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ABSTRACT 
This paper reports on recent work applying 

data mining to the task of finding interesting patterns in 
earth science data derived from global observing 
satellites, terrestrial observations, and ecosystem 
models. Patterns are “interesting” if ecosystem 
scientists can use them to better understand and predict 
changes in the global carbon cycle and climate system.  
The initial goal of the work reported here (which is 
only part of the overall project) is to use clustering to 
divide the land and ocean areas of the earth into 
disjoint regions in an automatic, but meaningful, way 
that enables the direct or indirect discovery of 
interesting patterns. Finding “meaningful” clusters 
requires an approach that is aware of various issues 
related to the spatial and temporal nature of earth 
science data: the “proper” measure of similarity 
between time series, removing seasonality from the 
data to allow detection of non-seasonal patterns, and 
the presence of spatial and temporal autocorrelation 
(i.e., measured values that are close in time and space 
tend to be highly correlated, or similar).  While we 
have techniques to handle some of these spatio-
temporal issues (e.g., removing seasonality) and some 
issues are not a problem (e.g., spatial autocorrelation 
actually helps our clustering), other issues require more 
study (e.g., temporal autocorrelation and its effect on 
time series similarity).  Nonetheless, by using the K-
means as our clustering algorithm and taking linear 
correlation as our measure of similarity between time 
series, we have been able to find some interesting 
ecosystem patterns, including some that are well known 
to earth scientists and some that require further 
investigation.   

Keywords 
K-means clustering, time series, earth science data, 
scientific data mining 

1. INTRODUCTION 
The project team to which we belong is a group of 
computer and ecosystem scientists focusing on the 
development of algorithms and tools to help ecologists 
discover changes in the global carbon cycle and 
climate system.  These techniques will aid ecologists in 
their efforts to better understand global scale changes 
in biosphere processes and patterns, and the effects of 
widespread human activities, such as deforestation, 
biomass burning, industrialization, and urbanization. 
Ecologists who work at the regional and global scale 
have identified Net Primary Production (NPP) as a key 
variable for understanding the global carbon cycle and 
the ecological dynamics of the Earth. NPP is the net 
assimilation of atmospheric carbon dioxide (CO2) into 
organic matter by plants. Terrestrial NPP is driven by 
solar radiation and can be constrained by precipitation 
and temperature. Keeping track of NPP is important 
because it includes the food source of humans and all 
other animals and thus, sudden changes in the NPP of a 
region can have a direct impact on the regional 
ecology. An ecosystem model for predicting NPP, 
CASA (the Carnegie Ames Stanford Approach 
[PKB99]), has been used for over a decade to produce 
a detailed view of terrestrial productivity.  

Our project uses the multi-year output of 
CASA, as well as other climate variables, such as long 
term sea level pressure, sea surface temperature (SST) 
anomalies, etc., to discover interesting patterns relating 
changes in NPP to land surface climatology and global 
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climate. Predicting NPP based on, for example, sea 
surface temperature, would be of great benefit given 
the near real-time availability of SST data and the 
ability of climate forecasting to anticipate SST El 
Nino/La Nina events. For a number of years, ecosystem 
scientists on our team have used traditional statistical 
tools for spatio-temporal data analyses relating NPP 
and other climate variables. Data mining [KH99] can 
complement these statistical tools in many ways, e.g., 
some of the steps of hypothesis generation and 
evaluation can be automated, facilitated and improved.  

In this paper we report on a portion of the 
work involved in this project.  In particular, the initial 
goal of the work reported here is to use clustering to 
divide areas of the land and ocean into disjoint regions 
in an automatic, but meaningful way that enables us to 
identify regions of the earth whose constituent points 
have similar short-term and long-term climate 
characteristics. Given relatively uniform clusters we 
can then identify how various ecosystem phenomena, 
such as El Nino, influence the climate and NPP of 
different regions.  

