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Association Analysis:
Basic Concepts and
Algorithms

Many business enterprises accumulate large quantities of data from their day-
to-day operations. For example, huge amounts of customer purchase data are
collected daily at the checkout counters of grocery stores. Table 5.1 gives an
example of such data, commonly known as market basket transactions.
Each row in this table corresponds to a transaction, which contains a unique
identifier labeled TID and a set of items bought by a given customer. Retailers
are interested in analyzing the data to learn about the purchasing behavior
of their customers. Such valuable information can be used to support a vari-
ety of business-related applications such as marketing promotions, inventory
management, and customer relationship management.

This chapter presents a methodology known as association analysis,
which is useful for discovering interesting relationships hidden in large data
sets. The uncovered relationships can be represented in the form of sets of
items present in many transactions, which are known as frequent itemsets,

Table 5.1. An example of market basket transactions.

TID Items
1 {Bread, Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread, Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}
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or association rules, that represent relationships between two itemsets. For
example, the following rule can be extracted from the data set shown in
Table 5.1:

{Diapers} −→ {Beer}.
The rule suggests a relationship between the sale of diapers and beer because
many customers who buy diapers also buy beer. Retailers can use these types
of rules to help them identify new opportunities for cross-selling their products
to the customers.

Besides market basket data, association analysis is also applicable to data
from other application domains such as bioinformatics, medical diagnosis, web
mining, and scientific data analysis. In the analysis of Earth science data, for
example, association patterns may reveal interesting connections among the
ocean, land, and atmospheric processes. Such information may help Earth
scientists develop a better understanding of how the different elements of the
Earth system interact with each other. Even though the techniques presented
here are generally applicable to a wider variety of data sets, for illustrative
purposes, our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when applying associ-
ation analysis to market basket data. First, discovering patterns from a large
transaction data set can be computationally expensive. Second, some of the
discovered patterns may be spurious (happen simply by chance) and even for
non-spurious patterns, some are more interesting than others. The remainder
of this chapter is organized around these two issues. The first part of the
chapter is devoted to explaining the basic concepts of association analysis and
the algorithms used to efficiently mine such patterns. The second part of the
chapter deals with the issue of evaluating the discovered patterns in order to
help prevent the generation of spurious results and to rank the patterns in
terms of some interestingness measure.

5.1 Preliminaries

This section reviews the basic terminology used in association analysis and
presents a formal description of the task.

Binary Representation Market basket data can be represented in a binary
format as shown in Table 5.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be treated as a binary
variable whose value is one if the item is present in a transaction and zero
otherwise. Because the presence of an item in a transaction is often considered
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Table 5.2. A binary 0/1 representation of market basket data.

TID Bread Milk Diapers Beer Eggs Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1 0 0
5 1 1 1 0 0 1

more important than its absence, an item is an asymmetric binary variable.
This representation is a simplistic view of real market basket data because it
ignores important aspects of the data such as the quantity of items sold or
the price paid to purchase them. Methods for handling such non-binary data
will be explained in Chapter 6.

Itemset and Support Count Let I = {i1, i2, . . . , id} be the set of all items
in a market basket data and T = {t1, t2, . . . , tN} be the set of all transactions.
Each transaction ti contains a subset of items chosen from I. In association
analysis, a collection of zero or more items is termed an itemset. If an itemset
contains k items, it is called a k-itemset. For instance, {Beer, Diapers, Milk}
is an example of a 3-itemset. The null (or empty) set is an itemset that does
not contain any items.

A transaction tj is said to contain an itemset X if X is a subset of
tj . For example, the second transaction shown in Table 5.2 contains the
itemset {Bread, Diapers} but not {Bread, Milk}. An important property
of an itemset is its support count, which refers to the number of transactions
that contain a particular itemset. Mathematically, the support count, σ(X),
for an itemset X can be stated as follows:

σ(X) =
∣∣{ti|X ⊆ ti, ti ∈ T}

∣∣,
where the symbol | · | denotes the number of elements in a set. In the data set
shown in Table 5.2, the support count for {Beer, Diapers, Milk} is equal to
two because there are only two transactions that contain all three items.

Often, the property of interest is the support, which is fraction of trans-
actions in which an itemset occurs:

s(X) = σ(X)/N.

An itemset X is called frequent if s(X) is greater than some user-defined
threshold, minsup.
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Association Rule An association rule is an implication expression of the
form X −→ Y , where X and Y are disjoint itemsets, i.e., X ∩ Y = ∅. The
strength of an association rule can be measured in terms of its support and
confidence. Support determines how often a rule is applicable to a given
data set, while confidence determines how frequently items in Y appear in
transactions that contain X. The formal definitions of these metrics are

Support, s(X −→ Y ) =
σ(X ∪ Y )

N
; (5.1)

Confidence, c(X −→ Y ) =
σ(X ∪ Y )

σ(X)
. (5.2)

Example 5.1. Consider the rule {Milk, Diapers} −→ {Beer}. Because the
support count for {Milk, Diapers, Beer} is 2 and the total number of transac-
tions is 5, the rule’s support is 2/5 = 0.4. The rule’s confidence is obtained by
dividing the support count for {Milk, Diapers, Beer} by the support count
for {Milk, Diapers}. Since there are 3 transactions that contain milk and
diapers, the confidence for this rule is 2/3 = 0.67.

Why Use Support and Confidence? Support is an important measure
because a rule that has very low support might occur simply by chance. Also,
from a business perspective a low support rule is unlikely to be interesting
because it might not be profitable to promote items that customers seldom
buy together (with the exception of the situation described in Section 5.8).
For these reasons, we are interested in finding rules whose support is greater
than some user-defined threshold. As will be shown in Section 5.2.1, support
also has a desirable property that can be exploited for the efficient discovery
of association rules.

Confidence, on the other hand, measures the reliability of the inference
made by a rule. For a given rule X −→ Y , the higher the confidence, the more
likely it is for Y to be present in transactions that contain X. Confidence also
provides an estimate of the conditional probability of Y given X.

Association analysis results should be interpreted with caution. The infer-
ence made by an association rule does not necessarily imply causality. Instead,
it can sometimes suggest a strong co-occurrence relationship between items
in the antecedent and consequent of the rule. Causality, on the other hand,
requires knowledge about which attributes in the data capture cause and effect,
and typically involves relationships occurring over time (e.g., greenhouse gas
emissions lead to global warming). See Section 5.7.1 for additional discussion.
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Formulation of the Association Rule Mining Problem The associa-
tion rule mining problem can be formally stated as follows:

Definition 5.1 (Association Rule Discovery). Given a set of transactions
T , find all the rules having support ≥ minsup and confidence ≥ minconf ,
where minsup and minconf are the corresponding support and confidence
thresholds.

A brute-force approach for mining association rules is to compute the
support and confidence for every possible rule. This approach is prohibitively
expensive because there are exponentially many rules that can be extracted
from a data set. More specifically, assuming that neither the left nor the right-
hand side of the rule is an empty set, the total number of possible rules, R,
extracted from a data set that contains d items is

R = 3d − 2d+1 + 1. (5.3)

The proof for this equation is left as an exercise to the readers (see Exercise
5 on page 440). Even for the small data set shown in Table 5.1, this approach
requires us to compute the support and confidence for 36−27+1 = 602 rules.
More than 80% of the rules are discarded after applying minsup = 20% and
minconf = 50%, thus wasting most of the computations. To avoid performing
needless computations, it would be useful to prune the rules early without
having to compute their support and confidence values.

An initial step toward improving the performance of association rule min-
ing algorithms is to decouple the support and confidence requirements. From
Equation 5.1, notice that the support of a rule X −→ Y is the same as the
support of its corresponding itemset, X ∪ Y . For example, the following rules
have identical support because they involve items from the same itemset,
{Beer, Diapers, Milk}:

{Beer, Diapers} −→ {Milk}, {Beer, Milk} −→ {Diapers},
{Diapers, Milk} −→ {Beer}, {Beer} −→ {Diapers, Milk},
{Milk} −→ {Beer,Diapers}, {Diapers} −→ {Beer,Milk}.

If the itemset is infrequent, then all six candidate rules can be pruned imme-
diately without our having to compute their confidence values.

Therefore, a common strategy adopted by many association rule mining
algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the
itemsets that satisfy the minsup threshold.



�

� �

�

362 Chapter 5 Association Analysis

2. Rule Generation, whose objective is to extract all the high confidence
rules from the frequent itemsets found in the previous step. These rules
are called strong rules.

The computational requirements for frequent itemset generation are gen-
erally more expensive than those of rule generation. Efficient techniques for
generating frequent itemsets and association rules are discussed in Sections
5.2 and 5.3, respectively.

5.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 5.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical applica-
tions, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 5.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k−1 is
the number of candidate itemsets, and w is the maximum transaction width.
Transaction width is the number of items present in a transaction.

There are three main approaches for reducing the computational complex-
ity of frequent itemset generation.

1. Reduce the number of candidate itemsets (M). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 5.2.4 and 5.6, respectively.

3. Reduce the number of transactions (N). As the size of candidate
itemsets increases, fewer transactions will be supported by the itemsets.
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Figure 5.1. An itemset lattice.

For instance, since the width of the first transaction in Table 5.1 is 2, it
would be advantageous to remove this transaction before searching for
frequent itemsets of size 3 and larger. Algorithms that employ such a
strategy are discussed in the Bibliographic Notes.

5.2.1 The Apriori Principle

This section describes how the support measure can be used to reduce the
number of candidate itemsets explored during frequent itemset generation.
The use of support for pruning candidate itemsets is guided by the following
principle.
Theorem 5.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 5.3. Suppose {c, d, e} is a frequent itemset. Clearly, any
transaction that contains {c, d, e} must also contain its subsets, {c, d}, {c, e},
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M

Milk, Diapers, Beer, Coke
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1
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5

Figure 5.2. Counting the support of candidate itemsets.

{d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is frequent, then all subsets
of {c, d, e} (i.e., the shaded itemsets in this figure) must also be frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 5.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search space
based on the support measure is known as support-based pruning. Such a
pruning strategy is made possible by a key property of the support measure,
namely, that the support for an itemset never exceeds the support for its
subsets. This property is also known as the anti-monotone property of the
support measure.

Definition 5.2 (Anti-monotone Property). A measure f possesses the anti-
monotone property if for every itemset X that is a proper subset of itemset
Y , i.e. X ⊂ Y , we have f(Y ) ≤ f(X).

More generally, a large number of measures–see Section 5.7.1–can be ap-
plied to itemsets to evaluate various properties of itemsets. As will be shown
in the next section, any measure that has the anti-monotone property can be
incorporated directly into an itemset mining algorithm to effectively prune
the exponential search space of candidate itemsets.

5.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 5.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in



�

� �

�

5.2 Frequent Itemset Generation 365

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Frequent
Itemset

Figure 5.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this itemset
are frequent.

Table 5.1. We assume that the support threshold is 60%, which is equivalent
to a minimum support count equal to 3.

Initially, every item is considered as a candidate 1-itemset. After count-
ing their supports, the candidate itemsets {Cola} and {Eggs} are discarded
because they appear in fewer than three transactions. In the next iteration,
candidate 2-itemsets are generated using only the frequent 1-itemsets because
the Apriori principle ensures that all supersets of the infrequent 1-itemsets
must be infrequent. Because there are only four frequent 1-itemsets, the num-
ber of candidate 2-itemsets generated by the algorithm is

(
4
2

)
= 6. Two

of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently
found to be infrequent after computing their support values. The remaining
four candidates are frequent, and thus will be used to generate candidate
3-itemsets. Without support-based pruning, there are

(
6
3

)
= 20 candidate

3-itemsets that can be formed using the six items given in this example.
With the Apriori principle, we only need to keep candidate 3-itemsets whose
subsets are frequent. The only candidate that has this property is {Bread,
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Figure 5.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

Diapers, Milk}. However, even though the subsets of {Bread, Diapers, Milk}
are frequent, the itemset itself is not.

The effectiveness of the Apriori pruning strategy can be shown by count-
ing the number of candidate itemsets generated. A brute-force strategy of
enumerating all itemsets (up to size 3) as candidates will produce(

6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.
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Figure 5.5. Illustration of frequent itemset generation using the Apriori algorithm.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 5.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
and prune unnecessary candidates that are guaranteed to be infrequent
given the frequent (k−1)-itemsets found in the previous iteration (steps
5 and 6). Candidate generation and pruning is implemented using the
functions candidate-gen and candidate-prune, which are described in
Section 5.2.3.

• To count the support of the candidates, the algorithm needs to make
an additional pass over the data set (steps 7–12). The subset function
is used to determine all the candidate itemsets in Ck that are contained
in each transaction t. The implementation of this function is described
in Section 5.2.4.
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• After counting their supports, the algorithm eliminates all candidate
itemsets whose support counts are less than N ×minsup (step 13).

• The algorithm terminates when there are no new frequent itemsets
generated, i.e., Fk = ∅ (step 14).

The frequent itemset generation part of the Apriori algorithm has two im-
portant characteristics. First, it is a level-wise algorithm; i.e., it traverses the
itemset lattice one level at a time, from frequent 1-itemsets to the maximum
size of frequent itemsets. Second, it employs a generate-and-test strategy
for finding frequent itemsets. At each iteration (level), new candidate itemsets
are generated from the frequent itemsets found in the previous iteration. The
support for each candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the algorithm is kmax+1,
where kmax is the maximum size of the frequent itemsets.

5.2.3 Candidate Generation and Pruning

The candidate-gen and candidate-prune functions shown in Steps 5 and 6 of
Algorithm 5.1 generate candidate itemsets and prunes unnecessary ones by
performing the following two operations, respectively:

1. Candidate Generation. This operation generates new candidate k-itemsets
based on the frequent (k − 1)-itemsets found in the previous iteration.

Algorithm 5.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧ σ({i}) ≥ N ×minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = candidate-gen(Fk−1). {Generate candidate itemsets.}
6: Ck = candidate-prune(Ck, Fk−1). {Prune candidate itemsets.}
7: for each transaction t ∈ T do
8: Ct = subset(Ck, t). {Identify all candidates that belong to t.}
9: for each candidate itemset c ∈ Ct do

10: σ(c) = σ(c) + 1. {Increment support count.}
11: end for
12: end for
13: Fk = { c | c ∈ Ck ∧ σ(c) ≥ N ×minsup}. {Extract the frequent k-itemsets.}
14: until Fk = ∅
15: Result =

⋃
Fk.
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2. Candidate Pruning. This operation eliminates some of the candi-
date k-itemsets using support-based pruning, i.e. by removing k-itemsets
whose subsets are known to be infrequent in previous iterations. Note
that this pruning is done without computing the actual support of these
k-itemsets (which could have required comparing them against each
transaction).

Candidate Generation

In principle, there are many ways to generate candidate itemsets. An effec-
tive candidate generation procedure must be complete and non-redundant.
A candidate generation procedure is said to be complete if it does not omit
any frequent itemsets. To ensure completeness, the set of candidate itemsets
must subsume the set of all frequent itemsets, i.e., ∀k : Fk ⊆ Ck. A candidate
generation procedure is non-redundant if it does not generate the same can-
didate itemset more than once. For example, the candidate itemset {a, b, c, d}
can be generated in many ways—by merging {a, b, c} with {d}, {b, d} with
{a, c}, {c} with {a, b, d}, etc. Generation of duplicate candidates leads to
wasted computations and thus should be avoided for efficiency reasons. Also,
an effective candidate generation procedure should avoid generating too many
unnecessary candidates. A candidate itemset is unnecessary if at least one of
its subsets is infrequent, and thus, eliminated in the candidate pruning step.

Next, we will briefly describe several candidate generation procedures,
including the one used by the candidate-gen function.

Brute-Force Method The brute-force method considers every k-itemset as
a potential candidate and then applies the candidate pruning step to remove
any unnecessary candidates whose subsets are infrequent (see Figure 5.6). The
number of candidate itemsets generated at level k is equal to

(
d
k

)
, where d

is the total number of items. Although candidate generation is rather trivial,
candidate pruning becomes extremely expensive because a large number of
itemsets must be examined.

