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Abstract

Given a user-specified minimum correlation threshold
0 and a transaction database with N items, all-strong-
pairs correlation query finds all item pairs with correlations
above the threshold 6. However, when the number of items
and transactions are large, the computation cost of this
query can be very high. In this paper, we identify an upper
bound of Pearson’s correlation coefficient for binary vari-
ables. This upper bound is not only much cheaper to com-
pute than Pearson’s correlation coefficient but also exhibits
a special monotone property which allows pruning of many
item pairs even without computing their upper bounds. A
Two-step All-strong-Pairs corrElation queRy (TAPER) al-
gorithm is proposed to exploit these properties in a filter-
and-refine manner. Furthermore, we provide an algebraic
cost model which shows that the computation savings from
pruning is independent or improves when the number of
items is increased in data sets with common Zipf or linear
rank-support distributions. Experimental results from syn-
thetic and real data sets exhibit similar trends and show that
the TAPER algorithm can be an order of magnitude faster
than brute-force alternatives.

1 Introduction

Correlation analysis is important for various application
domains such as marketing data analysis [3], climatology
[19], and public health [7]. For instance, correlation anal-
ysis in marketing data study can reveal how the sales of a
product are related with the sales of other products. A ma-
jor retailer found that the sales of beer were linked to the
sales of diapers during weekday evenings in blue-collar ar-
eas. This type of information can be useful for sales promo-
tions, catalog design, and store layout.

In this paper, we focus on all-strong-pairs correlation
query which retrieves all pairs of items with high positive
correlation in transaction databases. The problem can be

formalized as follows. Given a user-specified minimum cor-
relation threshold § and a transaction database with N items
and T transactions, all-strong-pairs correlation query finds
all item pairs with correlations above the minimum correla-
tion threshold 6. This query can be expressed in SQL syntax
as follows:

select I;.id, I».id
from ITEM I,, ITEM I,
where I1.id < I3.id and correlation(I1,1I2) > 0,

All-strong-pairs Correlation Query
INPUT: Pair | Correlation | Support OUTPUT:
1) Transaction Database (1,2} | 0.667 0.8 {1,2}
{1,3) | -0.333 0.4 {4,5}
TID Items 3
PR (1,4) | 0218 0.3 (5,6}
{(1,5)| o.167 0.2
2 | 1,2,3
(1,6) | 0.111 0.1
3] 1,3
(2,3) | -05 0.3
4| 1,2
(2,4)| 0327 0.3
5] 1,2
(2,5)| 025 0.2
6 | 1,2
(2,6) | 0.167 0.1
7 ] 1,2,3,4,56
(3,4) | -0.218 0.1
8 | 1,2,4,5
3,5)| 0 0.1
9 | 1,2,4
(3,6) | 0333 0.1
10 |3
(4,5)| 0764 0.2
2) Correlation threshold = 0.6 4,6} | 0509 0.1
(5,6) | 0.667 0.1

Figure 1. All-strong-pairs Correlation Query
Problem lllustration

Example 1 Figure I illustrates the all-strong-pairs corre-
lation query problem. One of the problem inputs is a trans-
action database with 10 transactions. Each transacion in-
cludes items bought by one customer. There are a total of
six items in the database. In other words, (g) = 15 pairs are
candidates which are listed along with their correlations.



For a correlation threshold of 0.6, the all-strong-pairs cor-
relation query will return three pairs {1, 2}, {4, 5}, and {5,
6} out of 15 pairs as query results.

However, as the number of items and transactions be-
come large, the computation cost of all-strong-pairs corre-
lation query can be prohibitively expensive. Consider a set
of 10° items which may represent a set of published book
avaglable on an e-commerce web site. There are a total of
('Y) ~ 0.5 x 10'2 item pairs. It will be extremely diffi-
cult for a brute-force algorithm to compute correlations for
all half trillion item pairs, particularly when the number of
transactions are also large.

