follows:

σ̂2d =
0.15(1− 0.15)

30
+

0.25(1− 0.25)

5000
= 0.0043

or σ̂d = 0.0655. Inserting this value into Equation 3.18, we obtain the following
confidence interval for dt at 95% confidence level:

dt = 0.1± 1.96× 0.0655 = 0.1± 0.128.

As the interval spans the value zero, we can conclude that the observed
difference is not statistically significant at a 95% confidence level.

At what confidence level can we reject the hypothesis that dt = 0? To do
this, we need to determine the value of Zα/2 such that the confidence interval
for dt does not span the value zero. We can reverse the preceding computation
and look for the value Zα/2 such that d > Zα/2σ̂d. Replacing the values of d
and σ̂d gives Zα/2 < 1.527. This value first occurs when (1 − α) � 0.936 (for
a two-sided test). The result suggests that the null hypothesis can be rejected
at confidence level of 93.6% or lower.

3.10 Bibliographic Notes

Early classification systems were developed to organize various collections of
objects, from living organisms to inanimate ones. Examples abound, from Aris-
totle’s cataloguing of species to the Dewey Decimal and Library of Congress
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classification systems for books. Such a task typically requires considerable
human efforts, both to identify properties of the objects to be classified and
to organize them into well distinguished categories.

With the development of statistics and computing, automated classifi-
cation has been a subject of intensive research. The study of classification
in classical statistics is sometimes known as discriminant analysis, where
the objective is to predict the group membership of an object based on its
corresponding features. A well-known classical method is Fisher’s linear dis-
criminant analysis [142], which seeks to find a linear projection of the data
that produces the best separation between objects from different classes.

Many pattern recognition problems also require the discrimination of ob-
jects from different classes. Examples include speech recognition, handwritten
character identification, and image classification. Readers who are interested
in the application of classification techniques for pattern recognition may refer
to the survey articles by Jain et al. [150] and Kulkarni et al. [157] or classic
pattern recognition books by Bishop [125], Duda et al. [137], and Fukunaga
[143]. The subject of classification is also a major research topic in neural
networks, statistical learning, and machine learning. An in-depth treatment
on the topic of classification from the statistical and machine learning per-
spectives can be found in the books by Bishop [126], Cherkassky and Mulier
[132], Hastie et al. [148], Michie et al. [162], Murphy [167], and Mitchell [165].
Recent years have also seen the release of many publicly available software
packages for classification, which can be embedded in programming languages
such as Java (Weka [147]) and Python (scikit-learn [174]).

An overview of decision tree induction algorithms can be found in the
survey articles by Buntine [129], Moret [166], Murthy [168], and Safavian et
al. [179]. Examples of some well-known decision tree algorithms include CART
[127], ID3 [175], C4.5 [177], and CHAID [153]. Both ID3 and C4.5 employ the
entropy measure as their splitting function. An in-depth discussion of the C4.5
decision tree algorithm is given by Quinlan [177]. The CART algorithm was
developed by Breiman et al. [127] and uses the Gini index as its splitting
function. CHAID [153] uses the statistical χ2 test to determine the best split
during the tree-growing process.

The decision tree algorithm presented in this chapter assumes that the
splitting condition at each internal node contains only one attribute. An
oblique decision tree can use multiple attributes to form the attribute test
condition in a single node [149, 187]. Breiman et al. [127] provide an option
for using linear combinations of attributes in their CART implementation.
Other approaches for inducing oblique decision trees were proposed by Heath
et al. [149], Murthy et al. [169], Cantú-Paz and Kamath [130], and Utgoff
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and Brodley [187]. Although an oblique decision tree helps to improve the
expressiveness of the model representation, the tree induction process becomes
computationally challenging. Another way to improve the expressiveness of a
decision tree without using oblique decision trees is to apply a method known
as constructive induction [161]. This method simplifies the task of learning
complex splitting functions by creating compound features from the original
data.

Besides the top-down approach, other strategies for growing a decision
tree include the bottom-up approach by Landeweerd et al. [159] and Pattipati
and Alexandridis [173], as well as the bidirectional approach by Kim and
Landgrebe [154]. Schuermann and Doster [181] and Wang and Suen [193]
proposed using a soft splitting criterion to address the data fragmentation
problem. In this approach, each instance is assigned to different branches of
the decision tree with different probabilities.