Fk−1 × F1 Method An alternative method for candidate generation is to
extend each frequent (k − 1)-itemset with frequent items that are not part
of the (k − 1)-itemset. Figure 5.7 illustrates how a frequent 2-itemset such as
{Beer, Diapers} can be augmented with a frequent item such as Bread to
produce a candidate 3-itemset {Beer, Diapers, Bread}.

The procedure is complete because every frequent k-itemset is composed
of a frequent (k− 1)-itemset and a frequent 1-itemset. Therefore, all frequent
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Figure 5.6. A brute-force method for generating candidate 3-itemsets.

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent (k−1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

k-itemsets are part of the candidate k-itemsets generated by this procedure.
Figure 5.7 shows that the Fk−1 × F1 candidate generation method only pro-
duces four candidate 3-itemsets, instead of the

(
6
3

)
= 20 itemsets produced

by the brute-force method. The Fk−1 × F1 method generates lower number
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of candidates because every candidate is guaranteed to contain at least one
frequent (k − 1)-itemset. While this procedure is a substantial improvement
over the brute-force method, it can still produce a large number of unneces-
sary candidates, as the remaining subsets of a candidate itemset can still be
infrequent.

Note that the approach discussed above does not prevent the same can-
didate itemset from being generated more than once. For instance, {Bread,
Diapers, Milk} can be generated by merging {Bread, Diapers} with {Milk},
{Bread, Milk} with {Diapers}, or {Diapers, Milk} with {Bread}. One way
to avoid generating duplicate candidates is by ensuring that the items in each
frequent itemset are kept sorted in their lexicographic order. For example,
itemsets such as {Bread, Diapers}, {Bread, Diapers, Milk}, and {Diapers,
Milk} follow lexicographic order as the items within every itemset are arranged
alphabetically. Each frequent (k−1)-itemset X is then extended with frequent
items that are lexicographically larger than the items in X. For example, the
itemset {Bread, Diapers} can be augmented with {Milk} because Milk is
lexicographically larger than Bread and Diapers. However, we should not
augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with {Diapers}
because they violate the lexicographic ordering condition. Every candidate
k-itemset is thus generated exactly once, by merging the lexicographically
largest item with the remaining k − 1 items in the itemset. If the Fk−1 × F1

method is used in conjunction with lexicographic ordering, then only two
candidate 3-itemsets will be produced in the example illustrated in Figure
5.7. {Beer, Bread, Diapers} and {Beer, Bread, Milk} will not be generated
because {Beer, Bread} is not a frequent 2-itemset.

Fk−1×Fk−1 Method This candidate generation procedure, which is used in
the candidate-gen function of the Apriori algorithm, merges a pair of frequent
(k− 1)-itemsets only if their first k− 2 items, arranged in lexicographic order,
are identical. Let A = {a1, a2, . . . , ak−1} and B = {b1, b2, . . . , bk−1} be a pair
of frequent (k − 1)-itemsets, arranged lexicographically. A and B are merged
if they satisfy the following conditions:

ai = bi (for i = 1, 2, . . . , k − 2).

Note that in this case, ak−1 �= bk−1 because A and B are two distinct
itemsets. The candidate k-itemset generated by merging A and B consists
of the first k − 2 common items followed by ak−1 and bk−1 in lexicographic
order. This candidate generation procedure is complete, because for every
lexicographically ordered frequent k-itemset, there exists two lexicographically
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Figure 5.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k−1)-itemsets.

ordered frequent (k − 1)-itemsets that have identical items in the first k − 2
positions.

In Figure 5.8, the frequent itemsets {Bread, Diapers} and {Bread, Milk}
are merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algo-
rithm does not have to merge {Beer, Diapers} with {Diapers, Milk} because
the first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is
a viable candidate, it would have been obtained by merging {Beer, Diapers}
with {Beer, Milk} instead. This example illustrates both the completeness of
the candidate generation procedure and the advantages of using lexicographic
ordering to prevent duplicate candidates. Also, if we order the frequent (k−1)-
itemsets according to their lexicographic rank, itemsets with identical first
k − 2 items would take consecutive ranks. As a result, the Fk−1 × Fk−1

candidate generation method would consider merging a frequent itemset only
with ones that occupy the next few ranks in the sorted list, thus saving some
computations.

Figure 5.8 shows that the Fk−1 × Fk−1 candidate generation procedure
results in only one candidate 3-itemset. This is a considerable reduction from
the four candidate 3-itemsets generated by the Fk−1 × F1 method. This is
because the Fk−1 × Fk−1 method ensures that every candidate k-itemset
contains at least two frequent (k − 1)-itemsets, thus greatly reducing the
number of candidates that are generated in this step.

Note that there can be multiple ways of merging two frequent (k − 1)-
itemsets in the Fk−1 × Fk−1 procedure, one of which is merging if their first
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k−2 items are identical. An alternate approach could be to merge two frequent
(k − 1)-itemsets A and B if the last k − 2 items of A are identical to the first
k−2 itemsets ofB. For example, {Bread, Diapers} and {Diapers, Milk} could
be merged using this approach to generate the candidate 3-itemset {Bread,
Diapers, Milk}. As we will see later, this alternate Fk−1×Fk−1 procedure is
useful in generating sequential patterns, which will be discussed in Chapter 6.

Candidate Pruning

To illustrate the candidate pruning operation for a candidate k-itemset, X =
{i1, i2, . . . , ik}, consider its k proper subsets, X−{ij} (∀j = 1, 2, . . . , k). If any
of them are infrequent, then X is immediately pruned by using the Apriori
principle. Note that we don’t need to explicitly ensure that all subsets of
X of size less than k − 1 are frequent (see Exercise 7). This approach greatly
reduces the number of candidate itemsets considered during support counting.
For the brute-force candidate generation method, candidate pruning requires
checking only k subsets of size k − 1 for each candidate k-itemset. However,
since the Fk−1×F1 candidate generation strategy ensures that at least one of
the (k− 1)-size subsets of every candidate k-itemset is frequent, we only need
to check for the remaining k − 1 subsets. Likewise, the Fk−1 × Fk−1 strategy
requires examining only k − 2 subsets of every candidate k-itemset, since two
of its (k − 1)-size subsets are already known to be frequent in the candidate
generation step.

5.2.4 Support Counting

Support counting is the process of determining the frequency of occurrence
for every candidate itemset that survives the candidate pruning step. Support
counting is implemented in steps 6 through 11 of Algorithm 5.1. A brute-force
approach for doing this is to compare each transaction against every candidate
itemset (see Figure 5.2) and to update the support counts of candidates con-
tained in a transaction. This approach is computationally expensive, especially
when the numbers of transactions and candidate itemsets are large.

An alternative approach is to enumerate the itemsets contained in each
transaction and use them to update the support counts of their respective
candidate itemsets. To illustrate, consider a transaction t that contains five
items, {1, 2, 3, 5, 6}. There are

(
5
3

)
= 10 itemsets of size 3 contained in this

transaction. Some of the itemsets may correspond to the candidate 3-itemsets
under investigation, in which case, their support counts are incremented. Other
subsets of t that do not correspond to any candidates can be ignored.



�

� �

�

374 Chapter 5 Association Analysis

Transaction, t

Subsets of 3 items

1 2 3 5 6

1 2 3 5 6

1 2 3 5 6 1 3 5 6 2 3 5 6 2 5 6 3 5 61 5 6 

2 3 5 6 3 5 6
Level 1

Level 2

Level 3

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6

2 3 5
2 3 61 5 6 2 5 6 3 5 6

Figure 5.9. Enumerating subsets of three items from a transaction t.

Figure 5.9 shows a systematic way for enumerating the 3-itemsets con-
tained in t. Assuming that each itemset keeps its items in increasing lexico-
graphic order, an itemset can be enumerated by specifying the smallest item
first, followed by the larger items. For instance, given t = {1, 2, 3, 5, 6}, all the
3-itemsets contained in t must begin with item 1, 2, or 3. It is not possible
to construct a 3-itemset that begins with items 5 or 6 because there are only
two items in t whose labels are greater than or equal to 5. The number of
ways to specify the first item of a 3-itemset contained in t is illustrated by the
Level 1 prefix tree structure depicted in Figure 5.9. For instance, 1 2 3 5 6
represents a 3-itemset that begins with item 1, followed by two more items
chosen from the set {2, 3, 5, 6}.

After fixing the first item, the prefix tree structure at Level 2 represents the
number of ways to select the second item. For example, 1 2 3 5 6 corresponds
to itemsets that begin with the prefix (1 2) and are followed by the items 3,
5, or 6. Finally, the prefix tree structure at Level 3 represents the complete
set of 3-itemsets contained in t. For example, the 3-itemsets that begin with
prefix {1 2} are {1, 2, 3}, {1, 2, 5}, and {1, 2, 6}, while those that begin with
prefix {2 3} are {2, 3, 5} and {2, 3, 6}.

The prefix tree structure shown in Figure 5.9 demonstrates how itemsets
contained in a transaction can be systematically enumerated, i.e., by specifying
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Figure 5.10. Counting the support of itemsets using hash structure.

their items one by one, from the leftmost item to the rightmost item. We
still have to determine whether each enumerated 3-itemset corresponds to
an existing candidate itemset. If it matches one of the candidates, then the
support count of the corresponding candidate is incremented. In the next
section, we illustrate how this matching operation can be performed efficiently
using a hash tree structure.

Support Counting Using a Hash Tree*

In the Apriori algorithm, candidate itemsets are partitioned into different
buckets and stored in a hash tree. During support counting, itemsets contained
in each transaction are also hashed into their appropriate buckets. That way,
instead of comparing each itemset in the transaction with every candidate
itemset, it is matched only against candidate itemsets that belong to the same
bucket, as shown in Figure 5.10.

Figure 5.11 shows an example of a hash tree structure. Each internal node
of the tree uses the following hash function, h(p) = (p − 1) mod 3, where
mode refers to the modulo (remainder) operator, to determine which branch
of the current node should be followed next. For example, items 1, 4, and 7
are hashed to the same branch (i.e., the leftmost branch) because they have
the same remainder after dividing the number by 3. All candidate itemsets
are stored at the leaf nodes of the hash tree. The hash tree shown in Figure
5.11 contains 15 candidate 3-itemsets, distributed across 9 leaf nodes.
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Figure 5.11. Hashing a transaction at the root node of a hash tree.

Consider the transaction, t = {1, 2, 3, 5, 6}. To update the support counts
of the candidate itemsets, the hash tree must be traversed in such a way
that all the leaf nodes containing candidate 3-itemsets belonging to t must
be visited at least once. Recall that the 3-itemsets contained in t must begin
with items 1, 2, or 3, as indicated by the Level 1 prefix tree structure shown
in Figure 5.9. Therefore, at the root node of the hash tree, the items 1, 2,
and 3 of the transaction are hashed separately. Item 1 is hashed to the left
child of the root node, item 2 is hashed to the middle child, and item 3 is
hashed to the right child. At the next level of the tree, the transaction is
hashed on the second item listed in the Level 2 tree structure shown in Figure
5.9. For example, after hashing on item 1 at the root node, items 2, 3, and
5 of the transaction are hashed. Based on the hash function, items 2 and 5
are hashed to the middle child, while item 3 is hashed to the right child, as
shown in Figure 5.12. This process continues until the leaf nodes of the hash
tree are reached. The candidate itemsets stored at the visited leaf nodes are
compared against the transaction. If a candidate is a subset of the transaction,
its support count is incremented. Note that not all the leaf nodes are visited
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Figure 5.12. Subset operation on the leftmost subtree of the root of a candidate hash tree.

while traversing the hash tree, which helps in reducing the computational
cost. In this example, 5 out of the 9 leaf nodes are visited and 9 out of the 15
itemsets are compared against the transaction.

5.2.5 Computational Complexity

The computational complexity of the Apriori algorithm, which includes both
its runtime and storage, can be affected by the following factors.

Support Threshold Lowering the support threshold often results in more
itemsets being declared as frequent. This has an adverse effect on the compu-
tational complexity of the algorithm because more candidate itemsets must be
generated and counted at every level, as shown in Figure 5.13. The maximum
size of frequent itemsets also tends to increase with lower support thresholds.
This increases the total number of iterations to be performed by the Apriori
algorithm, further increasing the computational cost.

Number of Items (Dimensionality) As the number of items increases,
more space will be needed to store the support counts of items. If the number of
frequent items also grows with the dimensionality of the data, the runtime and
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Figure 5.13. Effect of support threshold on the number of candidate and frequent itemsets obtained
from a benchmark data set.
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Figure 5.14. Effect of average transaction width on the number of candidate and frequent itemsets
obtained from a synthetic data set.

storage requirements will increase because of the larger number of candidate
itemsets generated by the algorithm.
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Number of Transactions Because the Apriori algorithm makes repeated
passes over the transaction data set, its run time increases with a larger
number of transactions.

Average Transaction Width For dense data sets, the average transaction
width can be very large. This affects the complexity of the Apriori algorithm in
two ways. First, the maximum size of frequent itemsets tends to increase as the
average transaction width increases. As a result, more candidate itemsets must
be examined during candidate generation and support counting, as illustrated
in Figure 5.14. Second, as the transaction width increases, more itemsets
are contained in the transaction. This will increase the number of hash tree
traversals performed during support counting.

A detailed analysis of the time complexity for the Apriori algorithm is
presented next.

Generation of frequent 1-itemsets For each transaction, we need to
update the support count for every item present in the transaction. Assuming
that w is the average transaction width, this operation requires O(Nw) time,
where N is the total number of transactions.

Candidate generation To generate candidate k-itemsets, pairs of frequent
(k − 1)-itemsets are merged to determine whether they have at least k − 2
items in common. Each merging operation requires at most k − 2 equality
comparisons. Every merging step can produce at most one viable candidate
k-itemset, while in the worst-case, the algorithm must try to merge every pair
of frequent (k − 1)-itemsets found in the previous iteration. Therefore, the
overall cost of merging frequent itemsets is

w∑
k=2

(k − 2)|Ck| < Cost of merging <
w∑

k=2

(k − 2)|Fk−1|2,

where w is the maximum transaction width. A hash tree is also constructed
during candidate generation to store the candidate itemsets. Because the
maximum depth of the tree is k, the cost for populating the hash tree with
candidate itemsets is O

(∑w
k=2 k|Ck|

)
. During candidate pruning, we need to

verify that the k − 2 subsets of every candidate k-itemset are frequent. Since
the cost for looking up a candidate in a hash tree is O(k), the candidate
pruning step requires O

(∑w
k=2 k(k − 2)|Ck|

)
time.
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Support counting Each transaction of width |t| produces (|t|k ) itemsets of
size k. This is also the effective number of hash tree traversals performed for
each transaction. The cost for support counting is O

(
N
∑

k

(
w
k

)
αk

)
, where w

is the maximum transaction width and αk is the cost for updating the support
count of a candidate k-itemset in the hash tree.

5.3 Rule Generation

This section describes how to extract association rules efficiently from a given
frequent itemset. Each frequent k-itemset, Y , can produce up to 2k−2 associa-
tion rules, ignoring rules that have empty antecedents or consequents (∅ −→ Y
or Y −→ ∅). An association rule can be extracted by partitioning the itemset
Y into two non-empty subsets, X and Y −X, such that X −→ Y −X satisfies
the confidence threshold. Note that all such rules must have already met the
support threshold because they are generated from a frequent itemset.

Example 5.2. Let X = {a, b, c} be a frequent itemset. There are six candi-
date association rules that can be generated from X: {a, b} −→ {c}, {a, c} −→
{b}, {b, c} −→ {a}, {a} −→ {b, c}, {b} −→ {a, c}, and {c} −→ {a, b}. As each
of their support is identical to the support for X, all the rules satisfy the
support threshold.

Computing the confidence of an association rule does not require additional
scans of the transaction data set. Consider the rule {1, 2} −→ {3}, which is
generated from the frequent itemset X = {1, 2, 3}. The confidence for this
rule is σ({1, 2, 3})/σ({1, 2}). Because {1, 2, 3} is frequent, the anti-monotone
property of support ensures that {1, 2} must be frequent, too. Since the
support counts for both itemsets were already found during frequent itemset
generation, there is no need to read the entire data set again.