The all-strong-pairs correlation query problem is differ-
ent from the association-rule mining problem [1, 2, 5, 6, 8,
13, 16]. Given a set of transactions, one objective of as-
sociation rule mining is to extract all subsets of items that
satisfy a minimum support threshold. Support measures
the fraction of transactions that contain a given subset of
items. Consider the transaction database shown in Figure
1. Let supp(¢) denote the support for item set i. Then
supp(1,2) = 8/10 = 0.8, which is the fraction of trans-
actions that contain item 1 and item 2. Standard associa-
tion rule mining algorithms rely on support-based pruning
to find high support patterns. However, it is well-known that
an item pair with high support may have a very low corre-
lation. Additionally, some item pairs with high correlations
may also have very low support. For instance, suppose we
have an item pair {A, B} such that supp(A)=supp(B)= 0.8
and supp(A, B) = 0.64. Both items are uncorrelated because
supp(A, B) = supp(A)supp(B). In contrast, we can also have
an item pair {A, B} with supp(A) = supp(B) = supp(A,B)
=0.001. Both items are perfectly correlated in this case. In
fact, the patterns with low support but high correlation are
useful for capturing interesting associations among rare but
expensive items such as gold necklaces and earrings.

In this paper, we provide an upper bound of Pearson’s
correlation coefficient for binary variables. The computa-
tion of this upper bound is much cheaper than the com-
puation of the exact correlation, since this upper bound
is computable by only individual item supports. Further-
more, we show that this upper bound has a special mono-
tone property which allows elimination of many item pairs
even without computing their upper bounds, as shown in
Figure 2. The x-axis in the Figure represents the set of
items with support that is lower than the support of item
z;. These items are sorted from left to right in decreas-
ing order of their support. Upperbound(z;,x) represents
the upper bound of correlation(z;,z) and has a mono-
tone behavior. This guarantees that an item pair (z;, zx)
can be pruned if upperbound(z;, ;) < 0 and supp(zy) <
supp(z;). A Two-step All-strong-Pairs corrElation queRy
(TAPER) algorithm is proposed to exploit these properties
in a filter-and-refine manner [4, 14, 15] which consists of

two steps: filtering and refinement. In the filtering step,
many item pairs are filtered out using the easy-to-compute
upperbound(z;, z) and its monotone property. In the re-
finement step, the exact correlation is computed for remain-
ing pairs to determine the query results.

upperbound(x;, x)

correlation(x,, x)

» X

Xit1 X Xy X

items sorted in descending order by supp(item)

Figure 2. lllustration of the Filtering Tech-
niques in the TAPER Algorithm.

Furthermore, we have proved the completeness and cor-
rectness of the TAPER algorithm and provided an algebraic
cost model to quantify the computation savings. As demon-
strated by our experiments on both real and synthetic data
sets, TAPER can be an order of magnitude faster than brute-
force alternatives and the computational savings by TAPER
is independent or improves when the number of items is in-
creased in data sets with common Zipf [20] or linear rank-
support distributions.

1.1 Related Work

Related literature can be categorized by the correlation
measures. Approaches to efficient computation of corre-
lated variables measured by Chi-Square statistic [17] in-
cluding Jermaine et.al [9] and Brin et.al [5].

Jermaine [9] investigated the implication of incorporat-
ing chi-square based queries to data cube computations. He
showed that finding the subcubes that satisfy statistical tests
such as x? are inherently NP-hard, but can be made more
tractable using approximation schemes. Also, Brin [5] pro-
posed a x2-based correlation rule mining strategy. The al-
gorithm in this strategy is similar to the Apriori [2].

In this paper, we focus on efficiently computing Pear-
son’s correlation coefficient for binary variables. Given n
items, a brute force approach computes Pearson’s correla-
tion coefficient for all (;): @ item pairs. This ap-
proach is often implemented using matrix algebra in sta-
tistical software package as the “correlation matrix” [10]
function, which computes Pearson’s correlation coefficient



for all pairs of columns. This approach is applicable to but
not efficient for the case of boolean matrices, which can
model transaction databases. The approach proposed in this
paper does not need to compute all ( ) pairs. In particu-
lar, for transaction databases with a Zipf-like rank-support
distribution, we show that only a small portion of the item
pairs needs to be examined.