Model overfitting is an important issue that must be addressed to ensure
that a decision tree classifier performs equally well on previously unlabeled
data instances. The model overfitting problem has been investigated by many
authors including Breiman et al. [127], Schaffer [180], Mingers [164], and
Jensen and Cohen [151]. While the presence of noise is often regarded as one of
the primary reasons for overfitting [164, 170], Jensen and Cohen [151] viewed
overfitting as an artifact of failure to compensate for the multiple comparisons
problem.

Bishop [126] and Hastie et al. [148] provide an excellent discussion of
model overfitting, relating it to a well-known framework of theoretical analysis,
known as bias-variance decomposition [146]. In this framework, the prediction
of a learning algorithm is considered to be a function of the training set, which
varies as the training set is changed. The generalization error of a model is
then described in terms of its bias (the error of the average prediction obtained
using different training sets), its variance (how different are the predictions
obtained using different training sets), and noise (the irreducible error inherent
to the problem). An underfit model is considered to have high bias but low
variance, while an overfit model is considered to have low bias but high
variance. Although the bias-variance decomposition was originally proposed
for regression problems (where the target attribute is a continuous variable),
a unified analysis that is applicable for classification has been proposed by
Domingos [136]. The bias variance decomposition will be discussed in more
detail while introducing ensemble learning methods in Chapter 4.

Various learning principles, such as the Probably Approximately Correct
(PAC) learning framework [188], have been developed to provide a theo-
retical framework for explaining the generalization performance of learning
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algorithms. In the field of statistics, a number of performance estimation
methods have been proposed that make a trade-off between the goodness
of fit of a model and the model complexity. Most noteworthy among them
are the Akaike’s Information Criterion [120] and the Bayesian Information
Criterion [182]. They both apply corrective terms to the training error rate
of a model, so as to penalize more complex models. Another widely-used
approach for measuring the complexity of any general model is the Vapnik-
Chervonenkis (VC) Dimension [190]. The VC dimension of a class of functions
C is defined as the maximum number of points that can be shattered (every
point can be distinguished from the rest) by functions belonging to C, for any
possible configuration of points. The VC dimension lays the foundation of the
structural risk minimization principle [189], which is extensively used in many
learning algorithms, e.g., support vector machines, which will be discussed in
detail in Chapter 4.

The Occam’s razor principle is often attributed to the philosopher William
of Occam. Domingos [135] cautioned against the pitfall of misinterpreting
Occam’s razor as comparing models with similar training errors, instead of
generalization errors. A survey on decision tree-pruning methods to avoid
overfitting is given by Breslow and Aha [128] and Esposito et al. [141]. Some
of the typical pruning methods include reduced error pruning [176], pessimistic
error pruning [176], minimum error pruning [171], critical value pruning [163],
cost-complexity pruning [127], and error-based pruning [177]. Quinlan and
Rivest proposed using the minimum description length principle for decision
tree pruning in [178].

The discussions in this chapter on the significance of cross-validation error
estimates is inspired from Chapter 7 in Hastie et al. [148]. It is also an
excellent resource for understanding “the right and wrong ways to do cross-
validation”, which is similar to the discussion on pitfalls in Section 3.8 of
this chapter. A comprehensive discussion of some of the common pitfalls
in using cross-validation for model selection and evaluation is provided in
Krstajic et al. [156].

The original cross-validation method was proposed independently by Allen
[121], Stone [184], and Geisser [145] for model assessment (evaluation). Even
though cross-validation can be used for model selection [194], its usage for
model selection is quite different than when it is used for model evaluation,
as emphasized by Stone [184]. Over the years, the distinction between the
two usages has often been ignored, resulting in incorrect findings. One of the
common mistakes while using cross-validation is to perform pre-processing
operations (e.g., hyper-parameter tuning or feature selection) using the entire
data set and not “within” the training fold of every cross-validation run.
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Ambroise et al., using a number of gene expression studies as examples, [124]
provide an extensive discussion of the selection bias that arises when feature
selection is performed outside cross-validation. Useful guidelines for evaluating
models on microarray data have also been provided by Allison et al. [122].