There are significant issues related to the 
spatial and temporal nature of earth science data: the 
“proper” measure of similarity between time series, the 
seasonality of the data, and the presence of spatial and 
temporal autocorrelation (i.e., measured values that are 
close in time and space tend to be highly correlated, or 
similar).  Although sophisticated approaches to time 
series similarity are available, e.g., dynamic time 
warping, we chose standard linear correlation as our 
similarity measure since it works well with our 
clustering algorithm (K-means) and lends itself to 
statistical tests.   Since earth science data has a very 
cyclical (e.g., seasonal) nature, and since earth 
scientists are mostly interested in non-seasonal 
patterns, we typically used a couple of preprocessing 
techniques (moving average and monthly Z-score) to 
remove seasonality from the data before clustering.  
However, these seasonality removal techniques affect 
the degree of temporal autocorrelation of the data (both 
positively and negatively), and hence, affect the 
“significance” of the observed correlations.  On the 
other hand, the high degree of spatial autocorrelation of 
the earth science data we are analyzing actually is 
beneficial, allowing our K-means clustering algorithm 
to produce clusters consist mostly of a relatively small 
number of geographically contiguous regions.   

The basic outline of this paper is as follows. 
Section 2 provides a description of the earth science 
data.  Section 3 describes our clustering technique, 
which is based on K-means.  Section 4 discusses 
related clustering work and Section 5 considers the 
issue of how to preprocess the data to remove 
seasonality patterns. Section 6 describes our initial 

results in applying clustering to earth science data, 
while section 7 is a short conclusion and an indication 
of future directions.  

2. Earth Science Data 
The earth science data for our analysis consists of 
global snapshots of measurement values for a number 
of variables (e.g., NPP, temperature, pressure and 
precipitation) collected for all land surfaces or water 
(see Figure 1). These variable values are either 
observations from different sensors, e.g., precipitation 
and sea surface temperature (SST), or the result of 
model predictions, e.g., NPP from the CASA model, 
and are typically available at monthly intervals that 
span a range of 10 to 50 years. The attribute data 
within a global snapshot is represented using spatial 
frameworks, i.e., a partitioning of the Earth’s surface 
into a set of mutually disjoint regions which 
collectively cover the entire surface of Earth. For the 
analysis presented here, we focus on attributes 
measured on latitude-longitude spherical grids of 
different resolutions, e.g., NPP, which is available at a 
resolution of 0.5° x 0.5°, and sea surface temperature, 
which is available for a 1° x 1° grid. 
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Figure 1: A simplified view of the problem domain. 

 

Using variables derived from sensor 
observations, earth scientists have developed standard 
climate indices.  These indices are useful because 1) 
they can distill climate variability at a regional or 
global scale into a single time series, 2) they are related 
to well-known climate phenomena such as El Nino, and 
3) they are well-accepted by earth scientists. For 
example, various El Nino related indices, such as 
ANOM1+2 and ANOM4, have been established to 
measure sea surface temperature anomalies across 
different regions of the Pacific Ocean.  (El Nino is the 
anomalous warming of the eastern tropical region of 
the Pacific, and has been linked to various climate 
phenomena such as droughts in Australia and heavy 
rainfall along the western coast of South America.)  
Some of the well-known climate indices are shown in 
Table 1 [IND1, IND2].   Figure 2 shows the time series 
for the ANOM1+2 index.  Note that the peak in 1982 
and 1983 corresponds to a severe El Nino event. 

Global Snapshot for Time t1 Global Snapshot for Time t2 
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Table 1: Description of well-known climate indices. 
 

3. A K-means Based Clustering Approach 
Clustering, often better known as spatial zone 
formation in this context, segments oceans and land 
into smaller pieces that are relatively homogeneous in 
some sense. While these zones can be specified directly 
by researchers, clustering provides a general data 
mining approach for automatically creating zones.  
Thus, our basic approach is to treat the zone creation 
problem as a cluster analysis problem [DJ88, KR90].  
Cluster analysis groups objects (grid cells) so that the 
objects in a group are similar to one another and  
different from the objects in other groups.  The clusters 
produced may be nested (hierarchical) or un-nested 
(partitional), overlapping or non-overlapping.   

For our initial clustering approach, we chose 
the widely used K-means clustering algorithm [DJ88], 
which is simple and efficient.  As our results will show, 
it was effective for our use of clustering during 
exploratory data analysis.    

The K-means algorithm discovers K (non-
overlapping) clusters by finding K centroids (“central” 

points) and then assigning each point to the cluster 
associated with its nearest centroid.   (Note that a 
cluster centroid is typically the mean or median of the 
points in its cluster and “nearness” is defined by a 
distance or similarity function.)  Ideally the centroids 
are chosen to minimize the total “error,” where the 
error for each point is given by a function that 
measures the discrepancy between a point and its 
cluster centroid, e.g., the squared distance.  Note that a 
measure of cluster “goodness” is the error contributed 
by that cluster.  For squared error and Euclidean 
distance, it can be shown [And73] that a gradient 
descent approach to minimizing the squared error 
yields the following basic K-means algorithm.  (Note 
that the previous discussion still holds if we use 
similarities instead of distances, but our optimization 
problem becomes a maximization problem.) 