1.2 Overview and Scope

The remainder of this paper is organized as follows. Sec-
tion 2 introduce basic concepts. In section 3, we introduce
the upper bound of Pearson’s correlation coefficient for bi-
nary variables. Section 4 proposes the TAPER algorithm.
In section 5, we analyze the TAPER algorithm in the areas
of completeness, correctness, and computation gain. Sec-
tion 6 presents the experimental results. Finally, in section
7, we draw conclusions and suggest future work.

The scope of the all-strong-pairs correlation query
problem proposed in this paper is restrict to transaction
databases with binary variables and the correlation compua-
tion form is Pearson’s correlation coefficient for binary vari-
ables, which is also called the ¢ correlation coefficient. Fur-
thermore, we assume that the support of items is between 0
and 1 but not equal to either 0 or 1. These boundary cases
can be handled separately.

2 Pearson’s Correlation Coefficient for Bi-
nary Variables

In statistics, a measure of association is a numerical in-
dex which describes the strength or magnitude of a relation-
ship among variables. Although literally dozens of mea-
sures exist, they can be categorized into two broad groups:
ordinal and nominal. Relationships among ordinal variables
can be analyzed with ordinal measures of association such
as Kendall’s Tau and Spearman’s Rank Correlation Coef-
ficient [11, 12]. In contrast, relationships among nominal
variables can be analyzed with nominal measures of asso-
ciation such as Pearson’s Correlation Coefficient, the Odds
Ratio, and measures based on Chi Square [17].

The (b correlation coefficient [17] is the computation
form of Pearson’s Correlation Coefficient for binary vari-
ables. In this section, we describe the ¢ correlation coeffi-
cient and show how it can be computed using the support
measure of association-rule mining [1].

In a2 x 2 two-way table shown in Figure 3, the calcula-
tion of the ¢ correlation coefficient reduces to

Proo)Pa1) — Plo1)Pao)
VPonPunPaoPiy’

¢ = 6]

0 B I Row Total
A 0 P oo Poy P oy
1 Pao) Pay Pav
Column Total| Peo Pen N

Figure 3. Two way table of item A and item B.

where P(i]-), fori=0, 1 and j =0, 1, denote the num-
ber of samples which are classified in the sth row and jth
column of the table. Furthermore, we let P;y denote the
total number of samples classified in the ith row, and we let
P, ;) denote the total number of samples classified in the
jth column. Thus,

1 1
Pty = Z Pujy and P j) = ZP(U)

In the two-way table, N is the total number of samples and
N = P4y + P14) = P4o) + P1). Furthermore, we can
transform Equation 1 as follows.

. (N = Po1y) — Puoy — Pary))Par) — Py Pao
VP Pan)Paoy P
b= NPuyy — (P + Pao)) (P + Payy)

V/Po+)Pa+) PP
NPu1) — Payy Py

~ VPonPanPio P
Pay _ Pay) Py
é— N N N

Po+) Pa+) Pto) Py
N N N N

Hence, when adopting the support measure of associa-
tion rule mining [1], for two items A and B in a transac-
tion database, we have supp(A) = P(14)/N, supp(B) =
P(41)/N, and supp(A, B) = P11)/N. With support nota-
tions and the above new derivations of Equation 1, we can
derive the support form of the ¢ correlation coefficient as
shown below in Equation 2.

_ supp(A, B) — supp(A)supp(B)
\/supp(A)supp(B)(1 — supp(A))(1 — supp(B))

@

Example 2 Consider the transaction database shown in
Figure 1. For item 1 and item 2 in the database, we can
construct a two-way table as shown in Figure 4. Then,

by Equation 1, we get ¢ = \}% = 2 Also, since

supp(1,2) = 0.8, supp(l) = 0.9, and supp( ) = 0.8, by
0.8—

Equation 2, we get ¢ = TR 9)(00120 g (1]3 . As can

be seen, the results from the two equations are tdentlcal.



{2}

Row Total

0
1
Column Total

1
9
10

{1

N )
0 (00 | D | =

Figure 4. Two way table of item 1 and item 2.

3 Properties of the ¢ Correlation Coefficient

In this section, we present some properties of the ¢ cor-
relation coefficient. These properties are useful for the effi-
cient computation of all-strong-pairs correlation query.

