
Finding Clusters of Different Sizes, Shapes, and Densities in Noisy,

High Dimensional Data

Levent Ertöz † Michael Steinbach † Vipin Kumar †

February 20, 2003

Abstract

Finding clusters in data, especially high dimensional
data, is challenging when the clusters are of widely
differing shapes, sizes, and densities, and when the
data contains noise and outliers. We present a novel
clustering technique that addresses these issues. Our
algorithm first finds the nearest neighbors of each data
point and then redefines the similarity between pairs
of points in terms of how many nearest neighbors the
two points share. Using this definition of similarity, our
algorithm identifies core points and then builds clusters
around the core points. The use of a shared nearest
neighbor definition of similarity alleviates problems
with varying densities and high dimensionality, while
the use of core points handles problems with shape and
size. While our algorithm can find the “dense” clusters
that other clustering algorithms find, it also finds
clusters that these approaches overlook, i.e., clusters
of low or medium density which represent relatively
uniform regions “surrounded” by non-uniform or
higher density areas. We experimentally show that our
algorithm performs better than traditional methods
(e.g., K-means, DBSCAN, CURE) on a variety of data
sets: KDD Cup ’99 network intrusion data, NASA
Earth science time series data, and two dimensional
point sets. The run-time complexity of our technique
is O(n2) if the similarity matrix has to be constructed.
However, we discuss a number of optimizations that
allow the algorithm to handle large data sets efficiently.

Keywords: cluster analysis, shared nearest neigh-
bor, time series, network intrusion, spatial data

1 Introduction

Cluster analysis [7, 11] divides data into groups (clus-
ters) for the purposes of summarization or improved
understanding. For example, cluster analysis has been

†Department of Computer Science
University of Minnesota
{ertoz, steinbac, kumar}@cs.umn.edu

used to group related documents for browsing, to find
genes and proteins that have similar functionality, or
as a means of data compression. While clustering has a
long history and a large number of clustering techniques
have been developed in statistics, pattern recognition,
data mining, and other fields, significant challenges still
remain. In part, this is because large, as well as high
dimensional, data sets and the computational power to
deal with them are relatively recent. However, most of
the clustering challenges, particularly those related to
“quality,” rather than computational resources, are the
same challenges that existed decades ago: how to find
clusters with differing sizes, shapes and densities, how
to handle noise and outliers, and how to determine the
number of clusters.

1.1 The Challenges of Cluster Analysis and Re-
lated Work K-means [7] is one of the most commonly
used clustering algorithm, but it does not perform well
on data with outliers or with clusters of different sizes or
non-globular shapes. The single link agglomerative clus-
tering method is the most suitable for capturing clus-
ters with non-globular shapes, but this approach is very
sensitive to noise and cannot handle clusters of vary-
ing density. Other agglomerative clustering algorithms,
e.g., complete link and group average, are not as af-
fected by noise, but have a bias towards finding globu-
lar clusters. More recently, clustering algorithms have
been developed to overcome some of these limitations.
In particular, for low dimensional data, DBSCAN [13],
CURE [18], and Chameleon [9] have shown good per-
formance.

In DBSCAN, the density associated with a point is
obtained by counting the number of points in a region
of specified radius, Eps, around the point. Points with
a density above a specified threshold, MinPts, are
classified as core points, while noise points are defined
as non-core points that don’t have a core point within
the specified radius. Noise points are discarded, while
clusters are formed around the core points. If two core
points are within a radius of Eps of each other, then

Neighborhood of a point

Figure 1: Density based neighborhoods

their clusters are joined. Non-noise, non-core points,
which are called border points, are assigned to the
clusters associated with any core point within their
radius. Thus, core points form the skeleton of the
clusters, while border points flesh out this skeleton.

While DBSCAN can find clusters of arbitrary
shapes, it cannot handle data containing clusters of dif-
fering densities, since its density based definition of core
points cannot identify the core points of varying density
clusters. Consider Figure 1. If a user defines the neigh-
borhood of a point by specifying a particular radius and
looks for core points that have a pre-defined number of
points within that radius, then either the tight cluster
on the left will be picked up as one cluster, and the rest
will be marked as noise, or else every point will belong
to a single cluster.

In CURE, the concept of representative points is
employed to find non-globular clusters. Specifically,
CURE represents a cluster by using multiple represen-
tative points from the cluster. These points capture
the geometry and shape of the cluster and allow for
non-globular clusters. The first representative point is
chosen to be the point furthest from the center of the
cluster, while the remaining points are chosen so that
they are farthest from all the previously chosen points,
thus guaranteeing that representative points are well
distributed. Once the representative points are chosen,
they are shrunk toward the center by a factor, α. This
helps to moderate the effect of noise points located at
cluster boundaries by moving the representative points
belonging to the clusters farther apart.

CURE uses an agglomerative hierarchical scheme
to perform the actual clustering. The distance between
two clusters is the minimum distance between any two
of their representative points (after the representative
points are shrunk toward their respective centers). Dur-
ing this hierarchical clustering process, CURE elimi-
nates outliers by eliminating small, slowly growing clus-
ters. Although the concept of representative points does
allow CURE to find clusters of different sizes and shapes

in some data sets, CURE is still biased towards finding
globular clusters, as it still has a notion of a cluster
center.

Chameleon is a clustering algorithm that combines
an initial partitioning of the data with a novel hierar-
chical clustering scheme that dynamically models clus-
ters. The first step in Chameleon is to generate a k-
nearest neighbor graph. Conceptually, such a graph
contains only links between a point and its k-nearest
neighbors, i.e., the points to which it is closest or most
similar. This local approach reduces the influence of
noise and outliers, and provides an automatic adjust-
ment for differences in density. Once a k-nearest neigh-
bor graph has been obtained, an efficient multi-level
graph-partitioning algorithm, METIS [10], can be used
to partition the data set, resulting in a large number of
almost equally sized groups of well-connected vertices
(highly similar data points). This produces partitions
that are sub-clusters, i.e., that contain points mostly
from one “true” cluster.