The use of the cross-validation protocol for hyper-parameter tuning has
been described in detail by Dudoit and van der Laan [138]. This approach
has been called “grid-search cross-validation.” The correct approach in using
cross-validation for both hyper-parameter selection and model evaluation, as
discussed in Section 3.7 of this chapter, is extensively covered by Varma and
Simon [191]. This combined approach has been referred to as “nested cross-
validation” or “double cross-validation” in the existing literature. Recently,
Tibshirani and Tibshirani [185] have proposed a new approach for hyper-
parameter selection and model evaluation. Tsamardinos et al. [186] compared
this approach to nested cross-validation. The experiments they performed
found that, on average, both approaches provide conservative estimates of
model performance with the Tibshirani and Tibshirani approach being more
computationally efficient.

Kohavi [155] has performed an extensive empirical study to compare the
performance metrics obtained using different estimation methods such as ran-
dom subsampling and k-fold cross-validation. Their results suggest that the
best estimation method is ten-fold, stratified cross-validation.

An alternative approach for model evaluation is the bootstrap method,
which was presented by Efron in 1979 [139]. In this method, training instances
are sampled with replacement from the labeled set, i.e., an instance previously
selected to be part of the training set is equally likely to be drawn again. If the
original data has N instances, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the instances in the original data.
Instances that are not included in the bootstrap sample become part of the test
set. The bootstrap procedure for obtaining training and test sets is repeated
b times, resulting in a different error rate on the test set, err(i), at the ith

run. To obtain the overall error rate, errboot, the .632 bootstrap approach
combines err(i) with the error rate obtained from a training set containing all
the labeled examples, errs, as follows:

errboot =
1

b

b∑
i=1

(0.632× err(i) + 0.368× errs). (3.19)

Efron and Tibshirani [140] provided a theoretical and empirical comparison
between cross-validation and a bootstrap method known as the 632+ rule.
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While the .632 bootstrap method presented above provides a robust estimate
of the generalization performance with low variance in its estimate, it may
produce misleading results for highly complex models in certain conditions,
as demonstrated by Kohavi [155]. This is because the overall error rate is not
truly an out-of-sample error estimate as it depends on the training error rate,
errs, which can be quite small if there is overfitting.

Current techniques such as C4.5 require that the entire training data set fit
into main memory. There has been considerable effort to develop parallel and
scalable versions of decision tree induction algorithms. Some of the proposed
algorithms include SLIQ by Mehta et al. [160], SPRINT by Shafer et al. [183],
CMP by Wang and Zaniolo [192], CLOUDS by Alsabti et al. [123], RainForest
by Gehrke et al. [144], and ScalParC by Joshi et al. [152]. A survey of parallel
algorithms for classification and other data mining tasks is given in [158].
More recently, there has been extensive research to implement large-scale
classifiers on the compute unified device architecture (CUDA) [131, 134] and
MapReduce [133, 172] platforms.
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Table 3.5. Data set for Exercise 2.
Customer ID Gender Car Type Shirt Size Class

1 M Family Small C0
2 M Sports Medium C0
3 M Sports Medium C0
4 M Sports Large C0
5 M Sports Extra Large C0
6 M Sports Extra Large C0
7 F Sports Small C0
8 F Sports Small C0
9 F Sports Medium C0
10 F Luxury Large C0
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1
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training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91–102,
1987.
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3.11 Exercises

1. Draw the full decision tree for the parity function of four Boolean attributes,
A, B, C, and D. Is it possible to simplify the tree?

2. Consider the training examples shown in Table 3.5 for a binary classification
problem.

(a) Compute the Gini index for the overall collection of training examples.

(b) Compute the Gini index for the Customer ID attribute.

(c) Compute the Gini index for the Gender attribute.
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Table 3.6. Data set for Exercise 3.
Instance a1 a2 a3 Target Class

1 T T 1.0 +
2 T T 6.0 +
3 T F 5.0 −
4 F F 4.0 +
5 F T 7.0 −
6 F T 3.0 −
7 F F 8.0 −
8 T F 7.0 +
9 F T 5.0 −

(d) Compute the Gini index for the Car Type attribute using multiway split.

(e) Compute the Gini index for the Shirt Size attribute using multiway
split.

(f) Which attribute is better, Gender, Car Type, or Shirt Size?

(g) Explain why Customer ID should not be used as the attribute test con-
dition even though it has the lowest Gini.

3. Consider the training examples shown in Table 3.6 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the class attribute?

(b) What are the information gains of a1 and a2 relative to these training
examples?