5.3.1 Confidence-Based Pruning

Confidence does not show the anti-monotone property in the same way as the
support measure. For example, the confidence for X −→ Y can be larger,
smaller, or equal to the confidence for another rule X̃ −→ Ỹ , where X̃ ⊆ X
and Ỹ ⊆ Y (see Exercise 3 on page 439). Nevertheless, if we compare rules
generated from the same frequent itemset Y , the following theorem holds for
the confidence measure.
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Theorem 5.2. Let Y be an itemset and X is a subset of Y . If a rule X −→
Y −X does not satisfy the confidence threshold, then any rule X̃ −→ Y − X̃,
where X̃ is a subset of X, must not satisfy the confidence threshold as well.

To prove this theorem, consider the following two rules: X̃ −→ Y − X̃ and
X −→ Y −X, where X̃ ⊂ X. The confidence of the rules are σ(Y )/σ(X̃) and
σ(Y )/σ(X), respectively. Since X̃ is a subset of X, σ(X̃) ≥ σ(X). Therefore,
the former rule cannot have a higher confidence than the latter rule.

5.3.2 Rule Generation in Apriori Algorithm

The Apriori algorithm uses a level-wise approach for generating association
rules, where each level corresponds to the number of items that belong to the
rule consequent. Initially, all the high confidence rules that have only one item
in the rule consequent are extracted. These rules are then used to generate
new candidate rules. For example, if {acd} −→ {b} and {abd} −→ {c} are
high confidence rules, then the candidate rule {ad} −→ {bc} is generated by
merging the consequents of both rules. Figure 5.15 shows a lattice structure
for the association rules generated from the frequent itemset {a, b, c, d}. If any
node in the lattice has low confidence, then according to Theorem 5.2, the
entire subgraph spanned by the node can be pruned immediately. Suppose
the confidence for {bcd} −→ {a} is low. All the rules containing item a in
its consequent, including {cd} −→ {ab}, {bd} −→ {ac}, {bc} −→ {ad}, and
{d} −→ {abc} can be discarded.

A pseudocode for the rule generation step is shown in Algorithms 5.2 and
5.3. Note the similarity between the ap-genrules procedure given in Algo-
rithm 5.3 and the frequent itemset generation procedure given in Algorithm
5.1. The only difference is that, in rule generation, we do not have to make
additional passes over the data set to compute the confidence of the candidate
rules. Instead, we determine the confidence of each rule by using the support
counts computed during frequent itemset generation.

Algorithm 5.2 Rule generation of the Apriori algorithm.
1: for each frequent k-itemset fk, k ≥ 2 do
2: H1 = {i | i ∈ fk} {1-item consequents of the rule.}
3: call ap-genrules(fk, H1.)
4: end for
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Figure 5.15. Pruning of association rules using the confidence measure.

Algorithm 5.3 Procedure ap-genrules(fk, Hm).

1: k = |fk| {size of frequent itemset.}
2: m = |Hm| {size of rule consequent.}
3: if k > m+ 1 then
4: Hm+1 = candidate-gen(Hm).
5: Hm+1 = candidate-prune(Hm+1,Hm).
6: for each hm+1 ∈ Hm+1 do
7: conf = σ(fk)/σ(fk − hm+1).
8: if conf ≥ minconf then
9: output the rule (fk − hm+1) −→ hm+1.

10: else
11: delete hm+1 from Hm+1.
12: end if
13: end for
14: call ap-genrules(fk, Hm+1.)
15: end if

5.3.3 An Example: Congressional Voting Records

This section demonstrates the results of applying association analysis to the
voting records of members of the United States House of Representatives. The
data is obtained from the 1984 Congressional Voting Records Database, which
is available at the UCI machine learning data repository. Each transaction
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contains information about the party affiliation for a representative along with
his or her voting record on 16 key issues. There are 435 transactions and 34
items in the data set. The set of items are listed in Table 5.3.

Table 5.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source:
The UCI machine learning repository.

1. Republican 18. aid to Nicaragua = no
2. Democrat 19. MX-missile = yes
3. handicapped-infants = yes 20. MX-missile = no
4. handicapped-infants = no 21. immigration = yes
5. water project cost sharing = yes 22. immigration = no
6. water project cost sharing = no 23. synfuel corporation cutback = yes
7. budget-resolution = yes 24. synfuel corporation cutback = no
8. budget-resolution = no 25. education spending = yes
9. physician fee freeze = yes 26. education spending = no
10. physician fee freeze = no 27. right-to-sue = yes
11. aid to El Salvador = yes 28. right-to-sue = no
12. aid to El Salvador = no 29. crime = yes
13. religious groups in schools = yes 30. crime = no
14. religious groups in schools = no 31. duty-free-exports = yes
15. anti-satellite test ban = yes 32. duty-free-exports = no
16. anti-satellite test ban = no 33. export administration act = yes
17. aid to Nicaragua = yes 34. export administration act = no

Table 5.4. Association rules extracted from the 1984 United States Congressional Voting Records.

Association Rule Confidence

{budget resolution = no, MX-missile=no, aid to El Salvador = yes } 91.0%
−→ {Republican}

{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%
−→ {Democrat}

{crime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%
−→ {Republican}

{crime = no, right-to-sue = no, physician fee freeze = no} 100%
−→ {Democrat}

The Apriori algorithm is then applied to the data set with minsup = 30%
and minconf = 90%. Some of the high confidence rules extracted by the
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algorithm are shown in Table 5.4. The first two rules suggest that most of the
members who voted yes for aid to El Salvador and no for budget resolution and
MX missile are Republicans; while those who voted no for aid to El Salvador
and yes for budget resolution and MX missile are Democrats. These high
confidence rules show the key issues that divide members from both political
parties.

5.4 Compact Representation of Frequent Itemsets

In practice, the number of frequent itemsets produced from a transaction
data set can be very large. It is useful to identify a small representative set of
frequent itemsets from which all other frequent itemsets can be derived. Two
such representations are presented in this section in the form of maximal and
closed frequent itemsets.

5.4.1 Maximal Frequent Itemsets

Definition 5.3 (Maximal Frequent Itemset). A frequent itemset is maximal
if none of its immediate supersets are frequent.

To illustrate this concept, consider the itemset lattice shown in Figure
5.16. The itemsets in the lattice are divided into two groups: those that are
frequent and those that are infrequent. A frequent itemset border, which is
represented by a dashed line, is also illustrated in the diagram. Every itemset
located above the border is frequent, while those located below the border (the
shaded nodes) are infrequent. Among the itemsets residing near the border,
{a, d}, {a, c, e}, and {b, c, d, e} are maximal frequent itemsets because all of
their immediate supersets are infrequent. For example, the itemset {a, d} is
maximal frequent because all of its immediate supersets, {a, b, d}, {a, c, d},
and {a, d, e}, are infrequent. In contrast, {a, c} is non-maximal because one of
its immediate supersets, {a, c, e}, is frequent.

Maximal frequent itemsets effectively provide a compact representation
of frequent itemsets. In other words, they form the smallest set of itemsets
from which all frequent itemsets can be derived. For example, every frequent
itemset in Figure 5.16 is a subset of one of the three maximal frequent itemsets,
{a, d}, {a, c, e}, and {b, c, d, e}. If an itemset is not a proper subset of any of
the maximal frequent itemsets, then it is either infrequent (e.g., {a, d, e})
or maximal frequent itself (e.g., {b, c, d, e}). Hence, the maximal frequent
itemsets {a, c, e}, {a, d}, and {b, c, d, e} provide a compact representation of
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Figure 5.16. Maximal frequent itemset.

the frequent itemsets shown in Figure 5.16. Enumerating all the subsets of
maximal frequent itemsets generates the complete list of all frequent itemsets.

Maximal frequent itemsets provide a valuable representation for data sets
that can produce very long, frequent itemsets, as there are exponentially many
frequent itemsets in such data. Nevertheless, this approach is practical only if
an efficient algorithm exists to explicitly find the maximal frequent itemsets.
We briefly describe one such approach in Section 5.5.

Despite providing a compact representation, maximal frequent itemsets
do not contain the support information of their subsets. For example, the
support of the maximal frequent itemsets {a, c, e}, {a, d}, and {b, c, d, e} do
not provide any information about the support of their subsets except that it
meets the support threshold. An additional pass over the data set is therefore
needed to determine the support counts of the non-maximal frequent itemsets.
In some cases, it is desirable to have a minimal representation of itemsets that
preserves the support information. We describe such a representation in the
next section.
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5.4.2 Closed Itemsets

Closed itemsets provide a minimal representation of all itemsets without losing
their support information. A formal definition of a closed itemset is presented
below.

Definition 5.4 (Closed Itemset). An itemset X is closed if none of its
immediate supersets has exactly the same support count as X.

Put another way, X is not closed if at least one of its immediate supersets
has the same support count as X. Examples of closed itemsets are shown in
Figure 5.17. To better illustrate the support count of each itemset, we have
associated each node (itemset) in the lattice with a list of its corresponding
transaction IDs. For example, since the node {b, c} is associated with transac-
tion IDs 1, 2, and 3, its support count is equal to three. From the transactions
given in this diagram, notice that the support for {b} is identical to {b, c}. This
is because every transaction that contains b also contains c. Hence, {b} is not
a closed itemset. Similarly, since c occurs in every transaction that contains
both a and d, the itemset {a, d} is not closed as it has the same support as
its superset {a, c, d}. On the other hand, {b, c} is a closed itemset because it
does not have the same support count as any of its supersets.

An interesting property of closed itemsets is that if we know their support
counts, we can derive the support count of every other itemset in the itemset
lattice without making additional passes over the data set. For example,
consider the 2-itemset {b, e} in Figure 5.17. Since {b, e} is not closed, its
support must be equal to the support of one of its immediate supersets,
{a, b, e}, {b, c, e}, and {b, d, e}. Further, none of the supersets of {b, e} can
have a support greater than the support of {b, e}, due to the anti-monotone
nature of the support measure. Hence, the support of {b, e} can be computed
by examining the support counts of all of its immediate supersets of size three
and taking their maximum value. If an immediate superset is closed (e.g.,
{b, c, e}), we would know its support count. Otherwise, we can recursively
compute its support by examining the supports of its immediate supersets of
size four. In general, the support count of any non-closed (k − 1)-itemset can
be determined as long as we know the support counts of all k-itemsets. Hence,
one can devise an iterative algorithm that computes the support counts of
itemsets at level k− 1 using the support counts of itemsets at level k, starting
from the level kmax, where kmax is the size of the largest closed itemset.

Even though closed itemsets provide a compact representation of the sup-
port counts of all itemsets, they can still be exponentially large in number.
Moreover, for most practical applications, we only need to determine the
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Figure 5.17. An example of the closed frequent itemsets (with minimum support equal to 40%).

support count of all frequent itemsets. In this regard, closed frequent item-
sets provide a compact representation of the support counts of all frequent
itemsets, which can be defined as follows.

Definition 5.5 (Closed Frequent Itemset). An itemset is a closed frequent
itemset if it is closed and its support is greater than or equal to minsup.

In the previous example, assuming that the support threshold is 40%, {b,c}
is a closed frequent itemset because its support is 60%. In Figure 5.17, the
closed frequent itemsets are indicated by the shaded nodes.

Algorithms are available to explicitly extract closed frequent itemsets from
a given data set. Interested readers may refer to the Bibliographic Notes at
the end of this chapter for further discussions of these algorithms. We can use
closed frequent itemsets to determine the support counts for all non-closed
frequent itemsets. For example, consider the frequent itemset {a, d} shown
in Figure 5.17. Because this itemset is not closed, its support count must be
equal to the maximum support count of its immediate supersets, {a, b, d},
{a, c, d}, and {a, d, e}. Also, since {a, d} is frequent, we only need to consider
the support of its frequent supersets. In general, the support count of every
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Algorithm 5.4 Support counting using closed frequent itemsets.
1: Let C denote the set of closed frequent itemsets and F denote the set of all

frequent itemsets.
2: Let kmax denote the maximum size of closed frequent itemsets
3: Fkmax

= {f |f ∈ C, |f | = kmax} {Find all frequent itemsets of size kmax.}
4: for k = kmax − 1 down to 1 do
5: Fk = {f |f ∈ F, |f | = k} {Find all frequent itemsets of size k.}
6: for each f ∈ Fk do
7: if f /∈ C then
8: f.support = max{f ′.support|f ′ ∈ Fk+1, f ⊂ f ′}
9: end if

10: end for
11: end for

non-closed frequent k-itemset can be obtained by considering the support of
all its frequent supersets of size k + 1. For example, since the only frequent
superset of {a, d} is {a, c, d}, its support is equal to the support of {a, c, d},
which is 2. Using this methodology, an algorithm can be developed to compute
the support for every frequent itemset. The pseudocode for this algorithm
is shown in Algorithm 5.4. The algorithm proceeds in a specific-to-general
fashion, i.e., from the largest to the smallest frequent itemsets. This is because,
in order to find the support for a non-closed frequent itemset, the support for
all of its supersets must be known. Note that the set of all frequent itemsets
can be easily computed by taking the union of all subsets of frequent closed
itemsets.

To illustrate the advantage of using closed frequent itemsets, consider the
data set shown in Table 5.5, which contains ten transactions and fifteen items.
The items can be divided into three groups: (1) Group A, which contains
items a1 through a5; (2) Group B, which contains items b1 through b5; and
(3) Group C, which contains items c1 through c5. Assuming that the support
threshold is 20%, itemsets involving items from the same group are frequent,
but itemsets involving items from different groups are infrequent. The total
number of frequent itemsets is thus 3 × (25 − 1) = 93. However, there are
only four closed frequent itemsets in the data: ({a3, a4}, {a1, a2, a3, a4, a5},
{b1, b2, b3, b4, b5}, and {c1, c2, c3, c4, c5}). It is often sufficient to present only
the closed frequent itemsets to the analysts instead of the entire set of frequent
itemsets.
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Table 5.5. A transaction data set for mining closed itemsets.

TID a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 c1 c2 c3 c4 c5
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0
5 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
6 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Maximal
Frequent
Itemsets

Closed Frequent
Itemsets

Closed
Itemsets

Frequent
Itemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Finally, note that all maximal frequent itemsets are closed because none of
the maximal frequent itemsets can have the same support count as their im-
mediate supersets. The relationships among frequent, closed, closed frequent,
and maximal frequent itemsets are shown in Figure 5.18.

5.5 Alternative Methods for Generating Frequent
Itemsets*

Apriori is one of the earliest algorithms to have successfully addressed the
combinatorial explosion of frequent itemset generation. It achieves this by
applying the Apriori principle to prune the exponential search space. Despite
its significant performance improvement, the algorithm still incurs consider-
able I/O overhead since it requires making several passes over the transaction
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data set. In addition, as noted in Section 5.2.5, the performance of the Apriori
algorithm may degrade significantly for dense data sets because of the increas-
ing width of transactions. Several alternative methods have been developed
to overcome these limitations and improve upon the efficiency of the Apriori
algorithm. The following is a high-level description of these methods.

Traversal of Itemset Lattice A search for frequent itemsets can be con-
ceptually viewed as a traversal on the itemset lattice shown in Figure 5.1.
The search strategy employed by an algorithm dictates how the lattice struc-
ture is traversed during the frequent itemset generation process. Some search
strategies are better than others, depending on the configuration of frequent
itemsets in the lattice. An overview of these strategies is presented next.

• General-to-Specific versus Specific-to-General: The Apriori al-
gorithm uses a general-to-specific search strategy, where pairs of frequent
(k−1)-itemsets are merged to obtain candidate k-itemsets. This general-
to-specific search strategy is effective, provided the maximum length of a
frequent itemset is not too long. The configuration of frequent itemsets
that works best with this strategy is shown in Figure 5.19(a), where
the darker nodes represent infrequent itemsets. Alternatively, a specific-
to-general search strategy looks for more specific frequent itemsets first,
before finding the more general frequent itemsets. This strategy is useful
to discover maximal frequent itemsets in dense transactions, where the
frequent itemset border is located near the bottom of the lattice, as
shown in Figure 5.19(b). The Apriori principle can be applied to prune
all subsets of maximal frequent itemsets. Specifically, if a candidate
k-itemset is maximal frequent, we do not have to examine any of its
subsets of size k − 1. However, if the candidate k-itemset is infrequent,
we need to check all of its k − 1 subsets in the next iteration. Another
approach is to combine both general-to-specific and specific-to-general
search strategies. This bidirectional approach requires more space to
store the candidate itemsets, but it can help to rapidly identify the
frequent itemset border, given the configuration shown in Figure 5.19(c).