To recombine the sub-clusters, a novel agglomer-
ative hierarchical algorithm is used. Two clusters are
combined if the resulting cluster shares certain prop-
erties with the constituent clusters, where the two key
properties are the relative closeness and the relative in-
terconnectedness of the points. Thus, two clusters will
be merged only if the resulting cluster is “similar” to
the original clusters, i.e., if self-similarity is preserved.

Although Chameleon does not explicitly use the
notion of core points, all three approaches share the idea
that the challenge of finding clusters of different shapes
and sizes can be handled by finding points or small
subsets of points and then building clusters around
them.

While DBSCAN, CURE, and Chameleon have
largely been used for solving clustering problems for
low dimensional data, high dimensional data brings new
challenges. In particular, high dimensionality typically
makes its influence felt through its effect on the similar-
ity function. For example, in high dimensional data sets,
distances or similarities between points become more
uniform, making clustering more difficult. Also, some-
times the similarity between individual data points can
be misleading, i.e., a point can be more similar to a
point that “actually” belongs to a different cluster than
to points in its own cluster. This is discussed in Section
2.

A shared nearest neighbor approach to similarity,
as proposed by Jarvis and Patrick in [8], and also
later in ROCK [19], is a promising way to deal with
this issue. Specifically, the nearest neighbors of each
point are found, and then a new similarity between
points is defined in terms of the number of neighbors

they share. As you will see in sections 3 and 4, this
notion of similarity is very valuable for finding clusters
of differing densities. While the Jarvis-Patrick approach
and ROCK use this notion of similarity, they have
serious limitations. In particular, ROCK is similar to
the group average agglomerative hierarchical technique
mentioned earlier and shares a bias towards globular
clusters. Jarvis-Patrick, on the other hand, is similar
to single link. It’s limitations are discussed further in
Section 4.

1.2 Our Contribution We present a clustering ap-
proach that can simultaneously address the previously
mentioned clustering challenges for a wide variety of
data sets. In particular, our algorithm first finds the
nearest neighbors of each data point and then, as in
the Jarvis-Patrick approach [8], redefines the similarity
between pairs of points in terms of how many nearest
neighbors the two points share. Using this definition of
similarity, our algorithm identifies core points and then
builds clusters around the core points. These clusters
do not contain all the points, but rather, contain only
points that come from regions of relatively uniform den-
sity. The use of a shared nearest neighbor definition of
similarity removes problems with varying density and
the unreliability of distance measures in high dimen-
sions, while the use of core points handles problems with
shape and size. Furthermore, the number of clusters is
automatically determined.

A novel aspect of our algorithm is that it finds clus-
ters that other approaches overlook. In particular, many
clustering algorithms only find “dense” clusters. How-
ever, this ignores sets of points that represent relatively
uniform regions with respect to their surroundings. An-
other novel aspect of our approach is that a cluster con-
sisting of a single data point can be significant, since
this data point may be representative of a large num-
ber of other data points. (Unfortunately , there is not
room in this paper to illustrate this idea, and we refer
the reader to [4].)

Much of the strength of our approach comes from
ideas that are found in several recent clustering algo-
rithms: core or representative points, the importance
of noise and outlier removal, and the notion of defining
distance in terms of the number of shared nearest neigh-
bors. Our contributions include extending the Jarvis-
Patrick shared nearest neighbor clustering technique to
encompass the notion of representative points, creat-
ing a complete clustering algorithm which incorporates
a variety of recent and established ideas, relating this
approach to the approaches of other researchers, and
importantly, showing that our approach works better
than current algorithms for a variety of different types

of data.
Note that our algorithm does not cluster all the

points. Generally, this is a good thing for many data
sets, as often much of the data is noise and should be
eliminated. In particular, the ability of our approach
to remove noise and outliers is a critical requirement in
some of the applications described later. However, if a
clustering of all points is desired, then the unclustered
data can be added to the core clusters found by our
algorithm by assigning them to the cluster containing
the closest representative point.

There are parameters that allow for the adjustment
of the algorithm, and the effects of these parameters will
be discussed in more detail in Section 3. However, in
brief, the parameters control the resolution or granular-
ity of the clustering and allow the user to control how
many points are clustered versus how many points are
classified as noise.

The run-time complexity of our algorithm is O(n2),
where n is the number of points, if the similarity matrix
has to be constructed. There are, however, a number of
approaches that can be used to reduce the complexity
of the algorithm in specific instances, many of them
based on approaches successfully proposed and used
by other researchers. We discuss the details of these
optimizations later, in Section 6.

1.3 Outline of the Paper The rest of the paper is
organized as follows. Sections 2 and 3, respectively, de-
scribe our approaches to the definition of similarity and
density, which are key to our clustering algorithm. The
actual clustering algorithm itself is described in Section
4. Section 5 follows up with three case studies: two
dimensional point data, NASA Earth Science time se-
ries data, and the KDD cup ‘99 network intrusion data.
Section 6 discusses the complexity of our clustering al-
gorithm and strategies for improving the run-time effi-
ciency, while Section 7 presents a short conclusion and
directions for future work.

2 An Alternative Definition of Similarity

The most common distance metric used in low dimen-
sional data sets is the Euclidean distance, or the L2
norm. While Euclidean distance is useful in low dimen-
sions, it doesn’t work as well in high dimensions. Con-
sider the pair of ten-dimensional data points, p1 and p2,
shown in Table 1. If we calculate the Euclidean distance
between these two points, we get 5. Now, consider the
next pair of ten-dimensional points, p3 and p4, which
are also shown in Table 1. If we calculate the distance
between points p3 and p4, we again get 5. However,
if the points are documents and each attribute is the
number of times a word occurs in a document, then,

Point A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

p1 3 0 0 0 0 0 0 0 0 0

p2 0 0 0 0 0 0 0 0 0 4

p3 3 2 4 0 1 2 3 1 2 0

p4 0 2 4 0 1 2 3 1 2 4

Table 1: Four points with ten integer attributes.

intuitively, points p3 and p4, which share 7 words, seem
more similar than points p1 and p2, which don’t share
any words. More generally, when data points have a
lot of attributes that are often 0, i.e., the data is sparse,
similarity (distance) is more usefully defined by ignoring
attributes that are zero for both data points. However,
as illustrated by this example, Euclidean distance does
not capture this notion of closeness. This is further dis-
cussed in [14].