 
Basic K-means Algorithm for finding K clusters. 

 

1. Select K points as the initial centroids. 
2. Assign all points to the closest centroid. 
3. Recompute the centroid of each cluster. 
4. Repeat steps 2 and 3 until the centroids don’t change 

(or change very little). 
 

K-means has a number of variations, 
depending on the method for selecting the initial 
centroids, the choice for the measure of similarity, and 
the way that the centroid is computed.  For this work, 
we followed the common practice of using the mean as 
the centroid and selecting the initial centroids 
randomly.  For our similarity measure, we chose 
Pearson’s correlation coefficient, which is defined as 
follows: The correlation coefficient r of two data 
vectors, x and y is given by 
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value of the ith attribute of x (y), and x  ( y ) is the 
average value of all attributes of x (y). Correlation has 
a value between –1 (perfect negative linear correlation) 
and 1 (perfect positive linear correlation), with a value 
of 0 indicating no linear correlation.    

Since we are using correlation instead of 
Euclidean distance, there is a question of whether K-
means will still “work.” However, if the data is 
standardized by subtracting off the mean and dividing 
by the standard deviation, then a bit of algebraic 
manipulation will show that the correlation and the 
Euclidean distance are monotonically related, as shown 
in following equation  

Climate 
Index 

Description 

SOI  Measures the sea level pressure (SLP) anomalies 
between Darwin and Tahiti 

NAO Normalized SLP differences between Ponta 
Delgada, Azores and Stykkisholmur, Iceland 

ANOM 1+2   Sea surface temperature anomalies in the region 
bounded by 80°W-90°W and 0°-10°S 

ANOM 4  Sea surface temperature anomalies in the region 
bounded by 150°W-160°W and 5°S-5°N 

NP Area-weighted sea level pressure over the region  
30N-65N, 160E-140W 

Figure 2: ANOM 1+2 time series. 
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y* are the standardized vectors of dimension n, and r 
and d are the correlation and Euclidean distance 
functions, respectively.  Thus, the traditional K-means 
algorithm will “work” when used with correlation. 
Furthermore, the measure of cluster goodness that 
corresponds (at least monotonically) to the traditional 
squared distance is the sum of the similarity of each 
point in a cluster to the cluster centroid.   

We make a brief comment about our reasons 
for using correlation.  First, correlation is insensitive to 
changes in scale, and since we want to compare time 
series of different variable types, e.g., NPP and SST, 
we need this property. Also, correlation has been well 
studied by statisticians and thus, confidence intervals 
and tests for non-zero correlation are readily available.  
Finally, correlation is widely used as a measure of 
similarity between time series.  
4. Related Work 

In this section we discuss other techniques 
that have recently been used to cluster earth science 
data.  The goal is to indicate possible alternatives to K-
means, and to further illustrate some of issues involved 
in clustering earth science data. 

In [SID99], a mixture model approach is used 
to identify the cluster structure in atmospheric pressure 
data.  (Mixture models assume that the data is 
generated probabilistically from a mixture of Gaussian 
distributions and use the data to estimate the 
parameters of these distributions.)  This approach is 
related to K-means [Mit97], but has two advantages.  
First, it assigns a “membership” probability to each 
data point and each cluster.  These probabilities 
provide a measure of the uncertainty in cluster 
membership.  Second, it is sometimes possible to 
estimate the most appropriate choice for K [SID99].  
(It is also possible to estimate the best K for K-means 
by plotting the overall error or similarity for different 
values of K and looking for the knee in the plot.)     

Another possible approach to clustering, 
particularly in spatially oriented domains, is to use 
“region growing.” Starting with individual points as 
clusters, each cluster is grouped with the most similar, 
physically adjacent cluster, until there is only one 
cluster. (Sometimes various criteria are applied to 
prevent clusters from being merged if the resulting 
cluster is too “poor.”)  This approach can be viewed as 
a form hierarchical clustering which has the constraint 
that clusters can only be merged if the resulting cluster 
is contiguous, i.e., not split into disconnected sets of 
points [Mur95].    