• Equivalence Classes: Another way to envision the traversal is to
first partition the lattice into disjoint groups of nodes (or equivalence
classes). A frequent itemset generation algorithm searches for frequent
itemsets within a particular equivalence class first before moving to
another equivalence class. As an example, the level-wise strategy used
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(a) General-to-specific (b) Specific-to-general (c) Bidirectional

Figure 5.19. General-to-specific, specific-to-general, and bidirectional search.

in the Apriori algorithm can be considered to be partitioning the lattice
on the basis of itemset sizes; i.e., the algorithm discovers all frequent
1-itemsets first before proceeding to larger-sized itemsets. Equivalence
classes can also be defined according to the prefix or suffix labels of
an itemset. In this case, two itemsets belong to the same equivalence
class if they share a common prefix or suffix of length k. In the prefix-
based approach, the algorithm can search for frequent itemsets starting
with the prefix a before looking for those starting with prefixes b, c,
and so on. Both prefix-based and suffix-based equivalence classes can be
demonstrated using the tree-like structure shown in Figure 5.20.

• Breadth-First versus Depth-First: The Apriori algorithm traverses
the lattice in a breadth-first manner, as shown in Figure 5.21(a). It first
discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets,
and so on, until no new frequent itemsets are generated. The itemset
lattice can also be traversed in a depth-first manner, as shown in Figures
5.21(b) and 5.22. The algorithm can start from, say, node a in Figure
5.22, and count its support to determine whether it is frequent. If so, the
algorithm progressively expands the next level of nodes, i.e., ab, abc, and
so on, until an infrequent node is reached, say, abcd. It then backtracks
to another branch, say, abce, and continues the search from there.

The depth-first approach is often used by algorithms designed to find
maximal frequent itemsets. This approach allows the frequent itemset
border to be detected more quickly than using a breadth-first approach.
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Figure 5.20. Equivalence classes based on the prefix and suffix labels of itemsets.

(a) Breadth first (b) Depth first

Figure 5.21. Breadth-first and depth-first traversals.

Once a maximal frequent itemset is found, substantial pruning can be
performed on its subsets. For example, if the node bcde shown in Figure
5.22 is maximal frequent, then the algorithm does not have to visit the
subtrees rooted at bd, be, c, d, and e because they will not contain any
maximal frequent itemsets. However, if abc is maximal frequent, only the
nodes such as ac and bc are not maximal frequent (but the subtrees of
ac and bc may still contain maximal frequent itemsets). The depth-first
approach also allows a different kind of pruning based on the support
of itemsets. For example, suppose the support for {a, b, c} is identical
to the support for {a, b}. The subtrees rooted at abd and abe can be
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Figure 5.22. Generating candidate itemsets using the depth-first approach.

skipped because they are guaranteed not to have any maximal frequent
itemsets. The proof of this is left as an exercise to the readers.

Representation of Transaction Data Set There are many ways to rep-
resent a transaction data set. The choice of representation can affect the I/O
costs incurred when computing the support of candidate itemsets. Figure
5.23 shows two different ways of representing market basket transactions.
The representation on the left is called a horizontal data layout, which
is adopted by many association rule mining algorithms, including Apriori.
Another possibility is to store the list of transaction identifiers (TID-list)
associated with each item. Such a representation is known as the vertical
data layout. The support for each candidate itemset is obtained by intersecting
the TID-lists of its subset items. The length of the TID-lists shrinks as we
progress to larger sized itemsets. However, one problem with this approach is
that the initial set of TID-lists might be too large to fit into main memory,
thus requiring more sophisticated techniques to compress the TID-lists. We
describe another effective approach to represent the data in the next section.

5.6 FP-Growth Algorithm*

This section presents an alternative algorithm called FP-growth that takes
a radically different approach to discovering frequent itemsets. The algorithm
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Figure 5.23. Horizontal and vertical data format.

does not subscribe to the generate-and-test paradigm of Apriori. Instead, it
encodes the data set using a compact data structure called an FP-tree and
extracts frequent itemsets directly from this structure. The details of this
approach are presented next.

5.6.1 FP-Tree Representation

An FP-tree is a compressed representation of the input data. It is constructed
by reading the data set one transaction at a time and mapping each transaction
onto a path in the FP-tree. As different transactions can have several items
in common, their paths might overlap. The more the paths overlap with one
another, the more compression we can achieve using the FP-tree structure. If
the size of the FP-tree is small enough to fit into main memory, this will allow
us to extract frequent itemsets directly from the structure in memory instead
of making repeated passes over the data stored on disk.

Figure 5.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts inside every transaction of the data set. For
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Figure 5.24. Construction of an FP-tree.

the data set shown in Figure 5.24, a is the most frequent item, followed
by b, c, d, and e.

2. The algorithm makes a second pass over the data to construct the FP-
tree. After reading the first transaction, {a, b}, the nodes labeled as a
and b are created. A path is then formed from null → a → b to encode
the transaction. Every node along the path has a frequency count of 1.

3. After reading the second transaction, {b,c,d}, a new set of nodes is
created for items b, c, and d. A path is then formed to represent the
transaction by connecting the nodes null → b → c → d. Every node
along this path also has a frequency count equal to one. Although the
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Figure 5.25. An FP-tree representation for the data set shown in Figure 5.24 with a different item
ordering scheme.

first two transactions have an item in common, which is b, their paths
are disjoint because the transactions do not share a common prefix.

4. The third transaction, {a,c,d,e}, shares a common prefix item (which
is a) with the first transaction. As a result, the path for the third
transaction, null → a → c → d → e, overlaps with the path for the
first transaction, null → a → b. Because of their overlapping path, the
frequency count for node a is incremented to two, while the frequency
counts for the newly created nodes, c, d, and e, are equal to one.

5. This process continues until every transaction has been mapped onto one
of the paths given in the FP-tree. The resulting FP-tree after reading
all the transactions is shown at the bottom of Figure 5.24.

The size of an FP-tree is typically smaller than the size of the uncompressed
data because many transactions in market basket data often share a few items
in common. In the best-case scenario, where all the transactions have the same
set of items, the FP-tree contains only a single branch of nodes. The worst-
case scenario happens when every transaction has a unique set of items. As
none of the transactions have any items in common, the size of the FP-tree
is effectively the same as the size of the original data. However, the physical
storage requirement for the FP-tree is higher because it requires additional
space to store pointers between nodes and counters for each item.

The size of an FP-tree also depends on how the items are ordered. The
notion of ordering items in decreasing order of support counts relies on the
possibility that the high support items occur more frequently across all paths
and hence must be used as most commonly occurring prefixes. For example,
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if the ordering scheme in the preceding example is reversed, i.e., from lowest
to highest support item, the resulting FP-tree is shown in Figure 5.25. The
tree appears to be denser because the branching factor at the root node has
increased from 2 to 5 and the number of nodes containing the high support
items such as a and b has increased from 3 to 12. Nevertheless, ordering by
decreasing support counts does not always lead to the smallest tree, especially
when the high support items do not occur frequently together with the other
items. For example, suppose we augment the data set given in Figure 5.24
with 100 transactions that contain {e}, 80 transactions that contain {d}, 60
transactions that contain {c}, and 40 transactions that contain {b}. Item
e is now most frequent, followed by d, c, b, and a. With the augmented
transactions, ordering by decreasing support counts will result in an FP-tree
similar to Figure 5.25, while a scheme based on increasing support counts
produces a smaller FP-tree similar to Figure 5.24(iv).

An FP-tree also contains a list of pointers connecting nodes that have the
same items. These pointers, represented as dashed lines in Figures 5.24 and
5.25, help to facilitate the rapid access of individual items in the tree. We
explain how to use the FP-tree and its corresponding pointers for frequent
itemset generation in the next section.

5.6.2 Frequent Itemset Generation in FP-Growth Algorithm

FP-growth is an algorithm that generates frequent itemsets from an FP-
tree by exploring the tree in a bottom-up fashion. Given the example tree
shown in Figure 5.24, the algorithm looks for frequent itemsets ending in e
first, followed by d, c, b, and finally, a. This bottom-up strategy for finding
frequent itemsets ending with a particular item is equivalent to the suffix-
based approach described in Section 5.5. Since every transaction is mapped
onto a path in the FP-tree, we can derive the frequent itemsets ending with a
particular item, say, e, by examining only the paths containing node e. These
paths can be accessed rapidly using the pointers associated with node e. The
extracted paths are shown in Figure 5.26 (a). Similar paths for itemsets ending
in d, c, b, and a are shown in Figures 5.26 (b), (c), (d), and (e), respectively.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent
itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each of these
subproblems are further decomposed into smaller subproblems. By merging
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Figure 5.26. Decomposing the frequent itemset generation problem into multiple subproblems, where
each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

the solutions obtained from the subproblems, all the frequent itemsets ending
in e can be found. Finally, the set of all frequent itemsets can be generated by
merging the solutions to the subproblems of finding frequent itemsets ending
in e, d, c, b, and a. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 5.27(a).

2. From the prefix paths shown in Figure 5.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

3. Because {e} is frequent, the algorithm has to solve the subproblems of
finding frequent itemsets ending in de, ce, be, and ae. Before solving these
subproblems, it must first convert the prefix paths into a conditional
FP-tree, which is structurally similar to an FP-tree, except it is used
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Figure 5.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

to find frequent itemsets ending with a particular suffix. A conditional
FP-tree is obtained in the following way:

(a) First, the support counts along the prefix paths must be updated
because some of the counts include transactions that do not contain
item e. For example, the rightmost path shown in Figure 5.27(a),
null −→ b:2 −→ c:2 −→ e:1, includes a transaction {b, c} that
does not contain item e. The counts along the prefix path must
therefore be adjusted to 1 to reflect the actual number of transac-
tions containing {b, c, e}.

(b) The prefix paths are truncated by removing the nodes for e. These
nodes can be removed because the support counts along the prefix
paths have been updated to reflect only transactions that contain e
and the subproblems of finding frequent itemsets ending in de, ce,
be, and ae no longer need information about node e.

(c) After updating the support counts along the prefix paths, some
of the items may no longer be frequent. For example, the node b
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appears only once and has a support count equal to 1, which means
that there is only one transaction that contains both b and e. Item b
can be safely ignored from subsequent analysis because all itemsets
ending in be must be infrequent.

The conditional FP-tree for e is shown in Figure 5.27(b). The tree looks
different than the original prefix paths because the frequency counts
have been updated and the nodes b and e have been eliminated.

4. FP-growth uses the conditional FP-tree for e to solve the subproblems
of finding frequent itemsets ending in de, ce, and ae. To find the frequent
itemsets ending in de, the prefix paths for d are gathered from the
conditional FP-tree for e (Figure 5.27(c)). By adding the frequency
counts associated with node d, we obtain the support count for {d, e}.
Since the support count is equal to 2, {d, e} is declared a frequent
itemset. Next, the algorithm constructs the conditional FP-tree for de
using the approach described in step 3. After updating the support
counts and removing the infrequent item c, the conditional FP-tree for de
is shown in Figure 5.27(d). Since the conditional FP-tree contains only
one item, a, whose support is equal to minsup, the algorithm extracts
the frequent itemset {a, d, e} and moves on to the next subproblem,
which is to generate frequent itemsets ending in ce. After processing the
prefix paths for c, {c, e} is found to be frequent. However, the conditional
FP-tree for ce will have no frequent items and thus will be eliminated.
The algorithm proceeds to solve the next subproblem and finds {a, e}
to be the only frequent itemset remaining.

This example illustrates the divide-and-conquer approach used in the FP-
growth algorithm. At each recursive step, a conditional FP-tree is constructed
by updating the frequency counts along the prefix paths and removing all
infrequent items. Because the subproblems are disjoint, FP-growth will not
generate any duplicate itemsets. In addition, the counts associated with the
nodes allow the algorithm to perform support counting while generating the
common suffix itemsets.

FP-growth is an interesting algorithm because it illustrates how a compact
representation of the transaction data set helps to efficiently generate frequent
itemsets. In addition, for certain transaction data sets, FP-growth outperforms
the standard Apriori algorithm by several orders of magnitude. The run-time
performance of FP-growth depends on the compaction factor of the data
set. If the resulting conditional FP-trees are very bushy (in the worst case, a
full prefix tree), then the performance of the algorithm degrades significantly
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because it has to generate a large number of subproblems and merge the results
returned by each subproblem.

5.7 Evaluation of Association Patterns

Although the Apriori principle significantly reduces the exponential search
space of candidate itemsets, association analysis algorithms still have the
potential to generate a large number of patterns. For example, although the
data set shown in Table 5.1 contains only six items, it can produce hundreds
of association rules at particular support and confidence thresholds. As the
size and dimensionality of real commercial databases can be very large, we
can easily end up with thousands or even millions of patterns, many of which
might not be interesting. Identifying the most interesting patterns from the
multitude of all possible ones is not a trivial task because “one person’s trash
might be another person’s treasure.” It is therefore important to establish a
set of well-accepted criteria for evaluating the quality of association patterns.

The first set of criteria can be established through a data-driven approach
to define objective interestingness measures. These measures can be
used to rank patterns—itemsets or rules—and thus provide a straightforward
way of dealing with the enormous number of patterns that are found in a
data set. Some of the measures can also provide statistical information, e.g.,
itemsets that involve a set of unrelated items or cover very few transactions
are considered uninteresting because they may capture spurious relationships
in the data and should be eliminated. Examples of objective interestingness
measures include support, confidence, and correlation.

The second set of criteria can be established through subjective arguments.
A pattern is considered subjectively uninteresting unless it reveals unexpected
information about the data or provides useful knowledge that can lead to
profitable actions. For example, the rule {Butter} −→ {Bread} may not be
interesting, despite having high support and confidence values, because the
relationship represented by the rule might seem rather obvious. On the other
hand, the rule {Diapers} −→ {Beer} is interesting because the relationship is
quite unexpected and may suggest a new cross-selling opportunity for retailers.
Incorporating subjective knowledge into pattern evaluation is a difficult task
because it requires a considerable amount of prior information from domain
experts. Readers interested in subjective interestingness measures may refer
to resources listed in the bibliography at the end of this chapter.
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Table 5.6. A 2-way contingency table for variables A and B.

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

5.7.1 Objective Measures of Interestingness

An objective measure is a data-driven approach for evaluating the quality of
association patterns. It is domain-independent and requires only that the user
specifies a threshold for filtering low-quality patterns. An objective measure is
usually computed based on the frequency counts tabulated in a contingency
table. Table 5.6 shows an example of a contingency table for a pair of binary
variables, A and B. We use the notation A (B) to indicate that A (B) is absent
from a transaction. Each entry fij in this 2×2 table denotes a frequency count.
For example, f11 is the number of times A and B appear together in the same
transaction, while f01 is the number of transactions that contain B but not A.
The row sum f1+ represents the support count for A, while the column sum
f+1 represents the support count for B. Finally, even though our discussion
focuses mainly on asymmetric binary variables, note that contingency tables
are also applicable to other attribute types such as symmetric binary, nominal,
and ordinal variables.

Limitations of the Support-Confidence Framework The classical asso-
ciation rule mining formulation relies on the support and confidence measures
to eliminate uninteresting patterns. The drawback of support, which is de-
scribed more fully in Section 5.8, is that many potentially interesting patterns
involving low support items might be eliminated by the support threshold.
The drawback of confidence is more subtle and is best demonstrated with the
following example.

Example 5.3. Suppose we are interested in analyzing the relationship be-
tween people who drink tea and coffee. We may gather information about the
beverage preferences among a group of people and summarize their responses
into a contingency table such as the one shown in Table 5.7.