Different measures, such as the cosine measure and
extended Jaccard coefficient [14], address this problem.
In particular, the cosine similarity between two data
points is equal to the dot product of the two vectors
divided by the individual norms of the vectors. (If the
vectors are already normalized, then the cosine similar-
ity simply becomes the dot product of the vectors.) If
we calculate the cosine similarity between data points
p1 and p2, and p3 and p4, we see that the similarity
between p1 and p2 is equal to 0, but is 0.759 between
p3 and p4. (Cosine similarity ranges between 0, no sim-
ilarity, and 1, completely similar.)

Nonetheless, even though both the cosine and ex-
tended Jaccard measures give more importance to the
presence of a term than to its absence, there are situa-
tions where such similarity measures still have problems
in high dimensions. For example, for several TREC data
sets which have class labels, we found that 15− 20% of
the time a document’s nearest neighbor, i.e, most sim-
ilar document according to the cosine measure, is of a
different class [15]. The “unreliability” of direct simi-
larity is also illustrated in [19] using a synthetic market
basket data set. Note that this problem is not due to
the lack of a good similarity measure. Instead, the prob-
lem is that direct similarity in high dimensions cannot
be trusted when the similarity between pairs of points
is low. Typically, data in high dimensions is sparse, and
the similarity between data points is, on the average,
low.

Another very important problem with similarity
measures is that the triangle inequality doesn’t hold.
Consider the following example based on three points
shown in Table 2. Using the cosine measure, point p1
is close to point p2, point p2 is close to point p3, and
yet, points p1 and p3 are have a similarity of 0. The
similarity between points p1 and p2, and points p2 and

Point A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

p1 1 1 1 1 1 0 0 0 0 0

p2 0 0 1 1 1 1 1 1 0 0

p3 0 0 0 0 0 1 1 1 1 1

Table 2: Three points with ten binary attributes.

p3 come from different sets of attributes.
An alternative to direct similarity is to define the

similarity between a pair of points in terms of their
shared nearest neighbors. That is, the similarity be-
tween two points is “confirmed” by their common
(shared) nearest neighbors. If point p1 is close to point
p2 and if they are both close to a set of points, S, then
we can say that p1 and p2 are close with greater confi-
dence since their similarity is “confirmed” by the points
in set S. The shared nearest neighbor approach was first
introduced by Jarvis and Patrick [8]. A similar idea was
later presented in ROCK [19].

In the Jarvis-Patrick scheme, a shared nearest
neighbor (SNN) graph is constructed from the similarity
matrix as follows. A link is created between a pair of
points, p and q, if and only if p and q have each other
in their k-nearest neighbor lists. This process is called
k-nearest neighbor sparsification. The weights of the
links between two points in the SNN graph can either be
simply the number of nearest neighbors the two points
share, or can take the ordering of the nearest neighbors
into account. Specifically, if p and q be two points.
Then, the strength of the link between p and q, i.e.,
their similarity is defined by the following equation:

similarity(p, q) = size(NN(p) ∩NN(q))(2.1)

In the above equation, NN(p) and NN(q) are, re-
spectively, the nearest neighbor lists of p and q. At
this point, clusters can be obtained by removing all
edges with weights (similarities) less than a user speci-
fied threshold and taking all the connected components
as clusters [8]. We will refer to this as Jarvis-Patrick
clustering

Figure 2 illustrates two key properties of the shared
nearest neighbor graph in the context of a 2-D point
data set. In Figure 2a, links to the five most similar
neighbors are drawn for each point. Figure 2b shows
the unweighted shared nearest neighbor graph. In this
graph, there is a link between points p1 and p2, only
if p1 and p2 have each other in their nearest neighbor
lists.

We make two important observations about this 2-
D example that also hold for higher dimensional data.
First, noise points and outliers end up having most, if
not all, of their links broken. The point in the lower

(a) Near Neighbor Graph.

(b) Unweighted Shared Near-
est Neighbor.

Figure 2: Nearest Neighbor Graphs.

right corner of Figure 2b ended up losing all its links,
because it wasn’t in the nearest neighbor lists of its
own nearest neighbors. Thus, construction of the SNN
graph removes a lot of noise. Second, the shared nearest
neighbor graph keeps the links in regions of uniform
density and breaks links in transition regions, i.e., it
keeps links in a region of any density, high or low, as
long as the region has relatively uniform density. This
is an important property, since identifying clusters of
widely varying density (tightness) is one of the hardest
problems in cluster analysis.

3 An Alternative Definition of Density

In high dimensional data sets, the traditional Euclidean
notion of density, which is the number of points per
unit volume, is meaningless. To see this, consider
that as the number of dimensions increases, the volume
increases rapidly, and unless the number of points
grows exponentially with the number of dimensions, the
density tends to 0. Thus, as dimensionality increases, it
becomes increasing difficult to use a traditional density
based clustering method, such as the one used in
DBSCAN, which identifies core points as points in high
density regions and noise points as points in low density
regions.

A related concept is that of the probability density
at a point, which corresponds to measuring the relative
density. In the kth nearest neighbor approach to
estimating probability density [3], if the kth nearest
neighbor of a point is close, then the point is more likely
to be in a region which has a relatively high probability
density. Thus, the distance to the kth nearest neighbor
provides a measure of the density of a point. However,
as the dimensionality increases, the Euclidean distance
between points becomes increasingly uniform [6] and
this approach also works poorly.

Nonetheless, it is possible to use the preceding
definition of density, if a “better” similarity (distance)
measure can be found, i.e., one that works well for high
dimensions. As mentioned in Section 2, the cosine or
Jaccard measures work better than Euclidean distance

in high dimensional spaces, at least when the data is
sparse, e.g., document data. But, as also described, in
Section 2, such measures still have problems, and thus,
are not suitable for defining a new density measure.

SNN similarity provides us with a more robust
measure of similarity, one that works well for data with
low, medium and high dimensionality. Consequently,
we can use SNN similarity, with the k-nearest neighbor
approach to density estimation. More specifically, if the
kth nearest neighbor of a point, with respect to SNN
similarity, is close, i.e., has high SNN similarity, then we
say that there is a high “density” at this point. Since the
SNN similarity measure reflects the local configuration
of the points in the data space, it is relatively insensitive
to variations in density and the dimensionality of the
space, and is a promising candidate for a new measure
of density.