However, it is sometimes desirable to have 
clusters that are “piecewise contiguous,” i.e., consist of 
points which are similar, but not all in one contiguous 
region. An example such an approach is presented in 
[Til98] and was applied to the problem of land use 
classification based spectral image data. The technique, 
Recursive Hierarchical Image Segmentation, consists 
of alternating steps in which similar, adjacent, regions 
are merged (a region growing step) and similar, non-
adjacent regions are merged (a spectral clustering 
step). For land use classification, this allows the 
grouping of points, which may represent the same type 
of land cover, but which are in disconnected regions.  
(The K-means approach that we use will automatically 
produce piecewise contiguous regions.) 

Perhaps the work that is most closely related 
to ours is [Viv00}, which introduces ACTS (Automatic 
Classification of Time Series), a clustering method for 
remote sensing time series.  (The data considered is 
NDVI, the Normalized Difference Vegetation Index, or 
greenness index [NASA].)  The goal of this work was 
to use clustering as an initial step for deriving 
continental-scale to global-scale vegetation maps.  
After the removal of components with a period of one 
year or less, clustering was also used to group points 
that had similar patterns of inter-annual variation in 
NDVI.  However, there was no investigation of the 
relationships between different regions of the land and 
the ocean.  

While there has been considerable research 
into hierarchical clustering and spatial clustering 
[HKT01], many issues still remain.  Some of the new 
issues of zone formation are zonal formation over time, 
the multi-scale nature of the data, and constrained zone 
formation.  
5. Dealing with the Seasonality of Data 
Another important task in our research work is the 
removal of seasonal variation from the time-series data.  
Mostly, earth scientists are interested in non-seasonal 
patterns, instead of the yearly patterns of (Spring, 
Summer, Fall, Winter) or (Rainy Season, Dry Season).  
It is not that these patterns are unimportant, but rather 
that they are well known, and the events of interest are 
deviations from the normal seasonal patterns that 
represent long term cycles, e.g., decadal oscillations, or 
trends, e.g., global warming.  Given such a focus, and 
the strength of the seasonal patterns in the data, it is 
necessary to remove them to see other patterns. 

There are several ways to do this and Figure 3 
shows the results of applying two different types of 
transformations (filtering) to a particular time series of 
values. In particular, we focus on a sample time series 
for sea surface temperature.  (This time series was 
derived from data corresponding to a ½° by ½° region 
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of the ocean at 71.5° W, 23° S, just off the Eastern 
coast of South America.)  This original time series, 
which clearly has a strong seasonal pattern, is shown 

by Figure 3a.  
While we briefly show the effects of two 

different types of transformations, these issues and 
other time series specific issues are discussed in more 
detail in a related paper [Tan+01].  (Among other 
issues, that paper discusses the removal of seasonality 
based  the use of DFT (Discrete Fourier Transform and 
SVD (singular value decomposition.)  To allow all the 
time series to be displayed on a similar scale, all time 
series were standardized by subtracting off the mean 
and dividing by the standard deviation.   

Moving average.  A 12-month moving average is 
effective in removing seasonality and also smoothes the 
data significantly.  However, as discussed in [Tan+01], 
a moving average increases the magnitudes of the 
observed correlations, and at the same time, makes 
these higher correlations less meaningful.   Figure 3b 
shows the 12-month averaged time series. 

Figure 4.   Two Ocean (SST) and Land (NPP) Clusters. 

Figure 3: Effects of data pre-processing to   
    remove seasonal variation.  
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Monthly Z score.  This transformation takes the 
set of values for a given month, calculates the mean 
and standard deviation of that set of values, and then 
“standardizes” the data by calculating the Z-score of 
each value, i.e., by subtracting off the corresponding 
monthly mean and dividing by the monthly standard 
deviation.  This is slightly different from the usual 
statistical (Z score) standardization of subtracting the 
mean and dividing by the standard deviation, since 
each data point is standardized by using the mean and 
standard deviation of the values for its month, not the 
overall mean and standard deviation.  Since it removes 
seasonality (but does not smooth), the monthly Z score 
transformation reduces autocorrelation [Tan+01]. The 
result of applying a monthly Z score filter is shown in 
Figure 3c.  

6. Results 
In this section we show the use of clustering 

for detecting different sorts of ecosystem patterns.  To 
do this we employ two kinds of diagrams.  The first 
diagram shows which points on the globe belong to 
specific clusters by associating each cluster with a 
particular color.  The second type of diagram plots the 
cluster centroids.  Since the cluster centroids are time 
series, this type of a plot can show various types of 
temporal patterns. For example, for a cluster consisting 
of land points, each of which is characterized by a 
series of monthly NPP values, the centroid of a cluster 
provides a “summary” description of NPP for the 
points in that cluster. 