3.1 An Upper Bound of the ¢ Correlation Coeffi-
cient

In this subsection, we reveal that the support measure is
closely related with the ¢ correlation coefficient. Specif-
ically, we prove that an upper bound of the ¢ correlation
coefficient for a given pair {A, B} exists and is determined
only by the support value of item A and the support value
of item B as shown below in Lemma 1.

Lemma 1 Given an item pair {A, B}, the support value
supp(A) for item A, and the support value supp(B) for item
B, without loss of generality, let supp(A) > supp(B). The
upper bound upper(¢ya, py) of an item pair {A, B} can be
obtained when supp(A, B) = supp(B) and

B supp(B) 1 — supp(A)
upper(dga,py) = \/Supp(A) -\/1 — supp(B) 3)

Proof: According to Equation 2, for an item pair {A, B}:

supp(A, B) — supp(A)supp(B)
+/supp(A)supp(B)(1 — supp(A))(1 — supp(B))

When the support values supp(A) and supp(B) are fixed,
¢¢4a,B} is monotonically increasing with the increase of
the support value supp(A, B). By the given condition
supp(A) > supp(B) and the anti-monotone property of
the support measure, we get the maximum possible value
of supp(A, B) is supp(B). As a result, the upper bound
upper(¢g 4,5y) of an item pair {A, B} can be obtained when
supp(A, B) = supp(B). Hence,

¢g4,B} =

UPP‘”‘(‘?{A,B})
supp(B) — supp(A)supp(B)

" /supp(A)supp(B)(1 — supp(A))(1 — supp(B))
supp(B)(1 — supp(A))

~ /supp(A)supp(B)(1 — supp(A))(1 — supp(B))
_ \/ supp(B) \/ 1 — supp(A)
supp(A) "\ 1 — supp(B)’

As can be seen in Equation 3, the upper bound of ¢ cor-
relation coefficient for an item pair {A, B} only relies on the
support value of item A and the support value of item B. In
other words, there is no requirement to get the support value
supp(A, B) of an item pair {A, B} for the calculation of this
upper bound. As we know, when the number of items N
becomes very large, it will be difficult to store the support
of every item pair in the memory, since N * (N —1)/2is a
huge number. However, it is possible for us to store the sup-
port of individual item in the memory. As a result, this up-
per bound can serve as a coarse filter to filter out item pairs
which are of no interest, thus saving I/O cost by reducing
the computation of the support value of those pruned pairs.

3.2 Conditional Monotone Property

In this subsection, we present a conditional monotone
property of the upper bound of the ¢ correlation coefficient
as shown below in Lemma 2

Lemma 2 For a pair of items {A, B}, if we let supp(A) >
supp(B) and fix the item A, the ¢ ¢ A By yrpoy Of Pair {A, B}
is monotonically decreasing with the decrease of the sup-
port value of item B.

Proof: By Lemma 1, we get:

_ |supp(B) |1 — supp(A)
upper(¢(a,5}) = \/supp(A) .\/1 — supp(B)

For any given two items B; and B; with
supp(A) > supp(B1) > supp(Bsz), we need to prove

upper(dga,,}) > upper(dia,p,})- This claim can be
proved as follows:

>1

upper(¢1a,B,}) _ | supp(B1) |1 — supp(B;)
upper (¢ a,B,}) supp(Bz) '\ 1 — supp(By)

The above follows the given condition that supp(B;) >
supp(Bz) and (1 — supp(B1)) < (1 — supp(Bz)).

Lemma 2 allows us to push the upper bound of the ¢
correlation coefficient into the search algorithm, thus effi-
ciently pruning the search space.

Corollary 1 When searching for all pairs of items with
correlations above a user-specified threshold 0, if an item
list {i1,12,...,im} is sorted by item supports in non-
increasing order, an item pair {iq,i.} with supp(ia) >
supp(i.) can be pruned if upper(¢(ia,ip)) < 6 and
supp(ic) < supp(ip).