We remark that a variety of other related measures
of density are possible. For example, in previous work
[4], we defined the density at a point as the sum of
the SNN similarities of a point’s k nearest neighbors.
We did this for two reasons: a) to reduce the effects
of random variation that would result from looking at
only one point, and b) to be consistent with a graph-
based view of this problem, where we view the density
at a vertex as the sum of the weights of the k strongest
edges, i.e., as a measure of how strongly the point is
connected to other points.

However, in this paper, we will define density as
the number of points within a given radius (specified in
terms of SNN similarity) since this approach is easier
to explain. Results are very similar among different
approaches.

Regardless of the exact definition of SNN density
adopted, the importance of an SNN approach is that it
gives us a method for identifying core or representative
points which works regardless of the dimensionality of
the data and which is relatively invariant to variations
in density. In turn, representative points are the key to
handling clusters of differing sizes and shapes.

4 A Shared Nearest Neighbor Clustering
Algorithm

We now present an algorithm that uses a density-
based approach to find core or representative points.
In particular, this approach is based on the notion of
“SNN density” introduced in Section 3. This approach
automatically compensates for different densities and is
not subject to the problem illustrated in Figure 1.

4.1 Identifying Core Points and Removing
Noise Figure 3 illustrates how we can find representa-
tive points and effectively remove noise using the SNN

graph. In the 2D point data set, shown in Figure 3a,
there are 10, 000 points. Subfigures 3b-3d differentiate
between these points based on their SNN density. Fig-
ure 3b shows the points with the highest SNN density,
while Figure 3c shows points of intermediate SNN den-
sity, and Figure 3d shows figures of the lowest SNN den-
sity.

(a) All Points (b) High SNN Density

(c) Medium SNN Density (d) Low SNN Density

Figure 3: SNN Density of 2-D Points.

More formally, for this analysis, we used a nearest
neighbor list of size of 50. (Therefore, the shared nearest
neighbor similarity, i.e., number of nearest neighbors
that two points have in common, can range between
0 and 50. While similarity is often measured between
0 and 1, that is not the case here.) We then defined
density by counting the number of points that were
close to a point, using SNN similarity as our measure
of closeness. In particular, we said that two points
were close if they shared 20 or more nearest neighbors.
Density was then defined as the number of points that
were close.

Figure 3b shows all points that have 34 or more
points that are close, i.e., share more than 20 nearest
neighbors. (A maximum of 50 is possible.). Figure 3c
shows all points with 17−33 points that share 20 or more
nearest neighbors, while Figure 3d shows all points that
have less than 17 points that share 20 or more nearest
neighbors.

In terms of the SNN graph, we only keep links whose
similarity is greater than 20, and define density in terms
of the number of links that a point has. In DBSCAN
terms, we are setting Eps = 20. If we regard the points
in Figure 3b as core points, then we can, again using
DBSCAN terminology, say that MinPts = 34.

From these figures, we see that the points that
have high density, i.e., high connectivity in the SNN

graph, are candidates for being representative or core
points since they tend to be located well inside the
cluster, while the points that have low connectivity are
candidates for being noise points and outliers, as they
are mostly in the regions surrounding the clusters.

An alternative way of finding representative points
is to consider the sum of link strengths for every point
in the SNN graph. The points that have high total
link strength then become candidates for representative
points, while the points that have very low total link
strength become candidates for noise points.

4.2 The SNN Clustering Algorithm The steps
of the SNN clustering algorithms are as follows:

1. Compute the similarity matrix. (This corre-
sponds to a similarity graph with data points for
nodes and edges whose weights are the similarities
between data points.)

2. Sparsify the similarity matrix by keeping
only the k most similar neighbors. (This
corresponds to only keeping the k strongest links
of the similarity graph.)

3. Construct the shared nearest neighbor graph
from the sparsified similarity matrix. At
this point, we could apply a similarity threshold
and find the connected components to obtain the
clusters (Jarvis-Patrick algorithm.)

4. Find the SNN density of each Point. Using
a user specified parameters, Eps, find the number
points that have an SNN similarity of Eps or
greater to each point. This is the SNN density of
the point.

5. Find the core points. Using a user specified
parameter, MinPts, find the core points, i.e., all
points that have an SNN density greater than
MinPts.

6. Form clusters from the core points. If two
core points are within a radius, Eps, of each other,
then they are placed in the same cluster.

7. Discard all noise points. All non-core points
that are not within a radius of Eps of a core point
are discarded.

8. Assign all non-noise, non-core points to clus-
ters. We can do this by assigning such points to
the nearest core point. (Note that steps 4-8 are
DBSCAN.)

The algorithm, being an extension of Jarvis-Patrick
and DBSCAN, will determine the number of clusters in
the data automatically. Also note that not all the points
are clustered. Depending on the application, we might
actually want to discard many of the points.

4.3 Parametrization The neighborhood list size, k,
is the most important parameter as it determines the
granularity of the clusters. If k is too small, even a
uniform cluster will be broken up into pieces due to local
variations in the similarity, and the algorithm will tend
to find many small, but tight, clusters. On the other
hand, if k is too large, then the algorithm will tend to
find only a few large, well-separated clusters, and small
local variations in similarity will not have an impact.
The parameter k, adjusts the focus of the clusters. Once
the neighborhood size is fixed, the nature of the clusters
that will be produced is also fixed.

In the SNN graph, a point can be similar to at most
k other points, therefore the MinPts parameter should
be a fraction of the neighborhood list size, k.

4.4 Variations of the SNN Algorithm In our ex-
periments, we observed that minor changes to the DB-
SCAN algorithm provide more control and stability.
DBSCAN uses the Eps parameter to define the neigh-
borhood as well as defining the criteria to merge two
clusters. We can use a tighter threshold than Eps to
identify core points, and by doing so; the core points
we identify will be more reliable. Furthermore, if we
chose the core points more conservatively, then we can
also use a looser threshold than Eps for merging core
points.