(c) For a3, which is a continuous attribute, compute the information gain for
every possible split.

(d) What is the best split (among a1, a2, and a3) according to the information
gain?

(e) What is the best split (between a1 and a2) according to the misclassifi-
cation error rate?

(f) What is the best split (between a1 and a2) according to the Gini index?

4. Show that the entropy of a node never increases after splitting it into smaller
successor nodes.

5. Consider the following data set for a binary class problem.
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A B Class Label
T F +
T T +
T T +
T F −
T T +
F F −
F F −
F F −
T T −
T F −

(a) Calculate the information gain when splitting on A and B. Which at-
tribute would the decision tree induction algorithm choose?

(b) Calculate the gain in the Gini index when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

(c) Figure 3.11 shows that entropy and the Gini index are both monoton-
ically increasing on the range [0, 0.5] and they are both monotonically
decreasing on the range [0.5, 1]. Is it possible that information gain and
the gain in the Gini index favor different attributes? Explain.

6. Consider splitting a parent node P into two child nodes, C1 and C2, using some
attribute test condition. The composition of labeled training instances at every
node is summarized in the Table below.

P C1 C2

Class 0 7 3 4
Class 1 3 0 3

(a) Calculate the Gini index and misclassification error rate of the parent
node P .

(b) Calculate the weighted Gini index of the child nodes. Would you consider
this attribute test condition if Gini is used as the impurity measure?

(c) Calculate the weighted misclassification rate of the child nodes. Would
you consider this attribute test condition if misclassification rate is used
as the impurity measure?

7. Consider the following set of training examples.
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X Y Z No. of Class C1 Examples No. of Class C2 Examples
0 0 0 5 40
0 0 1 0 15
0 1 0 10 5
0 1 1 45 0
1 0 0 10 5
1 0 1 25 0
1 1 0 5 20
1 1 1 0 15

(a) Compute a two-level decision tree using the greedy approach described in
this chapter. Use the classification error rate as the criterion for splitting.
What is the overall error rate of the induced tree?

(b) Repeat part (a) using X as the first splitting attribute and then choose
the best remaining attribute for splitting at each of the two successor
nodes. What is the error rate of the induced tree?

(c) Compare the results of parts (a) and (b). Comment on the suitability of
the greedy heuristic used for splitting attribute selection.

8. The following table summarizes a data set with three attributes A, B, C and
two class labels +, −. Build a two-level decision tree.

A B C
Number of
Instances
+ −

T T T 5 0
F T T 0 20
T F T 20 0
F F T 0 5
T T F 0 0
F T F 25 0
T F F 0 0
F F F 0 25

(a) According to the classification error rate, which attribute would be chosen
as the first splitting attribute? For each attribute, show the contingency
table and the gains in classification error rate.

(b) Repeat for the two children of the root node.

(c) How many instances are misclassified by the resulting decision tree?

(d) Repeat parts (a), (b), and (c) using C as the splitting attribute.

(e) Use the results in parts (c) and (d) to conclude about the greedy nature
of the decision tree induction algorithm.
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Figure 3.36. Decision tree and data sets for Exercise 9.

9. Consider the decision tree shown in Figure 3.36.

(a) Compute the generalization error rate of the tree using the optimistic
approach.

(b) Compute the generalization error rate of the tree using the pessimistic
approach. (For simplicity, use the strategy of adding a factor of 0.5 to
each leaf node.)

(c) Compute the generalization error rate of the tree using the validation set
shown above. This approach is known as reduced error pruning.

10. Consider the decision trees shown in Figure 3.37. Assume they are generated
from a data set that contains 16 binary attributes and 3 classes, C1, C2, and
C3.

Compute the total description length of each decision tree according to the
following formulation of the minimum description length principle.

• The total description length of a tree is given by

Cost(tree, data) = Cost(tree) + Cost(data|tree).

• Each internal node of the tree is encoded by the ID of the splitting
attribute. If there are m attributes, the cost of encoding each attribute is
log2m bits.



�

� �

�

190 Chapter 3 Classification

(a) Decision tree with 7 errors (b) Decision tree with 4 errors

C1 C2 C3

C1

C2 C3

C1 C2

Figure 3.37. Decision trees for Exercise 10.