The information given in this table can be used to evaluate the association
rule {Tea} −→ {Coffee}. At first glance, it may appear that people who drink
tea also tend to drink coffee because the rule’s support (15%) and confidence
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Table 5.7. Beverage preferences among a group of 1000 people.

Coffee Coffee

Tea 150 50 200

Tea 650 150 800

800 200 1000

(75%) values are reasonably high. This argument would have been acceptable
except that the fraction of people who drink coffee, regardless of whether
they drink tea, is 80%, while the fraction of tea drinkers who drink coffee is
only 75%. Thus knowing that a person is a tea drinker actually decreases her
probability of being a coffee drinker from 80% to 75%! The rule {Tea} −→
{Coffee} is therefore misleading despite its high confidence value.

Table 5.8. Information about people who drink tea and people who use honey in their beverage.

Honey Honey

Tea 100 100 200

Tea 20 780 800

120 880 1000

Now consider a similar problem where we are interested in analyzing the
relationship between people who drink tea and people who use honey in their
beverage. Table 5.8 summarizes the information gathered over the same group
of people about their preferences for drinking tea and using honey. If we
evaluate the association rule {Tea} −→ {Honey} using this information, we
will find that the confidence value of this rule is merely 50%, which might
be easily rejected using a reasonable threshold on the confidence value, say
70%. One thus might consider that the preference of a person for drinking
tea has no influence on her preference for using honey. However, the fraction
of people who use honey, regardless of whether they drink tea, is only 12%.
Hence, knowing that a person drinks tea significantly increases her probability
of using honey from 12% to 50%. Further, the fraction of people who do not
drink tea but use honey is only 2.5%! This suggests that there is definitely
some information in the preference of a person of using honey given that she
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drinks tea. The rule {Tea} −→ {Honey} may therefore be falsely rejected if
confidence is used as the evaluation measure.

Note that if we take the support of coffee drinkers into account, we would
not be surprised to find that many of the people who drink tea also drink coffee,
since the overall number of coffee drinkers is quite large by itself. What is more
surprising is that the fraction of tea drinkers who drink coffee is actually less
than the overall fraction of people who drink coffee, which points to an inverse
relationship between tea drinkers and coffee drinkers. Similarly, if we account
for the fact that the support of using honey is inherently small, it is easy to
understand that the fraction of tea drinkers who use honey will naturally be
small. Instead, what is important to measure is the change in the fraction of
honey users, given the information that they drink tea.

The limitations of the confidence measure are well-known and can be
understood from a statistical perspective as follows. The support of a variable
measures the probability of its occurrence, while the support s(A,B) of a pair
of a variables A and B measures the probability of the two variables occurring
together. Hence, the joint probability P (A,B) can be written as

P (A,B) = s(A,B) =
f11
N
.

If we assume A and B are statistically independent, i.e. there is no relation-
ship between the occurrences of A and B, then P (A,B) = P (A) × P (B).
Hence, under the assumption of statistical independence between A and B,
the support sindep(A,B) of A and B can be written as

sindep(A,B) = s(A)× s(B) or equivalently, sindep(A,B) =
f1+
N

× f+1

N
.

(5.4)
If the support between two variables, s(A,B) is equal to sindep(A,B), then A
and B can be considered to be unrelated to each other. However, if s(A,B) is
widely different from sindep(A,B), then A and B are most likely dependent.
Hence, any deviation of s(A,B) from s(A)×s(B) can be seen as an indication
of a statistical relationship between A and B. Since the confidence measure
only considers the deviance of s(A,B) from s(A) and not from s(A)× s(B), it
fails to account for the support of the consequent, namely s(B). This results
in the detection of spurious patterns (e.g., {Tea} −→ {Coffee}) and the
rejection of truly interesting patterns (e.g., {Tea} −→ {Honey}), as illustrated
in the previous example.
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Various objective measures have been used to capture the deviance of
s(A,B) from sindep(A,B), that are not susceptible to the limitations of the
confidence measure. Below, we provide a brief description of some of these
measures and discuss some of their properties.

Interest Factor The interest factor, which is also called as the “lift,” can
be defined as follows:

I(A,B) =
s(A,B)

s(A)× s(B)
=

Nf11
f1+f+1

. (5.5)

Notice that s(A) × s(B) = sindep(A,B). Hence, the interest factor measures
the ratio of the support of a pattern s(A,B) against its baseline support
sindep(A,B) computed under the statistical independence assumption. Using
Equations 5.5 and 5.4, we can interpret the measure as follows:

I(A,B)

⎧⎨⎩
= 1, if A and B are independent;
> 1, if A and B are positively related;
< 1, if A and B are negatively related.

(5.6)

For the tea-coffee example shown in Table 5.7, I = 0.15
0.2×0.8 = 0.9375, thus sug-

gesting a slight negative relationship between tea drinkers and coffee drinkers.
Also, for the tea-honey example shown in Table 5.8, I = 0.1

0.12×0.2 = 4.1667,
suggesting a strong positive relationship between people who drink tea and
people who use honey in their beverage. We can thus see that the interest
factor is able to detect meaningful patterns in the tea-coffee and tea-honey
examples. Indeed, the interest factor has a number of statistical advantages
over the confidence measure that make it a suitable measure for analyzing
statistical independence between variables.

Piatesky-Shapiro (PS) Measure Instead of computing the ratio between
s(A,B) and sindep(A,B) = s(A)× s(B), the PS measure considers the differ-
ence between s(A,B) and s(A)× s(B) as follows.

PS = s(A,B)− s(A)× s(B) =
f11
N

− f1+f+1

N2
(5.7)

The PS value is 0 when A and B are mutually independent of each other.
Otherwise, PS > 0 when there is a positive relationship between the two
variables, and PS < 0 when there is a negative relationship.
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Correlation Analysis Correlation analysis is one of the most popular tech-
niques for analyzing relationships between a pair of variables. For continuous
variables, correlation is defined using Pearson’s correlation coefficient (see
Equation 2.10 on page 83). For binary variables, correlation can be measured
using the φ-coefficient, which is defined as

φ =
f11f00 − f01f10√
f1+f+1f0+f+0

. (5.8)

If we rearrange the terms in 5.8, we can show that the φ-coefficient can be
rewritten in terms of the support measures of A, B, and {A,B} as follows:

φ =
s(A,B)− s(A)× s(B)√

s(A)× (1− s(A))× s(B)× (1− s(B))
. (5.9)

Note that the numerator in the above equation is identical to the PS measure.
Hence, the φ-coefficient can be understood as a normalized version of the
PS measure, where that the value of the φ-coefficient ranges from −1 to
+1. From a statistical viewpoint, the correlation captures the normalized
difference between s(A,B) and sindep(A,B). A correlation value of 0 means no
relationship, while a value of +1 suggests a perfect positive relationship and a
value of −1 suggests a perfect negative relationship. The correlation measure
has a statistical meaning and hence is widely used to evaluate the strength
of statistical independence among variables. For instance, the correlation be-
tween tea and coffee drinkers in Table 5.7 is −0.0625 which is slightly less
than 0. On the other hand, the correlation between people who drink tea and
people who use honey in Table 5.8 is 0.5847, suggesting a positive relationship.

IS Measure IS is an alternative measure for capturing the relationship
between s(A,B) and s(A)× s(B). The IS measure is defined as follows:

IS(A,B) =
√
I(A,B)× s(A,B) =

s(A,B)√
s(A)s(B)

=
f11√
f1+f+1

. (5.10)

Although the definition of IS looks quite similar to the interest factor, they
share some interesting differences. Since IS is the geometric mean between the
interest factor and the support of a pattern, IS is large when both the interest
factor and support are large. Hence, if the interest factor of two patterns are
identical, the IS has a preference of selecting the pattern with higher support.
It is also possible to show that IS is mathematically equivalent to the cosine
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measure for binary variables (see Equation 2.6 on page 81). The value of IS
thus varies from 0 to 1, where an IS value of 0 corresponds to no co-occurrence
of the two variables, while an IS value of 1 denotes perfect relationship, since
they occur in exactly the same transactions. For the tea-coffee example shown
in Table 5.7, the value of IS is equal to 0.375, while the value of IS for the
tea-honey example in Table 5.8 is 0.6455. The IS measure thus gives a higher
value for the {Tea} −→ {Honey} rule than the {Tea} −→ {Coffee} rule,
which is consistent with our understanding of the two rules.

Alternative Objective Interestingness Measures

Note that all of the measures defined in the previous section use different
techniques to capture the deviance between s(A,B) and sindep(A,B) = s(A)×
s(B). Some measures use the ratio between s(A,B) and sindep(A,B), e.g., the
interest factor and IS, while some other measures consider the difference be-
tween the two, e.g., the PS and the φ-coefficient. Some measures are bounded
in a particular range, e.g., the IS and the φ-coefficient, while others are
unbounded and do not have a defined maximum or minimum value, e.g., the
Interest Factor. Because of such differences, these measures behave differently
when applied to different types of patterns. Indeed, the measures defined above
are not exhaustive and there exist many alternative measures for capturing
different properties of relationships between pairs of binary variables. Table 5.9

Table 5.9. Examples of objective measures for the itemset {A,B}.

Measure (Symbol) Definition

Correlation (φ) Nf11−f1+f+1√
f1+f+1f0+f+0

Odds ratio (α)
(
f11f00

)/(
f10f01

)
Kappa (κ) Nf11+Nf00−f1+f+1−f0+f+0

N2−f1+f+1−f0+f+0

Interest (I)
(
Nf11

)/(
f1+f+1

)
Cosine (IS)

(
f11

)/(√
f1+f+1

)
Piatetsky-Shapiro (PS) f11

N − f1+f+1

N2

Collective strength (S) f11+f00
f1+f+1+f0+f+0

× N−f1+f+1−f0+f+0

N−f11−f00

Jaccard (ζ) f11
/(
f1+ + f+1 − f11

)
All-confidence (h) min

[
f11
f1+

, f11
f+1

]
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Table 5.10. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370

E2 8330 2 622 1046

E3 3954 3080 5 2961

E4 2886 1363 1320 4431

E5 1500 2000 500 6000

E6 4000 2000 1000 3000

E7 9481 298 127 94

E8 4000 2000 2000 2000

E9 7450 2483 4 63

E10 61 2483 4 7452

provides the definitions for some of these measures in terms of the frequency
counts of a 2× 2 contingency table.

Consistency among Objective Measures

Given the wide variety of measures available, it is reasonable to question
whether the measures can produce similar ordering results when applied to
a set of association patterns. If the measures are consistent, then we can
choose any one of them as our evaluation metric. Otherwise, it is important
to understand what their differences are in order to determine which measure
is more suitable for analyzing certain types of patterns.

Suppose the measures defined in Table 5.9 are applied to rank the ten
contingency tables shown in Table 5.10. These contingency tables are chosen to
illustrate the differences among the existing measures. The ordering produced
by these measures is shown in Table 5.11 (with 1 as the most interesting and
10 as the least interesting table). Although some of the measures appear to
be consistent with each other, others produce quite different ordering results.
For example, the rankings given by the φ-coefficient agrees mostly with those
provided by κ and collective strength, but are quite different than the rankings
produced by interest factor. Furthermore, a contingency table such as E10 is
ranked lowest according to the φ-coefficient, but highest according to interest
factor.
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Table 5.11. Rankings of contingency tables using the measures given in Table 5.9.

φ α κ I IS PS S ζ h

E1 1 3 1 6 2 2 1 2 2

E2 2 1 2 7 3 5 2 3 3

E3 3 2 4 4 5 1 3 6 8

E4 4 8 3 3 7 3 4 7 5

E5 5 7 6 2 9 6 6 9 9

E6 6 9 5 5 6 4 5 5 7

E7 7 6 7 9 1 8 7 1 1

E8 8 10 8 8 8 7 8 8 7

E9 9 4 9 10 4 9 9 4 4

E10 10 5 10 1 10 10 10 10 10

Properties of Objective Measures

The results shown in Table 5.11 suggest that the measures greatly differ from
each other and can provide conflicting information about the quality of a
pattern. In fact, no measure is universally best for all applications. In the
following, we describe some properties of the measures that play an important
role in determining if they are suited for a certain application.

Inversion Property Consider the binary vectors shown in Figure 5.28. The
0/1 value in each column vector indicates whether a transaction (row) contains
a particular item (column). For example, the vector A indicates that the item
appears in the first and last transactions, whereas the vector B indicates that
the item is contained only in the fifth transaction. The vectors A and B are
the inverted versions of A and B, i.e., their 1 values have been changed to 0
values (absence to presence) and vice versa. Applying this transformation to a
binary vector is called inversion. If a measure is invariant under the inversion
operation, then its value for the vector pair {A,B} should be identical to its
value for {A,B}. The inversion property of a measure can be tested as follows.

Definition 5.6 (Inversion Property). An objective measure M is invariant
under the inversion operation if its value remains the same when exchanging
the frequency counts f11 with f00 and f10 with f01.
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Figure 5.28. Effect of the inversion operation. The vectors A and E are inversions of vectors A and
B, respectively.

Measures that are invariant to the inversion property include the corre-
lation (φ-coefficient), odds ratio, κ, and collective strength. These measures
are especially useful in scenarios where the presence (1’s) of a variable is
as important as its absence (0’s). For example, if we compare two sets of
answers to a series of true/false questions where 0’s (true) and 1’s (false)
are equally meaningful, we should use a measure that gives equal importance
to occurrences of 0–0’s and 1–1’s. For the vectors shown in Figure 5.28, the
φ-coefficient is equal to -0.1667 regardless of whether we consider the pair
{A,B} or pair {A,B}. Similarly, the odds ratio for both pairs of vectors is
equal to a constant value of 0. Note that even though the φ-coefficient and
the odds ratio are invariant to inversion, they can still show different results,
as will be shown later.

Measures that do not remain invariant under the inversion operation in-
clude the interest factor and the IS measure. For example, the IS value for
the pair {A,B} in Figure 5.28 is 0.825, which reflects the fact that the 1’s
in A and B occur frequently together. However, the IS value of its inverted
pair {A,B} is equal to 0, since A and B do not have any co-occurrence of 1’s.
For asymmetric binary variables, e.g., the occurrence of words in documents,
this is indeed the desired behavior. A desired similarity measure between
asymmetric variables should not be invariant to inversion, since for these
variables, it is more meaningful to capture relationships based on the presence
of a variable rather than its absence. On the other hand, if we are dealing with
symmetric binary variables where the relationships between 0’s and 1’s are
equally meaningful, care should be taken to ensure that the chosen measure
is invariant to inversion.
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Table 5.12. Contingency tables for the pairs {p,q} and {r,s}.

p p r r

q 880 50 930 s 20 50 70

q 50 20 70 s 50 880 930

930 70 1000 70 930 1000

Although the values of the interest factor and IS change with the inversion
operation, they can still be inconsistent with each other. To illustrate this,
consider Table 5.12, which shows the contingency tables for two pairs of
variables, {p, q} and {r, s}. Note that r and s are inverted transformations
of p and q, respectively, where the roles of 0’s and 1’s have just been reversed.
The interest factor for {p, q} is 1.02 and for {r, s} is 4.08, which means that
the interest factor finds the inverted pair {r, s} more related than the original
pair {p, q}. On the contrary, the IS value decreases upon inversion from 0.9346
for {p, q} to 0.286 for {r, s}, suggesting quite an opposite trend to that of the
interest factor. Even though these measures conflict with each other for this
example, they may be the right choice of measure in different applications.

Scaling Property Table 5.13 shows two contingency tables for gender and
the grades achieved by students enrolled in a particular course. These tables
can be used to study the relationship between gender and performance in
the course. The second contingency table has data from the same population
but has twice as many males and three times as many females. The actual
number of males or females can depend upon the samples available for study,
but the relationship between gender and grade should not change just because
of differences in sample sizes. Similarly, if the number of students with high
and low grades are changed in a new study, a measure of association between
gender and grades should remain unchanged. Hence, we need a measure that
is invariant to scaling of rows or columns. The process of multiplying a row or
column of a contingency table by a constant value is called a row or column
scaling operation. A measure that is invariant to scaling does not change its
value after any row or column scaling operation.