Proof: First, when supp(i.) = supp(ip), we get
upper(P(iayic)) = upper(¢(ia,is)) < 6 according to



Equation 3 and the given condition upper(¢(iq,ip)) < 6,
then we can prune the item pair {i,,%.}. Next, we con-
sider supp(i.) < supp(ip). Since supp(iy) > supp(ip) >
supp(ic), by Lemma 2, we get upper(é(iq,ic)) <
upper(d(iq,ip)) < 0. Hence, the pair {i,, i.} is pruned.

4 TAPER: A Two-Step All-strong-Pairs Cor-
relation Query Algorithm

In this section, we present a Two-step All-strong-Pairs
corrElation queRy (TAPER) algorithm. The TAPER algo-
rithm is a two-step filter-and-refine query processing strat-
egy which consists of two steps: filtering and refinement.

A Filtering Step

In the filtering step, the TAPER algorithm applies two
pruning techniques. The first technique uses the upper
bound of the ¢ correlation coefficient as a coarse filter. In
other words, if the upper bound of the ¢ correlation coeffi-
cient for an item pair is less than the user-specified correla-
tion threshold, we can prune this item pair right way. The
second pruning technique prunes item pairs based on the
conditional monotone property of the upper bound of the ¢
correlation coefficient. The correctness of this pruning is
guaranteed by Corollary 1 and the process of this pruning
is illustrated in Figure 2 as previously noted in introduction
section. In summary, the purpose of the filtering step is to
reduce false positive item pairs and further processing cost.

A Refinement Step

In the refinement step, the TAPER algorithm computes
the exact correlation for each surviving pair from the
filtering step and retrieves the pairs with correlations above
the user-specified correlation threshold as the query results.

Figure 5 shows the pseudocode of the TAPER algorithm,
including CoarseF'ilter and Re fine procedures.

Procedure C'oarseF'ilter works as follows. Line 1 ini-
tialize the variables and creates an empty query result set
P. Lines 2 - 10 use Rymon’s generic set-enumeration tree
search framework [18] to enumerate candidate pairs and fil-
ter out item pairs whose correlations are obviously less than
the user-specified correlation threshold 6. Line 2 starts an
outer loop. Each outer loop corresponds to a search tree
branch. Line 3 specifies the reference item A and Line 4
starts a search within each branch. Line 5 specifies the tar-
get item B and line 6 computes the upper bound of the ¢
correlation coefficient for item pair {A, B}. In line 7, if
this upper bound is less than the user-specified correlation
threshold 6, the search within this branch can stop by exit-
ing from the inner loop as shown in line 8. The reason is as

TAPER ALGORITHM
Input: S': an item list sorted by item supports in
non-increasing order.
0: a user-specified minimum correlation threshold.
Output: P: the result of all-strong-pairs correlation query.
Variables:  L: the size of item set S’.
A: the item with larger support.
B: the item with smaller support.
/[The Filtering Step
CoarseFilter(S’, 6)
1. L =size(S"),P=0
2. for i from O to L-1
3. A=S'[]
4. forj fromi+1toL
5. B =S5"[4]
6. upper(¢) = |/ 2B\ [ 1=surn)
7. if(upper(¢4) < 6) then
/[Pruning by the monotone property
8. break from inner loop
9. else
10. P=P U Refine(A, B, 0)
11. end
/IThe Refinement Step
Refine(A, B, 6)
12. Get the support supp(A, B) of item set {A, B}
13. 6= supp(A,B)—supp(A)supp(B)
\/supp(A) supp(B)(1—supp(A))(1—supp(B))
14. if ¢ < 0 then
15. return () //return NULL
16. else
17. return {{4, B}, ¢}

Figure 5. The TAPER Algorithm

follows. First, the reference item A is fixed in each branch
and it has the maximum support value due to the way we
construct the branch. Also, items within each branch are
sorted based on their support in non-increasing order. Then,
by Lemma 2, the upper bound of the ¢ correlation coef-
ficient for the item pair {A, B} is monotonically decreas-
ing with the decrease of the support of item B. Hence, if
we find the first target item B which results in the situation
that the upper(éa,p}) is less than the user-specified cor-
relation threshold 6, we can stop the search in this branch.
Line 10 calls the procedure Refine to compute the exact cor-
relation for each surviving candidate pair and continues to
check the next target item until no target item is left in the
current search branch.