We can classify very loosely connected points as
noise points, either as a pre-processing step for a
clustering algorithm or just for noise removal. From
Figure 3d, we can clearly see that noise removal can be
performed effectively using the SNN graph.

We used some of these variations in the experiments
presented later in the paper.

5 Experimental Results

5.1 2D Data We first illustrate the superiority of our
SNN clustering algorithm with respect to the Jarvis-
Patrick approach. A major drawback of the Jarvis-
Patrick scheme is that it is difficult to find the “right”
value for the SNN similarity threshold. If the threshold
is too low, then distinct sets of points can be merged
into same cluster even if there is only one link between
them. On the other hand, if the threshold is too high,
then a natural cluster may be split into small clusters
due to natural variations in the similarity within the
cluster. Indeed, there may be no right threshold for

some data sets. This problem is illustrated in the
following example. Figure 4 shows Chameleon and Cure
clustering results for a data set taken from [9]. Figure 4a
shows the clusters found by the Jarvis-Patrick algorithm
using the smallest possible threshold that will not cause
two genuine clusters to merge. Notice that many of
the “natural” clusters are broken. Figure 4b shows the
clusters that result when this threshold is decreased by
one. In this case, several “natural” clusters are merged
Clearly, there is no correct threshold for the Jarvis-
Patrick algorithm in this example.

(a) No-merging Threshold

(b) No-merging Threshold + 1

Figure 4: Jarvis-Patrick clustering with two thresholds
that differ by 1 (best seen in color)

Figure 5a shows the clusters identified by our al-
gorithm on a Chameleon data set [9], while Figure 5b
shows the results of our algorithm on a CURE data set
[18]. It was shown in [9] that DBSCAN cannot identify
the clusters correctly in the CURE data set and CURE
cannot identify the clusters correctly in the Chameleon
data set. Figures 5a and 5b illustrate that, by combin-
ing the strengths of Jarvis-Patrick algorithm with the
idea of representative points from CURE and DBSCAN,
we can obtain much better results.

a. Chameleon Data set b. CURE Data set

Figure 5: SNN clustering on two 2D data sets (best seen
in color)

5.2 NASA Earth Science Data In this section, we
consider an application of our SNN clustering technique
to Earth science data. In particular, our data consists
of monthly measurements of sea level pressure for grid
points on a 2.5 ◦ longitude-latitude grid (144 horizontal
divisions by 72 vertical divisions) from 1982 to 1993, i.e.,
each time series is a 144 dimensional vector. These time

series were preprocessed to remove seasonal variation.
For a more complete description of this data and the
clustering analysis that we have performed on it, please
see [16, 17].

Briefly, Earth scientists are interested in discovering
areas of the ocean whose behavior correlates well to
climate events on the Earth’s land surface. In terms
of pressure, Earth scientists have discovered that the
difference in pressure between two points on the Earth’s
surface often yields a time series that correlates well
with certain climate phenomena on the land. Such time
series are called Climate Indices (CIs). For example,
the Southern Oscillation Index (SOI) measures the
sea level pressure (SLP) anomalies between Darwin,
Australia and Tahiti and is associated with El Nino,
the anomalous warming of the eastern tropical region of
the Pacific that has been linked to climate phenomena
such as droughts in Australia and heavy rainfall along
the Eastern coast of South America [14]. Our goal
in clustering SLP is to see if the difference of cluster
centroids can yield a time series that reproduces known
CIs and to perhaps discover new indices.

Our SNN clustering approach yields the clusters
shown in Figure 6a. (Notice, that while these clus-
ters are shown in two dimensions, they correspond to
time series clusters, which, because of the association
between the times series and locations on the globe, can
be displayed in a two-dimensional plot.) These clusters
have been labeled for easy reference. (Note that clus-
ter “1” is the background or “junk” cluster, and that
while we cluster pressure over the entire globe, we fo-
cus on the ocean.) Although we cluster the time series
independently of any spatial information, the resulting
clusters are typically geographically contiguous because
of the underlying spatial autocorrelation of the data.

Using these clusters, we have been able to reproduce
SOI as the difference of the centroids of clusters 15
and 20. We have also been able to reproduce another
well-known CI, i.e., NAO (North Atlantic Oscillation),
which is the normalized SLP differences between Ponta
Delgada, Azores and Stykkisholmur, Iceland. NAO
corresponds to the differences of the centroids of clusters
25 and 13. For more details, see [17]. This success gives
us confidence that the clusters discovered by SNN have
real physical significance.

The reader might wonder how we know that these
are the “real” clusters, i.e., is it possible that the clusters
we find might change significantly if we change the
parameters for the SNN clustering algorithm? However,
that is not the case, and basically the same clusters are
produced for different parameterizations. We illustrate
why this is so by plotting the SNN density (as discussed
in Section 4) at each point - see Figure 6b. The densest

(reddest, darkest) locations correspond to time series
that will be the core points, although exactly which
ones are chosen will depend on a threshold. The time
series that belong to the cluster corresponding to a
“core point” will typically be the time series associated
with the surrounding physical locations, since spatial
autocorrelation makes the time series of physically close
locations be highly similar. Thus, for this data, the
SNN clusters can be picked out visually and are in
good agreement with those produced by our clustering
algorithm.

It is reasonable to wonder whether other clustering
techniques could also discover these clusters. To an-
swer that question, we clustered the same data using
DBSCAN and K-means. The best results for DBSCAN
clustering are shown in Figure 6c, while Figure 6d shows
the results for a less optimal parameter choice for DB-
SCAN clustering. (Note that the colors have no mean-
ing except to distinguish the different clusters and are
not coordinated between any of the different figures.)
While there are similarities between the two figures, it
seems that to find the less dense clusters, e.g., 13 and
23, which are the clusters not on the equators or at the
poles, it is necessary to change the parameterization.
These less dense clusters are present in Figure 6d, but
it is also clear that we have “blurred” the other clusters
in our attempt to find the “weaker” clusters.