Definition 5.7 (Scaling Invariance Property). Let T be a contingency table
with frequency counts [f11; f10; f01; f00]. Let T

′ be the transformed a contin-
gency table with scaled frequency counts [k1k3f11; k2k3f10; k1k4f01; k2k4f00],
where k1, k2, k3, k4 are positive constants used to scale the two rows and the
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Table 5.13. The grade-gender example.

Male Female Male Female

High 30 20 50 High 60 60 120

Low 40 10 50 Low 80 30 110

70 30 100 140 90 230

(a) Sample data of size 100. (b) Sample data of size 230.

two columns of T . An objective measureM is invariant under the row/column
scaling operation if M(T ) =M(T ′).

Note that the use of the term ‘scaling’ here should not be confused with the
scaling operation for continuous variables introduced in Chapter 2 on page 23,
where all the values of a variable were being multiplied by a constant factor,
instead of scaling a row or column of a contingency table.

Scaling of rows and columns in contingency tables occurs in multiple ways
in different applications. For example, if we are measuring the effect of a
particular medical procedure on two sets of subjects, healthy and diseased, the
ratio of healthy and diseased subjects can widely vary across different studies
involving different groups of participants. Further, the fraction of healthy and
diseased subjects chosen for a controlled study can be quite different from the
true fraction observed in the complete population. These differences can result
in a row or column scaling in the contingency tables for different populations
of subjects. In general, the frequencies of items in a contingency table closely
depends on the sample of transactions used to generate the table. Any change
in the sampling procedure may affect a row or column scaling transformation.
A measure that is expected to be invariant to differences in the sampling
procedure must not change with row or column scaling.

Of all the measures introduced in Table 5.9, only the odds ratio (α) is
invariant to row and column scaling operations. For example, the value of odds
ratio for both the tables in Table 5.13 is equal to 0.375. All other measures
such as the φ-coefficient, κ, IS, interest factor, and collective strength (S)
change their values when the rows and columns of the contingency table are
rescaled. Indeed, the odds ratio is a preferred choice of measure in the medical
domain, where it is important to find relationships that do not change with
differences in the population sample chosen for a study.
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Null Addition Property Suppose we are interested in analyzing the re-
lationship between a pair of words, such as data and mining, in a set of
documents. If a collection of articles about ice fishing is added to the data set,
should the association between data and mining be affected? This process of
adding unrelated data (in this case, documents) to a given data set is known
as the null addition operation.

Definition 5.8 (Null Addition Property). An objective measure M is invari-
ant under the null addition operation if it is not affected by increasing f00,
while all other frequencies in the contingency table stay the same.

For applications such as document analysis or market basket analysis, we
would like to use a measure that remains invariant under the null addition
operation. Otherwise, the relationship between words can be made to change
simply by adding enough documents that do not contain both words! Examples
of measures that satisfy this property include cosine (IS) and Jaccard (ξ)
measures, while those that violate this property include interest factor, PS,
odds ratio, and the φ-coefficient.

To demonstrate the effect of null addition, consider the two contingency
tables T1 and T2 shown in Table 5.14. Table T2 has been obtained from T1 by
adding 1000 extra transactions with both A and B absent. This operation only
affects the f00 entry of Table T2, which has increased from 100 to 1100, whereas
all the other frequencies in the table (f11, f10, and f01) remain the same. Since
IS is invariant to null addition, it gives a constant value of 0.875 to both the
tables. However, the addition of 1000 extra transactions with occurrences of
0–0’s changes the value of interest factor from 0.972 for T1 (denoting a slightly
negative correlation) to 1.944 for T2 (positive correlation). Similarly, the value
of odds ratio increases from 7 for T1 to 77 for T2. Hence, when the interest
factor or odds ratio are used as the association measure, the relationships
between variables changes by the addition of null transactions where both the
variables are absent. In contrast, the IS measure is invariant to null addition,
since it considers two variables to be related only if they frequently occur
together. Indeed, the IS measure (cosine measure) is widely used to measure
similarity among documents, which is expected to depend only on the joint
occurrences (1’s) of words in documents, but not their absences (0’s).

Table 5.15 provides a summary of properties for the measures defined in
Table 5.9. Even though this list of properties is not exhaustive, it can serve as a
useful guide for selecting the right choice of measure for an application. Ideally,
if we know the specific requirements of a certain application, we can ensure
that the selected measure shows properties that adhere to those requirements.
For example, if we are dealing with asymmetric variables, we would prefer to
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Table 5.14. An example demonstrating the effect of null addition.

B B B B

A 700 100 800 A 700 100 800

A 100 100 200 A 10 1100 1200

800 200 1000 800 1200 2000

(a) Table T1. (b) Table T2.

use a measure that is not invariant to null addition or inversion. On the other
hand, if we require the measure to remain invariant to changes in the sample
size, we would like to use a measure that does not change with scaling.

Asymmetric Interestingness Measures

Note that in the discussion so far, we have only considered measures that
do not change their value when the order of the variables are reversed. More
specifically, ifM is a measure and A and B are two variables, thenM(A,B) is
equal to M(B,A) if the order of the variables does not matter. Such measures
are called symmetric. On the other hand, measures that depend on the
order of variables (M(A,B) �= M(B,A)) are called asymmetric measures.
For example, the interest factor is a symmetric measure because its value is
identical for the rules A −→ B and B −→ A. In contrast, confidence is an
asymmetric measure since the confidence for A −→ B and B −→ Amay not be
the same. Note that the use of the term ‘asymmetric’ to describe a particular
type of measure of relationship—one in which the order of the variables is
important—should not be confused with the use of ‘asymmetric’ to describe
a binary variable for which only 1’s are important. Asymmetric measures are
more suitable for analyzing association rules, since the items in a rule do
have a specific order. Even though we only considered symmetric measures to
discuss the different properties of association measures, the above discussion
is also relevant for the asymmetric measures. See Bibliographic Notes for more
information about different kinds of asymmetric measures and their properties.

5.7.2 Measures beyond Pairs of Binary Variables

The measures shown in Table 5.9 are defined for pairs of binary variables (e.g.,
2-itemsets or association rules). However, many of them, such as support and
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Table 5.15. Properties of symmetric measures.

Symbol Measure Inversion Null Addition Scaling

φ φ-coefficient Yes No No
α odds ratio Yes No Yes
κ Cohen’s Yes No No
I Interest No No No
IS Cosine No Yes No
PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
ζ Jaccard No Yes No
h All-confidence No Yes No
s Support No No No

Table 5.16. Example of a three-dimensional contingency table.

c b b c b b

a f111 f101 f1+1 a f110 f100 f1+0

a f011 f001 f0+1 a f010 f000 f0+0

f+11 f+01 f++1 f+10 f+00 f++0

all-confidence, are also applicable to larger-sized itemsets. Other measures,
such as interest factor, IS, PS, and Jaccard coefficient, can be extended to
more than two variables using the frequency tables tabulated in a multidimen-
sional contingency table. An example of a three-dimensional contingency table
for a, b, and c is shown in Table 5.16. Each entry fijk in this table represents
the number of transactions that contain a particular combination of items a,
b, and c. For example, f101 is the number of transactions that contain a and c,
but not b. On the other hand, a marginal frequency such as f1+1 is the number
of transactions that contain a and c, irrespective of whether b is present in the
transaction.

Given a k-itemset {i1, i2, . . . , ik}, the condition for statistical independence
can be stated as follows:

fi1i2...ik =
fi1+...+ × f+i2...+ × . . .× f++...ik

Nk−1
. (5.11)

With this definition, we can extend objective measures such as interest factor
and PS, which are based on deviations from statistical independence, to more
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than two variables:

I =
Nk−1 × fi1i2...ik

fi1+...+ × f+i2...+ × . . .× f++...ik

PS =
fi1i2...ik
N

− fi1+...+ × f+i2...+ × . . .× f++...ik

Nk

Another approach is to define the objective measure as the maximum, min-
imum, or average value for the associations between pairs of items in a pat-
tern. For example, given a k-itemset X = {i1, i2, . . . , ik}, we may define
the φ-coefficient for X as the average φ-coefficient between every pair of
items (ip, iq) in X. However, because the measure considers only pairwise
associations, it may not capture all the underlying relationships within a
pattern. Also, care should be taken in using such alternate measures for
more than two variables, since they may not always show the anti-monotone
property in the same way as the support measure, making them unsuitable
for mining patterns using the Apriori principle.

Analysis of multidimensional contingency tables is more complicated be-
cause of the presence of partial associations in the data. For example, some
associations may appear or disappear when conditioned upon the value of
certain variables. This problem is known as Simpson’s paradox and is de-
scribed in Section 5.7.3. More sophisticated statistical techniques are available
to analyze such relationships, e.g., loglinear models, but these techniques are
beyond the scope of this book.

5.7.3 Simpson’s Paradox

It is important to exercise caution when interpreting the association between
variables because the observed relationship may be influenced by the presence
of other confounding factors, i.e., hidden variables that are not included in
the analysis. In some cases, the hidden variables may cause the observed
relationship between a pair of variables to disappear or reverse its direction,
a phenomenon that is known as Simpson’s paradox. We illustrate the nature
of this paradox with the following example.

Consider the relationship between the sale of high-definition televisions
(HDTV) and exercise machines, as shown in Table 5.17. The rule {HDTV=Yes}
−→ {Exercise machine=Yes} has a confidence of 99/180 = 55% and the rule
{HDTV=No} −→ {Exercise machine=Yes} has a confidence of 54/120 =
45%. Together, these rules suggest that customers who buy high-definition
televisions are more likely to buy exercise machines than those who do not
buy high-definition televisions.
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Table 5.17. A two-way contingency table between the sale of high-definition television and exercise
machine.

Buy Buy Exercise Machine
HDTV Yes No
Yes 99 81 180
No 54 66 120

153 147 300

Table 5.18. Example of a three-way contingency table.

Customer Buy Buy Exercise Machine Total
Group HDTV Yes No
College Students Yes 1 9 10

No 4 30 34
Working Adult Yes 98 72 170

No 50 36 86

However, a deeper analysis reveals that the sales of these items depend
on whether the customer is a college student or a working adult. Table 5.18
summarizes the relationship between the sale of HDTVs and exercise machines
among college students and working adults. Notice that the support counts
given in the table for college students and working adults sum up to the
frequencies shown in Table 5.17. Furthermore, there are more working adults
than college students who buy these items. For college students:

c
({HDTV=Yes} −→ {Exercise machine=Yes}) = 1/10 = 10%,

c
({HDTV=No} −→ {Exercise machine=Yes}) = 4/34 = 11.8%,

while for working adults:

c
({HDTV=Yes} −→ {Exercise machine=Yes}) = 98/170 = 57.7%,

c
({HDTV=No} −→ {Exercise machine=Yes}) = 50/86 = 58.1%.

The rules suggest that, for each group, customers who do not buy high-
definition televisions are more likely to buy exercise machines, which con-
tradicts the previous conclusion when data from the two customer groups
are pooled together. Even if alternative measures such as correlation, odds
ratio, or interest are applied, we still find that the sale of HDTV and exercise
machine is positively related in the combined data but is negatively related in
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the stratified data (see Exercise 21 on page 449). The reversal in the direction
of association is known as Simpson’s paradox.

The paradox can be explained in the following way. First, notice that
most customers who buy HDTVs are working adults. This is reflected in the
high confidence of the rule {HDTV=Yes} −→ {Working Adult} (170/180 =
94.4%). Second, the high confidence of the rule {Exercise machine=Yes} −→
{Working Adult} (148/153 = 96.7%) suggests that most customers who buy
exercise machines are also working adults. Since working adults form the
largest fraction of customers for both HDTVs and exercise machines, they both
look related and the rule {HDTV=Yes} −→ {Exercise machine=Yes} turns
out to be stronger in the combined data than what it would have been if the
data is stratified. Hence, customer group acts as a hidden variable that affects
both the fraction of customers who buy HDTVs and those who buy exercise
machines. If we factor out the effect of the hidden variable by stratifying the
data, we see that the relationship between buying HDTVs and buying exercise
machines is not direct, but shows up as an indirect consequence of the effect
of the hidden variable.

The Simpson’s paradox can also be illustrated mathematically as follows.
Suppose

a/b < c/d and p/q < r/s,

where a/b and p/q may represent the confidence of the rule A −→ B in two
different strata, while c/d and r/s may represent the confidence of the rule
A −→ B in the two strata. When the data is pooled together, the confidence
values of the rules in the combined data are (a+p)/(b+q) and (c+r)/(d+s),
respectively. Simpson’s paradox occurs when

a+ p

b+ q
>
c+ r

d+ s
,

thus leading to the wrong conclusion about the relationship between the vari-
ables. The lesson here is that proper stratification is needed to avoid generating
spurious patterns resulting from Simpson’s paradox. For example, market
basket data from a major supermarket chain should be stratified according to
store locations, while medical records from various patients should be stratified
according to confounding factors such as age and gender.

5.8 Effect of Skewed Support Distribution

The performances of many association analysis algorithms are influenced by
properties of their input data. For example, the computational complexity of
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Figure 5.29. A transaction data set containing three items, p, q, and r, where p is a high support item
and q and r are low support items.

the Apriori algorithm depends on properties such as the number of items in
the data, the average transaction width, and the support threshold used. This
section examines another important property that has significant influence
on the performance of association analysis algorithms as well as the quality
of extracted patterns. More specifically, we focus on data sets with skewed
support distributions, where most of the items have relatively low to moderate
frequencies, but a small number of them have very high frequencies.

Figure 5.29 shows an illustrative example of a data set that has a skewed
support distribution of its items. While p has a high support of 83.3% in the
data, q and r are low-support items with a support of 16.7%. Despite their low
support, q and r always occur together in the limited number of transactions
that they appear and hence are strongly related. A pattern mining algorithm
therefore should report {q, r} as interesting.

However, note that choosing the right support threshold for mining item-
sets such as {q, r} can be quite tricky. If we set the threshold too high (e.g.,
20%), then we may miss many interesting patterns involving low-support
items such as {q, r}. Conversely, setting the support threshold too low can be
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Figure 5.30. Support distribution of items in the census data set.

detrimental to the pattern mining process for the following reasons. First, the
computational and memory requirements of existing association analysis algo-
rithms increase considerably with low support thresholds. Second, the number
of extracted patterns also increases substantially with low support thresholds,
which makes their analysis and interpretation difficult. In particular, we may
extract many spurious patterns that relate a high-frequency item such as p
to a low-frequency item such as q. Such patterns, which are called cross-
support patterns, are likely to be spurious because the association between
p and q is largely influenced by the frequent occurrence of p instead of the
joint occurrence of p and q together. Because the support of {p, q} is quite
close to the support of {q, r}, we may easily select {p, q} if we set the support
threshold low enough to include {q, r}.

An example of a real data set that exhibits a skewed support distribution is
shown in Figure 5.30. The data, taken from the PUMS (Public Use Microdata
Sample) census data, contains 49,046 records and 2113 asymmetric binary
variables. We shall treat the asymmetric binary variables as items and records
as transactions. While more than 80% of the items have support less than 1%,
a handful of them have support greater than 90%. To understand the effect of
skewed support distribution on frequent itemset mining, we divide the items
into three groups, G1, G2, and G3, according to their support levels, as shown
in Table 5.19. We can see that more than 82% of items belong to G1 and have
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Table 5.19. Grouping the items in the census data set based on their support values.

Group G1 G2 G3

Support < 1% 1%− 90% > 90%
Number of Items 1735 358 20

a support less than 1%. In market basket analysis, such low support items may
correspond to expensive products (such as jewelry) that are seldom bought
by customers, but whose patterns are still interesting to retailers. Patterns
involving such low-support items, though meaningful, can easily be rejected
by a frequent pattern mining algorithm with a high support threshold. On the
other hand, setting a low support threshold may result in the extraction of
spurious patterns that relate a high-frequency item in G3 to a low-frequency
item in G1. For example, at a support threshold equal to 0.05%, there are
18,847 frequent pairs involving items from G1 and G3. Out of these, 93% of
them are cross-support patterns; i.e., the patterns contain items from both G1

and G3.
This example shows that a large number of weakly related cross-support

patterns can be generated when the support threshold is sufficiently low. Note
that finding interesting patterns in data sets with skewed support distributions
is not just a challenge for the support measure, but similar statements can be
made about many other objective measures discussed in the previous sections.
Before presenting a methodology for finding interesting patterns and pruning
spurious ones, we formally define the concept of cross-support patterns.