• Each leaf is encoded using the ID of the class it is associated with. If there
are k classes, the cost of encoding a class is log2 k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the costs of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits
on the training set. Each error is encoded by log2 n bits, where n is the
total number of training instances.

Which decision tree is better, according to the MDL principle?

11. This exercise, inspired by the discussions in [155], highlights one of the known
limitations of the leave-one-out model evaluation procedure. Let us consider a
data set containing 50 positive and 50 negative instances, where the attributes
are purely random and contain no information about the class labels. Hence,
the generalization error rate of any classification model learned over this data
is expected to be 0.5. Let us consider a classifier that assigns the majority
class label of training instances (ties resolved by using the positive label as the
default class) to any test instance, irrespective of its attribute values. We can
call this approach as the majority inducer classifier. Determine the error rate
of this classifier using the following methods.

(a) Leave-one-out.

(b) 2-fold stratified cross-validation, where the proportion of class labels at
every fold is kept same as that of the overall data.

(c) From the results above, which method provides a more reliable evaluation
of the classifier’s generalization error rate?
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Table 3.7. Comparing the test accuracy of decision trees T10 and T100.

Accuracy

Data Set T10 T100

A 0.86 0.97

B 0.84 0.77

12. Consider a labeled data set containing 100 data instances, which is randomly
partitioned into two sets A and B, each containing 50 instances. We use A as
the training set to learn two decision trees, T10 with 10 leaf nodes and T100
with 100 leaf nodes. The accuracies of the two decision trees on data sets A
and B are shown in Table 3.7.

(a) Based on the accuracies shown in Table 3.7, which classification model
would you expect to have better performance on unseen instances?

(b) Now, you tested T10 and T100 on the entire data set (A + B) and found
that the classification accuracy of T10 on data set (A+B) is 0.85, whereas
the classification accuracy of T100 on the data set (A+B) is 0.87. Based
on this new information and your observations from Table 3.7, which
classification model would you finally choose for classification?

13. Consider the following approach for testing whether a classifier A beats another
classifier B. Let N be the size of a given data set, pA be the accuracy of classifier
A, pB be the accuracy of classifier B, and p = (pA + pB)/2 be the average
accuracy for both classifiers. To test whether classifier A is significantly better
than B, the following Z-statistic is used:

Z =
pA − pB√

2p(1−p)
N

.

Classifier A is assumed to be better than classifier B if Z > 1.96.

Table 3.8 compares the accuracies of three different classifiers, decision tree
classifiers, näıve Bayes classifiers, and support vector machines, on various data
sets. (The latter two classifiers are described in Chapter 4.)

Summarize the performance of the classifiers given in Table 3.8 using the
following 3 × 3 table:

win-loss-draw Decision tree Näıve Bayes Support vector
machine

Decision tree 0 - 0 - 23
Näıve Bayes 0 - 0 - 23
Support vector machine 0 - 0 - 23
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Table 3.8. Comparing the accuracy of various classification methods.

Data Set Size Decision näıve Support vector
(N) Tree (%) Bayes (%) machine (%)

Anneal 898 92.09 79.62 87.19
Australia 690 85.51 76.81 84.78
Auto 205 81.95 58.05 70.73
Breast 699 95.14 95.99 96.42
Cleve 303 76.24 83.50 84.49
Credit 690 85.80 77.54 85.07
Diabetes 768 72.40 75.91 76.82
German 1000 70.90 74.70 74.40
Glass 214 67.29 48.59 59.81
Heart 270 80.00 84.07 83.70
Hepatitis 155 81.94 83.23 87.10
Horse 368 85.33 78.80 82.61
Ionosphere 351 89.17 82.34 88.89
Iris 150 94.67 95.33 96.00
Labor 57 78.95 94.74 92.98
Led7 3200 73.34 73.16 73.56
Lymphography 148 77.03 83.11 86.49
Pima 768 74.35 76.04 76.95
Sonar 208 78.85 69.71 76.92
Tic-tac-toe 958 83.72 70.04 98.33
Vehicle 846 71.04 45.04 74.94
Wine 178 94.38 96.63 98.88
Zoo 101 93.07 93.07 96.04

Each cell in the table contains the number of wins, losses, and draws when
comparing the classifier in a given row to the classifier in a given column.

14. Let X be a binomial random variable with mean Np and variance Np(1− p).
Show that the ratio X/N also has a binomial distribution with mean p and
variance p(1− p)/N .