Finding Seasonal Patterns and Anomalous 
Regions. Figure 4 shows the result of finding two 
clusters for NPP and (separately) finding two clusters 
for SST.  (Note that the seasonal component has not 
been removed from this data.) The four clusters 
approximate the northern and southern hemispheres, 
for land and ocean.  The plots of the land and sea 
centroids show strong yearly cycles.  Interestingly, 
while the northern and southern hemisphere land 
clusters are mostly contiguous, some areas in the 
northern hemisphere, e.g., part of southern California, 
correspond to the “southern hemisphere” cluster and 
vice-versa.  These regions correspond to climates, e.g., 
a Mediterranean climate, whose plant growth patterns 
are reversed from those typically observed in the 
hemisphere in which they reside.   The existence of 
these anomalous climate regions is well known, but 
clustering allows them to be easily detected. 

Identifying Connections between Land and 
Ocean Clusters.  Another use of clustering is to 
investigate the relationship of various land and sea 
areas.  In particular, by finding land and sea clusters 
that are highly correlated, we can identify potential 
teleconnection patterns, i.e., recurring and persistent 

climate patterns that span vast geographical areas.  
This works as follows.  A large number of clusters are 
found for the land (NPP) and the sea (SST), say 100 
for each.  Then the correlations between various sea 
and land centroids are calculated, and the land and sea 
clusters with the highest correlations are plotted.  
Figure 5 shows such a diagram for sea cluster 19 
(which is a region of ocean off the coast of Japan) and 
land clusters 56 (which consists of parts of Japan and 

Figure 6:  Comparison of Cluster Centroids. 

Figure 5: One Sea Cluster and Highly Correlated 
Land Clusters. 

Figure 7:  Comparison of Smoothed Cluster Centroids.
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Korea, and a region near Pakistan-northwestern India) 
and 58 (which consists of part of China near the coast). 
The NPP centroids of land clusters 56 and 58 are 
correlated with the SST centroid of sea cluster 19 at a 
level of 0.56 and 0.50, respectively.  (For this analysis 
we removed seasonal variation by using the monthly Z 
score.)  Figures 6 shows a plot of the centroid of sea 
cluster 19 versus the cluster centroids of land clusters 
56 and 58.  To better display the overall relationships 
between the centroids, Figure 7 shows the same 
centroids after they have been smoothed using a 12-
month moving average. 

Unlike the pattern that we found in the 
previous section, the teleconnection pattern displayed 
in Figure 5 between the sea region (sea cluster 19) and 
the land regions (land clusters 56 and 58) is not well 
known to ecosystem scientists.  While further 
investigation by ecosystem scientists is needed to 
determine whether these relationships are meaningful 
or not, these clustering results have at least provided 
the basis for an initial hypothesis.  In particular, it 
would be interesting to see whether the teleconnection 
between sea cluster 19 and the region near Pakistan-
northwestern India can be verified, since these regions 
are far apart.  

Sea cluster 19 is highly correlated (-0.77), 
with one of the ocean indices, PDO, which is a long-
lived El Niño-like pattern of Pacific climate variability.  
The new hypothesis suggested by this apparent 
teleconnection is that ENSO (El Nino Southern 
Oscillation) influences NPP in the Pakistan-India 
region through variations in seasonal rainfall patterns. 
This type of El Nino association with rainfall has been 
noted before for the Indian subcontinent.  As the mean 
sea level pressure difference between the south central 
Pacific (e.g. Tahiti) and the Indian Ocean weakens, the 
trade winds can relax, monsoons become weaker, and 
there can be strong drought in India and Australia. This 
relationship was noted as far back as 1904 by Sir 
Gilbert Walker, a British mathematician serving the 
British Colonial Service.  However, the monsoonal 
teleconnection pattern to ENSO events has not been 
consistently strong in recent times, (see [KRC99]), 
which means that more work is required on our part to 
better understand the patterns shown in Fig 5. 