Procedure Refine works as follows. Line 12 gets the
support for the item pair {A, B}. Note that the I/O cost can
be very expensive for line 12 when the number of items is



large since we cannot store the support of all item pairs in
the memory. Line 13 calculates the exact correlation co-
efficient of this item pair. If the correlation is greater than
the user-specified correlation threshold, this item pair is re-
turned as a query result in line 17. Otherwise, the procedure
returns NULL in line 15.

Example 3 7o illustrate the TAPER algorithm, consider a
database shown in Figure 6. To simplify the discussion,
we use an item list {1, 2, 3, 4, 5, 6} which is sorted by
item support in non-increasing order. For a given cor-
relation threshold 0.36, we can use Rymon’s generic set-
enumeration tree search framework [18] to demonstrate
how two-step filter-and-refine query processing works. For
instance, for the branch starting from item 1, we identify
that the upper bound of the ¢ correlation coefficient for
the item pair {1, 3} is 0.333, which is less than the given
correlation threshold 0.36. Hence, we can prune this item
pair immediately. Also, since the item list {1, 2, 3, 4, 5,
6} is sorted by item supports in non-increasing order, we
can prune pairs {1, 4}, {1, 5}, and {1, 6} by Lemma 2
without any further computation cost. In contrast, for the
traditional filter-and-refine paradigm, the coarse filter can
only prune the item pair {1, 3}. There is no technique to
prune item pairs{1, 4}, {1, 5}, and {1, 6}. Finally, in the
refinement step, only seven item pairs are required to com-
pute the exact correlation coefficients, as shown in Figure 6
(c). More than half of the item pairs are pruned in the filter
step even though the correlation threshold is as low as 0.36.

5 Analysis of the TAPER algorithm

In this section, we analyze TAPER in the areas of com-
pleteness, correctness, and the computation savings.

5.1 Completeness and Correctness

Lemma 3 The TAPER algorithm is complete. In other
words, this algorithm finds all pairs which have correlations
above a user-specified minimum correlation threshold.

Proof: The completeness of the TAPER algorithm can be
shown by the following two facts. The first is that a set-
enumeration tree search [18] is complete; that is, all item
pairs in the database are enumerated during the search pro-
cess. The second fact is that the filtering step only prunes
item pairs if the upper bounds of the ¢ correlation coeffi-
cient for these pairs are less than the user-specified corre-
lation threshold. This is guaranteed by Corollary 1. Also,
the refinement step only prunes item pairs whose correla-
tions are less than the user-specified correlation threshold.

[TID |Items Item Support Pair q)MPC Correlation
1 1,2,3 1 0.9 {1,2} | 0.667 | 0.667
2 1,2,3 2 0.8 {1,3}| 0333 | NC
3 1,3 3 0.5 {1,4} | NC NC
4 1,2 4 0.3 {1,5} | NC NC
5 1,2 5 0.2 {1,6} | NC NC
6 1,2 6 0.1 {2,3}] 05 -0.5
7 1,2,3,4,5,6 (b) {2,4}| 0327 | NC
8 1,2,4,5 {2,5} | NC NC
9 1,2,4 {2,6} | NC NC

10 3 {3,4} | 0.655 | -0.218

(a) {3,5}| 05 0
{3,6} | 0.333 | NC
{4,5}] 0.764 | 0.764
{4,6} | 0.509 | 0.509
{5,6} | 0.667 | 0.667

{}

Item -> {1} {2} {3} {4}

(c)
Support -> (0.9) 08) 05) 03)

(5} {6}

(1.2} {24} (EAHESTHE6T (2.3) (2A4) (251261 (34) (35) (%(4,5) {4.6} {5.6}

Figure 6. lllustration of the filter-and-refine
strategy. Note that NC means there is no com-
putation required.

The second fact can guarantee that all the pruned item pairs
cannot have correlations above the user-specified minimum
correlation threshold.

Lemma 4 The TAPER algorithm is correct. In other
words, every pair this algorithm finds has the correlation

above a user-specified minimum correlation threshold.