For K-means, we attempted to find roughly the
same number of clusters as with our SNN approach,
i.e., ≈ 30. (For the K-means approach, we used
the CLUTO package [1] with the bisecting K-means
algorithm and the refine parameter.) However, since
K-means naturally clusters all the data, in order to be
fair to K-means, we generated 100 clusters and then
threw out all but the 30 most cohesive clusters (as
measured by their average cluster correlation). Still,
the clusters shown in Figure 6e are not a very good
match for the clusters of Figure 6a, although they do
show the same pattern of clusters around the poles and
along the equator. Note that cluster 6b, which is key
to reproducing the NAO index, is missing from the K-
means clusters that we kept. Interestingly, one of the
discarded K-means clusters did correlate highly with
cluster 13 (corr = 0.99), but it is the 57th least cohesive
cluster with respect to average cluster correlation.

For both DBSCAN and K-means, the main problem
is that the “best” clusters are those which are the
densest, i.e., tightest. In this Earth science domain,
clusters which are relatively uniform, although not as
dense, are also important. (We speculate that regions
of the ocean that are relatively uniform have more
influence on the land, even if their tightness is not
as high as that of other regions.) For this Earth

= 26 SLP Clusters via Shared Nearest Neighbor Clustering (100 NN, 1982-1994)

longitude

la
tit

u
de

-180 -150 -120 -90 -60 -30 0 30 60 9 0 120 1 50 180

90

60

30

0

-30

-60

-90

13 26

24
25

22

14

16 20 17 18

19

15

23

1 9

6
4

7 10 12 11

3

5 2

8

21

(a) SNN Clusters of SLP.

 SNN Density of SLP T ime Series Data

longitude

la
tit

u
de

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

(b) SNN Density of SLP.

DBSC AN Clusters of SLP Time Series (Eps=0.985, MinPts=10)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

(c) Best DBSCAN Clusters of SLP.

DBSCAN Clusters of SLP T ime Series (Eps=0.98, MinPts =4)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

(d) Suboptimal DBSCAN Clusters of
SLP.

K-means Clusters of SLP T ime Series (Top 30 o f 100)

longitude

la
tit

u
de

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

(e) K-means Clusters of SLP.

"Local" SNN Clusters of SLP (1982-1993)

longitude

la
tit

u
de

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

13 26

24
25

22

14

16 20 17 18

19

15

23

1 9

6
4

7 10 12 11

3

5 2

8

21

(f) Local SNN Clusters of SLP.

Figure 6: SNN, K-means and DBSCAN clustering on Earth Science data sets

science domain, it is well known that the equatorial SLP
clusters correlate highly to the El Nino phenomenon,
which is the strongest CI. However, for K-means and
DBSCAN, these “strong” clusters tend to mask the
weaker clusters.

5.3 KDD CUP ‘99 Network Intrusion Data In
this section, we present experimental results from the
KDD Cup ‘99 data set which is widely used for bench-
marking network intrusion detection systems. The data
set consists of TCP sessions whose attributes include
TCP connection properties, network traffic statistics us-
ing a 2 second window, and several attributes extracted
from TCP packets. We also have access to the labels
for the TCP sessions, which take one of the 5 possible
values: normal, u2r, dos, r2l, or probe.

The original data set is very large, and therefore, we
sampled the data using a simple scheme. We picked all
the attack sessions from the training and the test data
and put a cap of 10, 000 records for each sub-attack
type. (There are 36 actual attack types in the data
that are grouped into 4 categories: u2r, dos, r2l, and
probe.) We also picked 10, 000 normal sessions from
both the test and training sets, which resulted in in
a data set of approximately 97, 000 records. We then
removed duplicate sessions, reducing the data set size
to 45, 000 records.

We clustered the data using our SNN clustering

algorithm and K-means (K = 100, 300, 1000). Tables 3
and 5 show the purity of the clusters for our algorithm
and for K-means (K = 300). Since our algorithm
removes noise, we also constructed a set of “better” K-
means results by taking only enough of the tightest K-
means clusters so that the size of these clusters added
up to the total size of the SNN clusters. These modified
K-means results are shown in Table 4. For all of the K-
mean results, we used CLUTO [5] with default values to
obtain a K-way partitioning since CLUTO does a better
job than standard implementations of K-means.

In tables 3, 4, and 5, we can clearly see that the level
of impurity for K-means clusters is considerably higher
than that of SNN clusters, even when we only consider
the tightest K-means clusters. In particular, for the
rare class, u2r (user to root attack), K-means picks up
only 15 out of 267 correctly (using the majority rule),
while our algorithm picks up 101 out of 267. When we
look at the tightest K-means clusters, K-means doesn’t
pick up anything from the rare class. The clusters that
our algorithm found were almost always superior to K-
means clusters, even for many different values of K.
For example, for the tightest clusters of the 1000-way
partition, K-means was better only in identifying probe
class; the impurity of probe class was 5.63% as opposed
to 5.95% for our algorithm.

The size of the largest K-means clusters for K = 300
was (coincidentally) 300 and the largest cluster we ob-

tained using our algorithm was 479 (out of 521 clusters).
Even though our algorithm had many more clusters in
the output, the largest cluster was much bigger than the
largest K-means cluster. This demonstrates that our al-
gorithm is able to find more unbalanced clusters when
they are present in the data.

Table 3: Purity across classes - K-means (K=300)
total correct incorrect impurity

normal 18183 17458 725 3.99%

u2r 267 15 252 94.38%

dos 17408 17035 373 2.14%

r2l 3894 3000 894 22.96%

probe 4672 4293 379 8.11

Table 4: Purity across tightest classes - K-means
(K=300)

total correct incorrect missing impurity

normal 18183 9472 520 8191 5.20%

u2r 267 0 113 154 100.0%

dos 17408 16221 186 1001 1.13%

r2l 3894 2569 471 854 15.49%

probe 4672 3610 302 760 7.72

Table 5: Purity across classes - SNN Clusters
total correct incorrect missing impurity

normal 18183 12708 327 5148 2.51%

u2r 267 101 67 99 39.88%

dos 17408 13537 53 3818 0.39%

r2l 3894 2654 257 983 8.83%

probe 4672 3431 217 1024 5.95

6 Complexity Analysis

Our SNN clustering algorithm requires O(n2) time (n
is the number of data points) if all pairwise similarities
are computed to find the k nearest neighbors. The space
complexity is O(k∗n) since only the k nearest neighbors
need to be stored. While the k-nearest neighbor list
can be computed once and used repeatedly for different
runs of the algorithm with different parameter values,
the initial computation of the nearest neighbor list can
become a bottleneck, especially for high dimensional
data. (For low dimensional data, the complexity of
computing the nearest neighbor list can be reduced to
n ∗ log(n) by the use of a data structure such as a k-d
tree or an R* tree.)

