Support Vector Machines

Find a linear hyperplane (decision boundary) that will separate the data.
Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution
Support Vector Machines

- Other possible solutions

Which one is better? B1 or B2?
How do you define better?
Support Vector Machines

- Find hyperplane maximizes the margin => B1 is better than B2

\[\frac{1}{\|w\|} \]

\[f(\tilde{x}) = \begin{cases}
1 & \text{if } \tilde{w} \cdot \tilde{x} + b \geq 1 \\
-1 & \text{if } \tilde{w} \cdot \tilde{x} + b \leq -1
\end{cases} \]
Linear SVM

• Linear model:

\[f(\tilde{x}) = \begin{cases}
1 & \text{if } \tilde{w} \cdot \tilde{x} + b \geq 1 \\
-1 & \text{if } \tilde{w} \cdot \tilde{x} + b \leq -1
\end{cases} \]

• Learning the model is equivalent to determining the values of \(\tilde{w} \) and \(b \)
 – How to find \(\tilde{w} \) and \(b \) from training data?

Learning Linear SVM

• Objective is to maximize: Margin = \(\frac{2}{||\tilde{w}||} \)
 – Which is equivalent to minimizing: \(L(\tilde{w}) = \frac{||\tilde{w}||^2}{2} \)
 – Subject to the following constraints:

\[y_i = \begin{cases}
1 & \text{if } \tilde{w} \cdot \tilde{x}_i + b \geq 1 \\
-1 & \text{if } \tilde{w} \cdot \tilde{x}_i + b \leq -1
\end{cases} \]

or

\[y_i (w \cdot x_i + b) \geq 1, \quad i = 1, 2, \ldots, N \]

• This is a constrained optimization problem
 – Solve it using Lagrange multiplier method
Example of Linear SVM

Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once \(\mathbf{w} \) and \(b \) are found? Given a test record, \(x_i \)

\[
f(x_i) = \begin{cases}
1 & \text{if } \mathbf{w} \cdot x_i + b \geq 1 \\
-1 & \text{if } \mathbf{w} \cdot x_i + b \leq -1
\end{cases}
\]
Support Vector Machines

• What if the problem is not linearly separable?

Introduce slack variables

\[L(w) = \frac{||\mathbf{w}||^2}{2} + C \sum_{i=1}^{N} \xi_i^k \]

Subject to:

\[y_i = \begin{cases}
1 & \text{if } \mathbf{w} \cdot \mathbf{x}_i + b \geq 1 - \xi_i \\
-1 & \text{if } \mathbf{w} \cdot \mathbf{x}_i + b \leq -1 + \xi_i
\end{cases} \]

If \(k \) is 1 or 2, this leads to similar objective function as linear SVM but with different constraints (see textbook)
Support Vector Machines

- Find the hyperplane that optimizes both factors

Nonlinear Support Vector Machines

- What if decision boundary is not linear?

\[y(x_1, x_2) = \begin{cases}
1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\
-1 & \text{otherwise}
\end{cases} \]
Nonlinear Support Vector Machines

- Transform data into higher dimensional space

\[x_1^2 - x_1 + x_2^2 - x_2 = -0.46. \]
\[\Phi : (x_1, x_2) \rightarrow (x_1^2, x_2^2, \sqrt{x_1}, \sqrt{x_2}, 1). \]
\[w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{x_1} + w_1 \sqrt{x_2} + w_0 = 0. \]

Decision boundary:
\[\vec{w} \bullet \Phi(\vec{x}) + b = 0 \]

Learning Nonlinear SVM

- Optimization problem:

\[\min_{\vec{w}} \frac{||\vec{w}||^2}{2} \text{ subject to } y_i (\vec{w} \cdot \Phi(x_i) + b) \geq 1, \forall \{(x_i, y_i)\} \]

- Which leads to the same set of equations (but involve \(\Phi(x) \) instead of \(x \))

\[I_D = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(x_i) \cdot \Phi(x_j) \quad w = \sum_{i} \lambda_i y_i \Phi(x_i) \]
\[\lambda_i \{ y_i \left(\sum_{j} \lambda_j y_j \Phi(x_j) \cdot \Phi(x_i) + b \right) - 1 \} = 0, \]
\[f(x) = \text{sign}(\vec{w} \cdot \Phi(x) + b) = \text{sign}(\sum_{i=1}^{n} \lambda_i y_i \Phi(x_i) \cdot \Phi(x) + b). \]
Learning NonLinear SVM

• Issues:
 – What type of mapping function Φ should be used?
 – How to do the computation in high dimensional space?
 ◆ Most computations involve dot product $\Phi(x_i) \cdot \Phi(x_j)$
 ◆ Curse of dimensionality?

Learning Nonlinear SVM

• Kernel Trick:
 – $\Phi(x_i) \cdot \Phi(x_j) = K(x_i, x_j)$
 – $K(x_i, x_j)$ is a kernel function (expressed in terms of the coordinates in the original space)
 ◆ Examples:
 $$K(x, y) = (x \cdot y + 1)^p$$
 $$K(x, y) = e^{-\|x - y\|^2/(2\sigma^2)}$$
 $$K(x, y) = \tanh(kx \cdot y - \delta)$$
Learning Nonlinear SVM

- Advantages of using kernel:
 - Don’t have to know the mapping function Φ
 - Computing dot product $\Phi(x_i) \cdot \Phi(x_j)$ in the original space avoids curse of dimensionality

- Not all functions can be kernels
 - Must make sure there is a corresponding Φ in some high-dimensional space
 - Mercer’s theorem (see textbook)
Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
 - Efficient algorithms are available to find the global minima
 - Many of the other methods use greedy approaches and find locally optimal solutions
 - High computational complexity for building the model

- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values

- What about categorical variables?