Definition 5.9 (Cross-support Pattern). Let us define the support ratio,
r(X), of an itemset X = {i1, i2, . . . , ik} as

r(X) =
min

[
s(i1), s(i2), . . . , s(ik)

]
max

[
s(i1), s(i2), . . . , s(ik)

] , (5.12)

Given a user-specified threshold hc, an itemset X is a cross-support pattern
if r(X) < hc.

Example 5.4. Suppose the support for milk is 70%, while the support for
sugar is 10% and caviar is 0.04%. Given hc = 0.01, the frequent itemset {milk,
sugar, caviar} is a cross-support pattern because its support ratio is

r =
min

[
0.7, 0.1, 0.0004

]
max

[
0.7, 0.1, 0.0004

] =
0.0004

0.7
= 0.00058 < 0.01.
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Existing measures such as support and confidence may not be sufficient to
eliminate cross-support patterns. For example, if we assume hc = 0.3 for the
data set presented in Figure 5.29, the itemsets {p, q}, {p, r}, and {p, q, r} are
cross-support patterns because their support ratios, which are equal to 0.2, are
less than the threshold hc. However, their supports are comparable to that of
{q, r}, making it difficult to eliminate cross-support patterns without loosing
interesting ones using a support-based pruning strategy. Confidence pruning
also does not help because the confidence of the rules extracted from cross-
support patterns can be very high. For example, the confidence for {q} −→ {p}
is 80% even though {p, q} is a cross-support pattern. The fact that the cross-
support pattern can produce a high confidence rule should not come as a
surprise because one of its items (p) appears very frequently in the data.
Therefore, p is expected to appear in many of the transactions that contain
q. Meanwhile, the rule {q} −→ {r} also has high confidence even though
{q, r} is not a cross-support pattern. This example demonstrates the difficulty
of using the confidence measure to distinguish between rules extracted from
cross-support patterns and interesting patterns involving strongly connected
but low-support items.

Even though the rule {q} −→ {p} has very high confidence, notice that
the rule {p} −→ {q} has very low confidence because most of the transactions
that contain p do not contain q. In contrast, the rule {r} −→ {q}, which is
derived from {q, r}, has very high confidence. This observation suggests that
cross-support patterns can be detected by examining the lowest confidence
rule that can be extracted from a given itemset. An approach for finding the
rule with the lowest confidence given an itemset can be described as follows.

1. Recall the following anti-monotone property of confidence:

conf({i1i2} −→ {i3, i4, . . . , ik}) ≤ conf({i1i2i3} −→ {i4, i5, . . . , ik}).

This property suggests that confidence never increases as we shift more
items from the left- to the right-hand side of an association rule. Because
of this property, the lowest confidence rule extracted from a frequent
itemset contains only one item on its left-hand side. We denote the set
of all rules with only one item on its left-hand side as R1.

2. Given a frequent itemset {i1, i2, . . . , ik}, the rule

{ij} −→ {i1, i2, . . . , ij−1, ij+1, . . . , ik}
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has the lowest confidence in R1 if s(ij) = max
[
s(i1), s(i2), . . . , s(ik)

]
.

This follows directly from the definition of confidence as the ratio be-
tween the rule’s support and the support of the rule antecedent. Hence,
the confidence of a rule will be lowest when the support of the antecedent
is highest.

3. Summarizing the previous points, the lowest confidence attainable from
a frequent itemset {i1, i2, . . . , ik} is

s({i1, i2, . . . , ik})
max

[
s(i1), s(i2), . . . , s(ik)

] .
This expression is also known as the h-confidence or all-confidence
measure. Because of the anti-monotone property of support, the numer-
ator of the h-confidence measure is bounded by the minimum support
of any item that appears in the frequent itemset. In other words, the
h-confidence of an itemset X = {i1, i2, . . . , ik} must not exceed the
following expression:

h-confidence(X) ≤ min
[
s(i1), s(i2), . . . , s(ik)

]
max

[
s(i1), s(i2), . . . , s(ik)

] .
Note that the upper bound of h-confidence in the above equation is exactly
same as support ratio (r) given in Equation 5.12. Because the support ratio for
a cross-support pattern is always less than hc, the h-confidence of the pattern
is also guaranteed to be less than hc. Therefore, cross-support patterns can be
eliminated by ensuring that the h-confidence values for the patterns exceed hc.
As a final note, the advantages of using h-confidence go beyond eliminating
cross-support patterns. The measure is also anti-monotone, i.e.,

h-confidence({i1, i2, . . . , ik}) ≥ h-confidence({i1, i2, . . . , ik+1}),

and thus can be incorporated directly into the mining algorithm. Furthermore,
h-confidence ensures that the items contained in an itemset are strongly asso-
ciated with each other. For example, suppose the h-confidence of an itemset
X is 80%. If one of the items in X is present in a transaction, there is at
least an 80% chance that the rest of the items in X also belong to the same
transaction. Such strongly associated patterns involving low-support items are
called hyperclique patterns.

Definition 5.10 (Hyperclique Pattern). An itemset X is a hyperclique pat-
tern if h-confidence(X) > hc, where hc is a user-specified threshold.
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5.9 Bibliographic Notes

The association rule mining task was first introduced by Agrawal et al. [324,
325] to discover interesting relationships among items in market basket trans-
actions. Since its inception, extensive research has been conducted to address
the various issues in association rule mining, from its fundamental concepts
to its implementation and applications. Figure 5.31 shows a taxonomy of the
various research directions in this area, which is generally known as association
analysis. As much of the research focuses on finding patterns that appear
significantly often in the data, the area is also known as frequent pattern
mining. A detailed review on some of the research topics in this area can
be found in [362] and in [319].

Conceptual Issues

Research on the conceptual issues of association analysis has focused on de-
veloping a theoretical formulation of association analysis and extending the
formulation to new types of patterns and going beyond asymmetric binary
attributes.

Following the pioneering work by Agrawal et al. [324, 325], there has
been a vast amount of research on developing a theoretical formulation for
the association analysis problem. In [357], Gunopoulos et al. showed the
connection between finding maximal frequent itemsets and the hypergraph
transversal problem. An upper bound on the complexity of the association
analysis task was also derived. Zaki et al. [454, 456] and Pasquier et al. [407]
have applied formal concept analysis to study the frequent itemset generation
problem. More importantly, such research has led to the development of a
class of patterns known as closed frequent itemsets [456]. Friedman et al. [355]
have studied the association analysis problem in the context of bump hunt-
ing in multidimensional space. Specifically, they consider frequent itemset
generation as the task of finding high density regions in multidimensional
space. Formalizing association analysis in a statistical learning framework
is another active research direction [414, 435, 444] as it can help address
issues related to identifying statistically significant patterns and dealing with
uncertain data [320, 333, 343].

Over the years, the association rule mining formulation has been expanded
to encompass other rule-based patterns, such as, profile association rules [321],
cyclic association rules [403], fuzzy association rules [379], exception rules
[431], negative association rules [336, 418], weighted association rules [338,
413], dependence rules [422], peculiar rules[462], inter-transaction association
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rules [353, 440], and partial classification rules [327, 397]. Additionally, the
concept of frequent itemset has been extended to other types of patterns
including closed itemsets [407, 456], maximal itemsets [330], hyperclique pat-
terns [449], support envelopes [428], emerging patterns [347], contrast sets
[329], high-utility itemsets [340, 390], approximate or error-tolerant item-
sets [358, 389, 451], and discriminative patterns [352, 401, 430]. Association
analysis techniques have also been successfully applied to sequential [326, 426],
spatial [371], and graph-based [374, 380, 406, 450, 455] data.

Substantial research has been conducted to extend the original association
rule formulation to nominal [425], ordinal [392], interval [395], and ratio [356,
359, 425, 443, 461] attributes. One of the key issues is how to define the support
measure for these attributes. A methodology was proposed by Steinbach et
al. [429] to extend the traditional notion of support to more general patterns
and attribute types.

Implementation Issues

Research activities in this area revolve around (1) integrating the mining ca-
pability into existing database technology, (2) developing efficient and scalable
mining algorithms, (3) handling user-specified or domain-specific constraints,
and (4) post-processing the extracted patterns.

There are several advantages to integrating association analysis into ex-
isting database technology. First, it can make use of the indexing and query
processing capabilities of the database system. Second, it can also exploit
the DBMS support for scalability, check-pointing, and parallelization [415].
The SETM algorithm developed by Houtsma et al. [370] was one of the
earliest algorithms to support association rule discovery via SQL queries.
Since then, numerous methods have been developed to provide capabilities for
mining association rules in database systems. For example, the DMQL [363]
and M-SQL [373] query languages extend the basic SQL with new operators
for mining association rules. The Mine Rule operator [394] is an expressive
SQL operator that can handle both clustered attributes and item hierarchies.
Tsur et al. [439] developed a generate-and-test approach called query flocks
for mining association rules. A distributed OLAP-based infrastructure was
developed by Chen et al. [341] for mining multilevel association rules.
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Despite its popularity, the Apriori algorithm is computationally expensive
because it requires making multiple passes over the transaction database. Its
runtime and storage complexities were investigated by Dunkel and Soparkar
[349]. The FP-growth algorithm was developed by Han et al. in [364]. Other
algorithms for mining frequent itemsets include the DHP (dynamic hashing
and pruning) algorithm proposed by Park et al. [405] and the Partition algo-
rithm developed by Savasere et al [417]. A sampling-based frequent itemset
generation algorithm was proposed by Toivonen [436]. The algorithm requires
only a single pass over the data, but it can produce more candidate item-
sets than necessary. The Dynamic Itemset Counting (DIC) algorithm [337]
makes only 1.5 passes over the data and generates less candidate itemsets
than the sampling-based algorithm. Other notable algorithms include the
tree-projection algorithm [317] and H-Mine [408]. Survey articles on frequent
itemset generation algorithms can be found in [322, 367]. A repository of
benchmark data sets and software implementation of association rule min-
ing algorithms is available at the Frequent Itemset Mining Implementations
(FIMI) repository (http://fimi.cs.helsinki.fi).

Parallel algorithms have been developed to scale up association rule mining
for handling big data [318, 360, 399, 420, 457]. A survey of such algorithms can
be found in [453]. Online and incremental association rule mining algorithms
have also been proposed by Hidber [365] and Cheung et al. [342]. More recently,
new algorithms have been developed to speed up frequent itemset mining by
exploiting the processing power of GPUs [459] and the MapReduce/Hadoop
distributed computing framework [382, 384, 396]. For example, an implemen-
tation of frequent itemset mining for the Hadoop framework is available in the
Apache Mahout software1.

Srikant et al. [427] have considered the problem of mining association rules
in the presence of Boolean constraints such as the following:

(Cookies ∧ Milk) ∨ (descendants(Cookies) ∧ ¬ancestors(Wheat Bread))

Given such a constraint, the algorithm looks for rules that contain both
cookies and milk, or rules that contain the descendent items of cookies but
not ancestor items of wheat bread. Singh et al. [424] and Ng et al. [400]
had also developed alternative techniques for constrained-based association
rule mining. Constraints can also be imposed on the support for different
itemsets. This problem was investigated by Wang et al. [442], Liu et al. in [387],
and Seno et al. [419]. In addition, constraints arising from privacy concerns
of mining sensitive data have led to the development of privacy-preserving
frequent pattern mining techniques [334, 350, 441, 458].

1http://mahout.apache.org
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One potential problem with association analysis is the large number of
patterns that can be generated by current algorithms. To overcome this prob-
lem, methods to rank, summarize, and filter patterns have been developed.
Toivonen et al. [437] proposed the idea of eliminating redundant rules using
structural rule covers and grouping the remaining rules using clustering.
Liu et al. [388] applied the statistical chi-square test to prune spurious patterns
and summarized the remaining patterns using a subset of the patterns called
direction setting rules. The use of objective measures to filter patterns has
been investigated by many authors, including Brin et al. [336], Bayardo and
Agrawal [331], Aggarwal and Yu [323], and DuMouchel and Pregibon[348]. The
properties for many of these measures were analyzed by Piatetsky-Shapiro
[410], Kamber and Singhal [376], Hilderman and Hamilton [366], and Tan
et al. [433]. The grade-gender example used to highlight the importance of
the row and column scaling invariance property was heavily influenced by
the discussion given in [398] by Mosteller. Meanwhile, the tea-coffee exam-
ple illustrating the limitation of confidence was motivated by an example
given in [336] by Brin et al. Because of the limitation of confidence, Brin
et al. [336] had proposed the idea of using interest factor as a measure of
interestingness. The all-confidence measure was proposed by Omiecinski [402].
Xiong et al. [449] introduced the cross-support property and showed that the
all-confidence measure can be used to eliminate cross-support patterns. A
key difficulty in using alternative objective measures besides support is their
lack of a monotonicity property, which makes it difficult to incorporate the
measures directly into the mining algorithms. Xiong et al. [447] have proposed
an efficient method for mining correlations by introducing an upper bound
function to the φ-coefficient. Although the measure is non-monotone, it has
an upper bound expression that can be exploited for the efficient mining of
strongly correlated item pairs.

Fabris and Freitas [351] have proposed a method for discovering inter-
esting associations by detecting the occurrences of Simpson’s paradox [423].
Megiddo and Srikant [393] described an approach for validating the extracted
patterns using hypothesis testing methods. A resampling-based technique was
also developed to avoid generating spurious patterns because of the multiple
comparison problem. Bolton et al. [335] have applied the Benjamini-Hochberg
[332] and Bonferroni correction methods to adjust the p-values of discovered
patterns in market basket data. Alternative methods for handling the multiple
comparison problem were suggested by Webb [445], Zhang et al. [460], and
Llinares-Lopez et al. [391].

Application of subjective measures to association analysis has been in-
vestigated by many authors. Silberschatz and Tuzhilin [421] presented two
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principles in which a rule can be considered interesting from a subjective
point of view. The concept of unexpected condition rules was introduced by
Liu et al. in [385]. Cooley et al. [344] analyzed the idea of combining soft
belief sets using the Dempster-Shafer theory and applied this approach to
identify contradictory and novel association patterns in web data. Alternative
approaches include using Bayesian networks [375] and neighborhood-based
information [346] to identify subjectively interesting patterns.

Visualization also helps the user to quickly grasp the underlying structure
of the discovered patterns. Many commercial data mining tools display the
complete set of rules (which satisfy both support and confidence threshold
criteria) as a two-dimensional plot, with each axis corresponding to the an-
tecedent or consequent itemsets of the rule. Hofmann et al. [368] proposed
using Mosaic plots and Double Decker plots to visualize association rules.
This approach can visualize not only a particular rule, but also the overall
contingency table between itemsets in the antecedent and consequent parts of
the rule. Nevertheless, this technique assumes that the rule consequent consists
of only a single attribute.

Application Issues

Association analysis has been applied to a variety of application domains such
as web mining [409, 432], document analysis [369], telecommunication alarm
diagnosis [377], network intrusion detection [328, 345, 381], and bioinformatics
[416, 446]. Applications of association and correlation pattern analysis to
Earth Science studies have been investigated in [411, 412, 434]. Trajectory
pattern mining [339, 372, 438] is another application of spatio-temporal asso-
ciation analysis to identify frequently traversed paths of moving objects.

Association patterns have also been applied to other learning problems
such as classification [383, 386], regression [404], and clustering [361, 448, 452].
A comparison between classification and association rule mining was made
by Freitas in his position paper [354]. The use of association patterns for
clustering has been studied by many authors including Han et al.[361], Kosters
et al. [378], Yang et al. [452] and Xiong et al. [448].
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[328] D. Barbará, J. Couto, S. Jajodia, and N. Wu. ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15–24, 2001.

[329] S. D. Bay and M. Pazzani. Detecting Group Differences: Mining Contrast Sets. Data
Mining and Knowledge Discovery, 5(3):213–246, 2001.

[330] R. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of 1998
ACM-SIGMOD Intl. Conf. on Management of Data, pages 85–93, Seattle, WA, June
1998.