While there is no completely general technique for
finding nearest neighbors efficiently (in time less than
O(n2)) in high dimensions, the technique of canopies
[12] is applicable in many cases. This approach first

cheaply partitions a set of data points by repeatedly
selecting a point and then forming a group (around
the selected point) of all other points that are within a
certain similarity threshold. The closest of these points
are removed from further consideration, and the process
is repeated until the set of points is exhausted. (If the
actual similarity measure is expensive, an approximate
similarity measure can be used to further increase
efficiency.) The result of this process is a set of (possibly
overlapping) groups of points which are much smaller
than the original set and which can then be processed
individually. In our case, canopies would reduce the
computation required for finding the nearest neighbors
of each point since each point’s nearest neighbors will
only be selected from its canopy. The rest of the SNN
algorithm, which is linear in the number of points, would
proceed as before.

While canopies represent a general approach for
speeding up nearest neighbor list computation, other,
more domain specific approaches are also possible. In
the remainder of this section we present a couple of
approaches that, respectively, substantially reduce the
amount of computation required for documents and
for NASA Earth science time series. For documents
efficiency is enhanced by using an inverted index and
the fact that document vectors are rather sparse. For
times series associated with physical points, efficiency
can be enhanced by realizing that the most similar time
series are almost always associated with physical points
that are geographically close.

For our Earth science data the O(n2) complexity
has not been a problem yet, since the current data
sets, which consist of data sets of < 100, 000 records
with dimensionality of roughly 500, can be handled in
less than a day on a single processor. However, Earth
scientists are collecting data using smaller and smaller
grid sizes. For example, if the grid size at which data
is collected is halved, the number of data points, n,
increases by a factor of 4, and the SNN computation
increases by a factor of 16. Consequently, in the future
computational issues may be more important.

Fortunately it is possible to take advantage of
the spatial autocorrelation of this data to significantly
reduce the time complexity of SNN to O(n). The basic
idea is as follows: because of spatial autocorrelation,
time series from two different physical points on the
globe that are geographically close tend to be more
similar than those from points that are geographically
more distant. (Please note the distinction between
physical points on the globe and the data points,
which are time series associated with those points.)
Consequently, if we look at the nearest neighbors (most
similar time series) of a particular time series, then they

are quite likely to be time series corresponding to points
that are spatially very close, and we can compute the
nearest neighbor list of a time series—at least to a high
accuracy—by looking only at the time series associated
with a relatively small number of surrounding locations,
e.g., a few hundred. This reduces the complexity of the
computation to O(n). Of course, this improvement in
complexity is not useful unless the resulting clusters are
about the same. However, in preliminary experiments
this is the case. Figure 6f shows the clusters resulting for
this “local” SNN clustering approach, which are quite
similar to those in Figure 6a, which required required
the computation of all pairwise similarities. For this
experiment, we built the nearest neighbor list (of size
100) of each time series by looking only at the time
series for the 200 closest physical locations.

For document clustering, every document contains
a fraction of the words from the vocabulary and the
document vectors are quite sparse. One of the most
widely used similarity measures in document clustering
is the cosine measure. According to the cosine measure,
for two documents to have a non-zero similarity, they
have to share at least one word. Thus, for a given
document d, we can find the list of documents that
have a non-zero similarity to d by keeping a list of all
the documents that contain at least one of the terms
in document d. The transpose of the document-term
matrix (inverted index) consists of word vectors that
are lists of documents that contain each word. If we
maintain the inverted index for the data we are trying
to cluster, then we can construct the list of similar
documents for a given document by taking the union
of the word vectors for each word in that particular
document. After this list is constructed, we only need
to calculate the similarity of the given document to
the documents in this list since all other documents
will have a zero similarity. This avoids unnecessary
computation.

A second optimization can be performed by exploit-
ing the fact that for a given document, only the top
(high-weighted) few words contribute substantially to
the norm. If we only keep the high-weighted terms that
make up most of the norm (90% or so), we can reduce
the number of similar documents considerably, but not
lose much information. Using this optimization resulted
in a speedup of 30 over the case where only the first op-
timization was used. We clustered 3200 documents in
2 seconds and 100, 000 documents in less than an hour
on a Pentium 3, 600MHz desktop computer.

7 Conclusions and Future Work

In this paper we described a novel shared nearest neigh-
bor clustering algorithm that can find clusters of vary-

ing shapes, sizes, and densities, even in the presence
of noise and outliers. The algorithm can handle data
of high dimensionality and varying densities, and auto-
matically determines the number of clusters. Thus, we
believe that our algorithm provides a robust alterna-
tive to many other clustering approaches that are more
limited in the types of data and clusters that they can
handle.

In particular, our SNN clustering algorithm can find
clusters that represent relatively uniform regions with
respect to their “surroundings,” even if these clusters
are of low or medium density. We presented an example
of this in the context of NASA Earth science time series
data, where our SNN clustering approach was able to
simultaneously find clusters of different densities that
were important for explaining how the ocean influences
the land. DBSCAN could only find the “weaker” cluster
by sacrificing the quality of the “stronger” clusters. K-
means could find the weaker cluster, but only as one of a
large number of clusters. Furthermore, since the quality
of this cluster was low in K-means terms, there was no
way to identify this cluster as being anything special.

In addition to the NASA time series data exam-
ple, we also presented examples of the superior perfor-
mance of our algorithm with respect to some other well-
known clustering algorithms for KDD cup data and two
dimensional point data sets. In particular, SNN clus-
tering is consistently able to overcome problems with
differing cluster densities that cause other techniques
(even Jarvis-Patrick) to fail. For the KDD Cup ‘99 net-
work intrusion data, SNN clustering was able to produce
purer clusters than the clusters produced by K-means.