Finding Correlations between Land 
Clusters and (Ocean) Climate Indices. We also 
investigated the land-ocean connection by using 
climate indices that are based on the SST or pressure 
differences, either between two points on the ocean or 
over an area of the ocean (see Table 1).  For example, 
some of the indices relate to the El Nino effect.  These 
indices are also time series and thus, we can find the 
clusters on the land and sea that display a strong 
correlation to a particular index.  Figure 8 shows the 

land and sea clusters that correlate highly (positive or 
negative correlation of 0.5 or above) to three different 
climate indices: PDO (Pacific Decadal oscillation) and 
two El Nino indices, ANOM 4 and ANOM 1+2 [IND1, 
IND2]. For this analysis we removed seasonal variation 
by using the monthly Z score.  The ocean regions that 
are highly correlated with the two El Nino indices are 
related to the regions used to define the two indices.  

To illustrate the potential for clustering to find 
interesting teleconnections between land and ocean 
regions, note that there is a land cluster near 
Zimbabwe, in southern Africa, which is highly 
correlated to the ANOM 1+2 index. A connection 
between southern African rainfall and the El Nino 
phenomenon has been observed. For instance, 
Ropelewski and Halpert [RH96] have shown a positive 
correlation between the southern Oscillation Index 
(SOI) (another El Nino related climate index) and 
southern African rainfall. More specifically, the 
droughts which have occurred in southern Africa since 
the end of the 1960s are associated with warmer 
temperatures in the eastern and central tropical Pacific, 
in the tropical Indian Ocean, and in the equatorial 
Atlantic.  The spatial structure of these anomalies may 
be associated with El Nino/La Nina events. 

7. Conclusions 
A key conclusion of this paper is that clustering can 
play a useful role in the discovery of interesting 
ecosystem patterns. The patterns revealed by the 
clusters and their associated (centroids) time series are 
sometimes well known, e.g., the yearly seasonal 
variation of Figure 4.  However, we have also started to 
investigate how clustering might be used to discover 
previously unknown relationships between regions of 
the land and sea.  In this effort, we have focused on 
climate indices, which are time series of temperature or 

Figure 8:   Clusters that are Highly Correlated 
     with Climate Indices 
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pressure that correlate well with certain regions of the 
ocean from which they are derived.  In particular, we 
have looked at which regions of the land are most 
highly correlated to these centroids. So far the 
ecologists on our team have found the results 
interesting and have recognized some familiar patterns. 
One challenge is to find techniques to automatically 
select interesting patterns and eliminate spurious ones. 

To produce meaningful clusters it is necessary 
to take into account the spatio-termporal nature of the 
data.  Seasonality must be removed by using 
appropriate pre-processing steps if non-seasonal 
patterns are to be detected, and there are significant 
issues concerning what levels of correlation between 
time series indicate significant connections.   However, 
on positive side, it is likely that the simple K-means 
clustering approach we are using works as well as it 
does because of the high level of spatial auto-
correlation in the data. Otherwise, the clusters 
produced by K-means might consist of a large number 
of widely separated small regions. The use of clusters 
that are only piecewise contiguous has not been a 
problem so far, although much of the evaluation 
proceeds via visualization and people are good at 
noticing interesting patterns and ignoring noise.  The 
chief insights come when the clusters consist mostly of 
large, coherent areas, although, in such cases, the 
exceptions to the rules can also be interesting as with 
the case of Figure 4 and southern California.   

In clustering, there are a number of 
opportunities for future research.  For instance, we 
could try other similarity measures, e.g., Euclidean 
distance or the cosine measure.  We could also try the 
other clustering approaches mentioned in Section 4 or 
variants of K-means, e.g., bisecting K-means [SKK00].  
Along somewhat different line, we may want to look at 
clusters that vary over time or we may want to try to 
define clusters in terms of events.  (However, for some 
transformations of the data, e.g., the monthly Z score, 
we are in some sense already looking at events, i.e., 
deviations from the norm.)  Also, our current clustering 
approach only looks at the time series for one variable 
for each point.  This is a potential limitation in terms of 
the goodness of the clusters and their suitability for 
predicting the behavior of one region (cluster) based on 
the time varying behavior of another region.   

Other limitations in our approach result from 
the fact that often, only extreme events that are 
correlated.  For example, the El Nino indices have 
values for each month of each year, but the effects of 
El Nino on other regions often occur only when the 
index has an extreme value, i.e., when an El Nino 
effect is actually occurring. Although there may be a 
number of possible ways to address these problems and 
make the clustering more effective, it seems likely that 

some patterns will best be detected by other data 
mining techniques that are naturally more event-based, 
e.g., association rules or co-location rules.  
Nonetheless, we are hopeful that our clustering 
approach, and any improvements that we make to it, 
will continue to produce interesting and useful results. 
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