[331] R. Bayardo and R. Agrawal. Mining the Most Interesting Rules. In Proc. of the 5th
Intl. Conf. on Knowledge Discovery and Data Mining, pages 145–153, San Diego, CA,
August 1999.

[332] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57
(1):289–300, 1995.

[333] T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A. Züfle. Probabilistic frequent
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5.10 Exercises

1. For each of the following questions, provide an example of an association rule
from the market basket domain that satisfies the following conditions. Also,
describe whether such rules are subjectively interesting.

(a) A rule that has high support and high confidence.

(b) A rule that has reasonably high support but low confidence.



�

� �

�

5.10 Exercises 439

(c) A rule that has low support and low confidence.

(d) A rule that has low support and high confidence.

2. Consider the data set shown in Table 5.20.

Table 5.20. Example of market basket transactions.

Customer ID Transaction ID Items Bought

1 0001 {a, d, e}
1 0024 {a, b, c, e}
2 0012 {a, b, d, e}
2 0031 {a, c, d, e}
3 0015 {b, c, e}
3 0022 {b, d, e}
4 0029 {c, d}
4 0040 {a, b, c}
5 0033 {a, d, e}
5 0038 {a, b, e}

(a) Compute the support for itemsets {e}, {b, d}, and {b, d, e} by treating
each transaction ID as a market basket.

(b) Use the results in part (a) to compute the confidence for the associa-
tion rules {b, d} −→ {e} and {e} −→ {b, d}. Is confidence a symmetric
measure?

(c) Repeat part (a) by treating each customer ID as a market basket. Each
item should be treated as a binary variable (1 if an item appears in at
least one transaction bought by the customer, and 0 otherwise).

(d) Use the results in part (c) to compute the confidence for the association
rules {b, d} −→ {e} and {e} −→ {b, d}.

(e) Suppose s1 and c1 are the support and confidence values of an association
rule r when treating each transaction ID as a market basket. Also, let s2
and c2 be the support and confidence values of r when treating each cus-
tomer ID as a market basket. Discuss whether there are any relationships
between s1 and s2 or c1 and c2.

3. (a) What is the confidence for the rules ∅ −→ A and A −→ ∅?
(b) Let c1, c2, and c3 be the confidence values of the rules {p} −→ {q},

{p} −→ {q, r}, and {p, r} −→ {q}, respectively. If we assume that c1, c2,
and c3 have different values, what are the possible relationships that may
exist among c1, c2, and c3? Which rule has the lowest confidence?

(c) Repeat the analysis in part (b) assuming that the rules have identical
support. Which rule has the highest confidence?
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(d) Transitivity: Suppose the confidence of the rules A −→ B and B −→ C
are larger than some threshold, minconf . Is it possible that A −→ C has
a confidence less than minconf?

4. For each of the following measures, determine whether it is monotone, anti-
monotone, or non-monotone (i.e., neither monotone nor anti-monotone).

Example: Support, s = σ(X)
|T | is anti-monotone because s(X) ≥

s(Y ) whenever X ⊂ Y .

(a) A characteristic rule is a rule of the form {p} −→ {q1, q2, . . . , qn}, where
the rule antecedent contains only a single item. An itemset of size k can
produce up to k characteristic rules. Let ζ be the minimum confidence of
all characteristic rules generated from a given itemset:

ζ({p1, p2, . . . , pk}) = min
[
c
({p1} −→ {p2, p3, . . . , pk}

)
, . . .

c
({pk} −→ {p1, p2 . . . , pk−1}

) ]
Is ζ monotone, anti-monotone, or non-monotone?

(b) A discriminant rule is a rule of the form {p1, p2, . . . , pn} −→ {q}, where
the rule consequent contains only a single item. An itemset of size k can
produce up to k discriminant rules. Let η be the minimum confidence of
all discriminant rules generated from a given itemset:

η({p1, p2, . . . , pk}) = min
[
c
({p2, p3, . . . , pk} −→ {p1}

)
, . . .

c
({p1, p2, . . . pk−1} −→ {pk}

) ]
Is η monotone, anti-monotone, or non-monotone?

(c) Repeat the analysis in parts (a) and (b) by replacing the min function
with a max function.

5. Prove Equation 5.3. (Hint: First, count the number of ways to create an itemset
that forms the left-hand side of the rule. Next, for each size k itemset selected
for the left-hand side, count the number of ways to choose the remaining d− k
items to form the right-hand side of the rule.) Assume that neither of the
itemsets of a rule are empty.

6. Consider the market basket transactions shown in Table 5.21.

(a) What is the maximum number of association rules that can be extracted
from this data (including rules that have zero support)?

(b) What is the maximum size of frequent itemsets that can be extracted
(assuming minsup > 0)?
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Table 5.21. Market basket transactions.
Transaction ID Items Bought

1 {Milk, Beer, Diapers}
2 {Bread, Butter, Milk}
3 {Milk, Diapers, Cookies}
4 {Bread, Butter, Cookies}
5 {Beer, Cookies, Diapers}
6 {Milk, Diapers, Bread, Butter}
7 {Bread, Butter, Diapers}
8 {Beer, Diapers}
9 {Milk, Diapers, Bread, Butter}
10 {Beer, Cookies}

(c) Write an expression for the maximum number of size-3 itemsets that can
be derived from this data set.

(d) Find an itemset (of size 2 or larger) that has the largest support.

(e) Find a pair of items, a and b, such that the rules {a} −→ {b} and {b} −→
{a} have the same confidence.

7. Show that if a candidate k-itemset X has a subset of size less than k − 1 that
is infrequent, then at least one of the (k − 1)-size subsets of X is necessarily
infrequent.

8. Consider the following set of frequent 3-itemsets:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}.

Assume that there are only five items in the data set.

(a) List all candidate 4-itemsets obtained by a candidate generation proce-
dure using the Fk−1 × F1 merging strategy.

(b) List all candidate 4-itemsets obtained by the candidate generation proce-
dure in Apriori.

(c) List all candidate 4-itemsets that survive the candidate pruning step of
the Apriori algorithm.

9. The Apriori algorithm uses a generate-and-count strategy for deriving frequent
itemsets. Candidate itemsets of size k + 1 are created by joining a pair of
frequent itemsets of size k (this is known as the candidate generation step). A
candidate is discarded if any one of its subsets is found to be infrequent during
the candidate pruning step. Suppose the Apriori algorithm is applied to the
data set shown in Table 5.22 with minsup = 30%, i.e., any itemset occurring
in less than 3 transactions is considered to be infrequent.
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Table 5.22. Example of market basket transactions.

Transaction ID Items Bought

1 {a, b, d, e}
2 {b, c, d}
3 {a, b, d, e}
4 {a, c, d, e}
5 {b, c, d, e}
6 {b, d, e}
7 {c, d}
8 {a, b, c}
9 {a, d, e}
10 {b, d}

(a) Draw an itemset lattice representing the data set given in Table 5.22.
Label each node in the lattice with the following letter(s):

• N: If the itemset is not considered to be a candidate itemset by
the Apriori algorithm. There are two reasons for an itemset not to
be considered as a candidate itemset: (1) it is not generated at all
during the candidate generation step, or (2) it is generated during
the candidate generation step but is subsequently removed during
the candidate pruning step because one of its subsets is found to be
infrequent.

• F: If the candidate itemset is found to be frequent by the Apriori
algorithm.

• I: If the candidate itemset is found to be infrequent after support
counting.

(b) What is the percentage of frequent itemsets (with respect to all itemsets
in the lattice)?

(c) What is the pruning ratio of the Apriori algorithm on this data set?
(Pruning ratio is defined as the percentage of itemsets not considered
to be a candidate because (1) they are not generated during candidate
generation or (2) they are pruned during the candidate pruning step.)

(d) What is the false alarm rate (i.e., percentage of candidate itemsets that
are found to be infrequent after performing support counting)?

10. The Apriori algorithm uses a hash tree data structure to efficiently count the
support of candidate itemsets. Consider the hash tree for candidate 3-itemsets
shown in Figure 5.32.

(a) Given a transaction that contains items {1, 3, 4, 5, 8}, which of the hash
tree leaf nodes will be visited when finding the candidates of the transac-
tion?
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{289}

{356}
{689}
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{246}
{278}

{145}
{178}

{127}
{457}

Figure 5.32. An example of a hash tree structure.

(b) Use the visited leaf nodes in part (a) to determine the candidate itemsets
that are contained in the transaction {1, 3, 4, 5, 8}.

11. Consider the following set of candidate 3-itemsets:

{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}

(a) Construct a hash tree for the above candidate 3-itemsets. Assume the
tree uses a hash function where all odd-numbered items are hashed to
the left child of a node, while the even-numbered items are hashed to the
right child. A candidate k-itemset is inserted into the tree by hashing on
each successive item in the candidate and then following the appropriate
branch of the tree according to the hash value. Once a leaf node is reached,
the candidate is inserted based on one of the following conditions:

Condition 1: If the depth of the leaf node is equal to k (the root is
assumed to be at depth 0), then the candidate is inserted regardless
of the number of itemsets already stored at the node.

Condition 2: If the depth of the leaf node is less than k, then the
candidate can be inserted as long as the number of itemsets stored
at the node is less than maxsize. Assume maxsize = 2 for this
question.

Condition 3: If the depth of the leaf node is less than k and the number
of itemsets stored at the node is equal tomaxsize, then the leaf node
is converted into an internal node. New leaf nodes are created as
children of the old leaf node. Candidate itemsets previously stored
in the old leaf node are distributed to the children based on their
hash values. The new candidate is also hashed to its appropriate leaf
node.
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null
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Figure 5.33. An itemset lattice

(b) How many leaf nodes are there in the candidate hash tree? How many
internal nodes are there?

(c) Consider a transaction that contains the following items: {1, 2, 3, 5, 6}. Us-
ing the hash tree constructed in part (a), which leaf nodes will be checked
against the transaction? What are the candidate 3-itemsets contained in
the transaction?

12. Given the lattice structure shown in Figure 5.33 and the transactions given in
Table 5.22, label each node with the following letter(s):

• M if the node is a maximal frequent itemset,

• C if it is a closed frequent itemset,

• N if it is frequent but neither maximal nor closed, and

• I if it is infrequent.

Assume that the support threshold is equal to 30%.

13. The original association rule mining formulation uses the support and confi-
dence measures to prune uninteresting rules.

(a) Draw a contingency table for each of the following rules using the trans-
actions shown in Table 5.23.
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Table 5.23. Example of market basket transactions.

Transaction ID Items Bought

1 {a, b, d, e}
2 {b, c, d}
3 {a, b, d, e}
4 {a, c, d, e}
5 {b, c, d, e}
6 {b, d, e}
7 {c, d}
8 {a, b, c}
9 {a, d, e}
10 {b, d}

Rules: {b} −→ {c}, {a} −→ {d}, {b} −→ {d}, {e} −→ {c}, {c} −→ {a}.
(b) Use the contingency tables in part (a) to compute and rank the rules in

decreasing order according to the following measures.

i. Support.

ii. Confidence.

iii. Interest(X −→ Y ) = P (X,Y )
P (X) P (Y ).

iv. IS(X −→ Y ) = P (X,Y )√
P (X)P (Y )

.

v. Klosgen(X −→ Y ) =
√
P (X,Y )×max(P (Y |X)− P (Y ), P (X|Y )−

P (X)), where P (Y |X) = P (X,Y )
P (X) .

vi. Odds ratio(X −→ Y ) = P (X,Y )P (X,Y )

P (X,Y )P (X,Y )
.

14. Given the rankings you had obtained in Exercise 13, compute the correlation
between the rankings of confidence and the other five measures. Which measure
is most highly correlated with confidence? Which measure is least correlated
with confidence?

15. Answer the following questions using the data sets shown in Figure 5.34. Note
that each data set contains 1000 items and 10,000 transactions. Dark cells
indicate the presence of items and white cells indicate the absence of items. We
will apply the Apriori algorithm to extract frequent itemsets with minsup =
10% (i.e., itemsets must be contained in at least 1000 transactions).

(a) Which data set(s) will produce the most number of frequent itemsets?

(b) Which data set(s) will produce the fewest number of frequent itemsets?

(c) Which data set(s) will produce the longest frequent itemset?

(d) Which data set(s) will produce frequent itemsets with highest maximum
support?



�

� �

�

446 Chapter 5 Association Analysis

(e) Which data set(s) will produce frequent itemsets containing items with
wide-varying support levels (i.e., items with mixed support, ranging from
less than 20% to more than 70%)?

16. (a) Prove that the φ coefficient is equal to 1 if and only if f11 = f1+ = f+1.

(b) Show that ifA andB are independent, then P (A,B)×P (A,B) = P (A,B)×
P (A,B).

(c) Show that Yule’s Q and Y coefficients

Q =

[
f11f00 − f10f01
f11f00 + f10f01

]
Y =

[√
f11f00 −

√
f10f01√

f11f00 +
√
f10f01

]
are normalized versions of the odds ratio.

(d) Write a simplified expression for the value of each measure shown in
Table 5.9 when the variables are statistically independent.

17. Consider the interestingness measure, M = P (B|A)−P (B)
1−P (B) , for an association

rule A −→ B.

(a) What is the range of this measure? When does the measure attain its
maximum and minimum values?

(b) How does M behave when P (A,B) is increased while P (A) and P (B)
remain unchanged?

(c) How does M behave when P (A) is increased while P (A,B) and P (B)
remain unchanged?

(d) How does M behave when P (B) is increased while P (A,B) and P (A)
remain unchanged?

(e) Is the measure symmetric under variable permutation?

(f) What is the value of the measure when A and B are statistically inde-
pendent?

(g) Is the measure null-invariant?

(h) Does the measure remain invariant under row or column scaling opera-
tions?

(i) How does the measure behave under the inversion operation?

18. Suppose we have market basket data consisting of 100 transactions and 20
items. Assume the support for item a is 25%, the support for item b is 90% and
the support for itemset {a, b} is 20%. Let the support and confidence thresholds
be 10% and 60%, respectively.
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Figure 5.34. Figures for Exercise 15.
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(a) Compute the confidence of the association rule {a} → {b}. Is the rule
interesting according to the confidence measure?

(b) Compute the interest measure for the association pattern {a, b}. Describe
the nature of the relationship between item a and item b in terms of the
interest measure.

(c) What conclusions can you draw from the results of parts (a) and (b)?

(d) Prove that if the confidence of the rule {a} −→ {b} is less than the support
of {b}, then:
i. c({a} −→ {b}) > c({a} −→ {b}),
ii. c({a} −→ {b}) > s({b}),

where c(·) denote the rule confidence and s(·) denote the support of an
itemset.

19. Table 5.24 shows a 2× 2× 2 contingency table for the binary variables A and
B at different values of the control variable C.

Table 5.24. A Contingency Table.

A

C = 0

C = 1

B

B

1

1

0

0

0

5

1

15

0

15

0

0

30

15

(a) Compute the φ coefficient for A and B when C = 0, C = 1, and C = 0

or 1. Note that φ({A,B}) = P (A,B)−P (A)P (B)√
P (A)P (B)(1−P (A))(1−P (B))

.

(b) What conclusions can you draw from the above result?

20. Consider the contingency tables shown in Table 5.25.

(a) For table I, compute support, the interest measure, and the φ correlation
coefficient for the association pattern {A, B}. Also, compute the confi-
dence of rules A→ B and B → A.

(b) For table II, compute support, the interest measure, and the φ corre-
lation coefficient for the association pattern {A, B}. Also, compute the
confidence of rules A→ B and B → A.
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5.10 Exercises 449

Table 5.25. Contingency tables for Exercise 20.

B B B B

A 9 1 A 89 1

A 1 89 A 1 9

(a) Table I. (b) Table II.

(c) What conclusions can you draw from the results of (a) and (b)?

21. Consider the relationship between customers who buy high-definition televi-
sions and exercise machines as shown in Tables 5.17 and 5.18.

(a) Compute the odds ratios for both tables.

(b) Compute the φ-coefficient for both tables.

(c) Compute the interest factor for both tables.

For each of the measures given above, describe how the direction of association
changes when data is pooled together instead of being stratified.
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