While our clustering algorithm has a basic time
complexity of O(n2), there are a number of possible
optimizations that provide reasonable run-time for spe-
cific domains. The basic idea in all cases is to find a
cheaper way of computing the nearest neighbors of a
points by restricting the number of points considered.
The most general approach to accomplish this is to use
method of canopies to split the data into smaller sets
and find the nearest neighbors of a point only among
the points in its canopy. However, for documents and
Earth science data, several domain specific approaches
are possible that can reduce the required computation
by one or two orders of magnitude.

An important goal of our future research will be to
investigate the behavior of our SNN clustering approach
on other types of data, e.g., transaction data and
genomic data. We feel that looking at a wide variety
of data sets and comparing the performance of our
algorithm to that of other clustering algorithms is the
best way to better understand our algorithm and to
discover its strengths and weaknesses.

Another major goal will be to explore if the ideas
in our SNN clustering algorithm can be extended in the
same way that the ideas of DBSCAN have been ex-
tended with respect to outlier detection [2], identifying
the clustering structure, OPTICS [1], and performing
hierarchical clustering [1].

Finally, we have made our SNN clustering al-
gorithm publicly available so that others can try
it for themselves. It can be download from
http://www.cs.umn.edu/∼ertoz/snn/

8 Acknowledgements

This work was partially supported by Army High
Performance Computing Research Center cooperative
agreement number DAAD19-01-2-0014. The content of
this work does not necessarily reflect the position or
policy of the government and no official endorsement
should be inferred. Access to computing facilities was
provided by the AHPCRC and the Minnesota Super-
computing Institute.

References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. Optics: Ordering points to identify the
clustering structure. In A. Delis, C. Faloutsos, and
S. Ghandeharizadeh, editors, SIGMOD 1999, Proceed-
ings ACM SIGMOD International Conference on Man-
agement of Data, Philadelphia, Pennsylvania, USA,
pages 49–60. ACM Press, June 1999.

[2] M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander.
Lof: identifying density-based local outliers. In
W. Chen, J. F. Naughton, and P. A. Bernstein, ed-
itors, Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, Dallas,
Texas, USA, pages 93–104. ACM Press, May 2000.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley Series in Probability and Statis-
tics. John Wiley and Sons, New York, second edition,
Novemeber 2001.

[4] L. Ertöz, M. Steinbach, and V. Kumar. A new shared
nearest neighbor clustering algorithm and its applica-
tions. In Workshop on Clustering High Dimensional
Data and its Applications, Second SIAM International
Conference on Data Mining, Arlington, VA,, 2002.

[5] George Karypis. Cluto 2.1: Software for clustering
high-dimensional datasets. /www.cs.umn.edu/k̃arypis,
August 2002.

[6] A. Hinneburg and D. A. Keim. An efficient approach
to clustering in large multimedia databases with noise.
In R. Agrawal and P. Stolorz, editors, KDD ’98, Pro-
ceedings of Fourth International Conference on Knowl-
edge Discovery and Data Mining, New York City, New
York, USA, pages 58–65. AAAI Press, August 1998.

[7] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall Advanced Reference Series. Pren-
tice Hall, Englewood Cliffs, New Jersey, March 1988.

[8] R. A. Jarvis and E. A. Patrick. Clustering using a
similarity measure based on shared nearest neighbors.
IEEE Transactions on Computers, C-22(11), 1973.

[9] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: A
hierarchical clustering algorithm using dynamic mod-
eling. IEEE Computer, 32(8):68–75, August 1999.

[10] G. Karypis and V. Kumar. Tr# 98-019: Multilevel al-
gorithms for multi-constraint graph partitioning. Tech-
nical report, University of Minnesota, Minneapolis,
MN, 1998.

[11] L. Kaufman and P. J. Rousseeuw. Finding Groups
in Data: An Introduction to Cluster Analysis. Wiley
Series in Probability and Statistics. John Wiley and
Sons, New York, Novemeber 1990.

[12] A. McCallum, K. Nigam, and L. Ungar. Efficient clus-
tering of high-dimensional data sets with application to
reference matching. In Kdd Proceedings 2000: Confer-
ence of Knowledge Discovery of Data-Mining, Boston,
MA, USA, pages 169–178. ACM Press, August 2000.

[13] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-
based clustering in spatial databases: The algorithm
gdbscan and its applications. Data Mining and Knowl-
edge Discovery, 2(2):169–194, 1998.

[14] A. Stehl, J. Ghosh, and R. Mooney. Impact of simi-
larity measures on web-page clustering. In Workshop
of Artificial Intelligence for Web Search, 17th National
Conference on Artificial Intelligence, 2000.

[15] M. Steinbach, G. Karypis, and V. Kumar. A com-
parison of document clustering techniques. In KDD
Workshop on Text Mining, August 2000.

[16] M. Steinbach, P.-N. Tan, V. Kumar, C. Potter,
S. Klooster, and A. Torregrosa. Clustering earth sci-
ence data: Goals, issues and results. In Fourth KDD
Workshop on Mining Scientific Datasets, San Fran-
cisco, California, USA, August 2001.

[17] M. Steinbach, P.-N. Tan, V. Kumar, C. Potter, and
S. Klooster. Data mining for the discovery of ocean
climate indices. In Mining Scientific Datasets Work-
shop, 2nd Annual SIAM International Conference on
Data Mining, April 2002.

[18] K. S. Sudipto Guha, Rajeev Rastogi. Cure: An
efficient clustering algorithm for large databases. In
L. M. Haas and A. Tiwary, editors, SIGMOD 1998,
Proceedings ACM SIGMOD International Conference
on Management of Data, Washington, USA, pages 73–
84. ACM Press, June 1998.

[19] K. S. Sudipto Guha, Rajeev Rastogi. Rock: A robust
clustering algorithm for categorical attributes. In
M. Kitsuregawa, L. Maciaszek, M. Papazoglou, and
C. Pu, editors, Proceedings of the 15th International
Conference on Data Engineering, Sydney, Australia,
pages 512–521. IEEE Computer Society, March 1999.