Proof: The correctness of the TAPER algorithm can be
guaranteed by the refinement step, since the exact corre-
lation of each candidate pair is calculated in the refinement
step and every pair which has the correlation less than the
user-specified correlation threshold will be pruned.

5.2 Quantifying the Computation Savings

In this subsection, we examine the computation savings
of TAPER. To facilitate our discussion, we first introduce
some definitions of notations and terms as follows.

Definition 1 The pruning ratio of the TAPER algorithm is
defined by the following equation.

10 =2, @

where @ is the minimum correlation threshold, S(0) is the
number of item pairs which are pruned before computing
their exact correlations at the correlation threshold 0, and
T is the total number of item pairs in the database. For
a given database, T is a fixed number and is equal to (g)

= @, where n is the number of items.



Definition 2 For a sorted item list, the rank-support func-
tion f(k) is a discrete function which present the support in
terms of the rank k.

Next, we would like to quantify the computation sav-
ings in terms of the rank-support function. For a given
database, let I = {A;, Ay, ..., A, } be an item list sorted
by item supports in non-increasing order. Then the item
A has the maximum support and the rank-support function
f(k) = supp(Ag), V1 < k < n, which is monotonically
decreasing with the increase of the rank k. To quantify the
computation savings for a given item A; (1 < j < n)
at the threshold 6, we only need to find the first item
A; (5 < 1 < n) such that upper(éga,,4,3) < 6. By
Lemma 2, if upper(éya,,a,3) < 6, we can guarantee that
upper(¢ga;,a,3)> where I < i < m, is less than the correla-
tion threshold . In other words, all these n — [+ 1 pairs can
be pruned without further computation requirement. Ac-
cording to Lemma 1, we get

upper(¢a;,a,})
_ supp(A;) |1 — supp(4;)
supp(A4;) "\ 1 — supp(4)

)

( .
supp(A) [ (D)
< \/ supp(A;) \/ G <°
f@)

= T < §?

f(4)

Since the rank-support function f(k) is monotonically de-
creasing with the increase of the rank k, we get

1> f7HOPF()

To make the computation simple, we let | =
f71(6%f(1)) + 1. Therefore, for a given item A; (1 < j <
n), the computation cost for (n — f~1(6%f(j))) item pairs
can be saved. As a result, the total computation savings of
the TAPER algorithm is shown below in Equation 5. Note
that the computation savings shown in Equation 5 is an un-
derestimated value of the real computation savings which
can be achieved by the TAPER algorithm.

n

S(0) = {n— f716%f(5)} (5)

i=2

Finally, we would like to conduct computation saving
analysis on the data sets with some special rank-support
distributions. Specifically, we consider three special rank-
support distributions: a uniform distribution, a linear distri-
bution, and a generalized Zipf distribution [20], as shown in
the following three cases.

CASE I: A Uniform Distribution.

In this case, the rank-support function f(k) = C, where C
is a constant. According to Equation 3, the upper bound of
the ¢ correlation coefficient for any item pair is 1, which is
the maximum possible value for the correlation. Hence, for
any given item A;, we cannot find an item 4; (j <1 < n)
such that upper(¢(a;,4,3) < 0, where § < 1. As a result,
the total computation savings S(6) is zero in this case.

CASE II: A Linear Distribution.

In this case, the rank-support function has a linear distribu-
tion and f(k) = a — m X k, where m is the absolute value
of the slope and a is the intercept

Lemma 5 When a database has a linear rank-support dis-
tribution f(k) and f(k) = a —m x k (a > 0, m > 0),
for a user-specified minimum correlation threshold 0, the
pruning ratio of the TAPER algorithm increases with the
decrease of the ratio a/m, the increase of the correlation
threshold 0, and the increase of the number of items, where
0<6<1

Proof: For the given database, let I = {A;, As,...,A,}
be the item list sorted by item support in non-increasing
order. Then the item A; has the maximum support. Also,
let the rank-support function f (k) = a —m x k, where m is
the absolute value of the slope and a is the intercept. From
the rank-support function f(k), we can derive the inverse
function f~1(y) = “=%. Accordingly,

Fe ) = = ez m)

According to Equation 5, we can get:

a
=211-6%+j6?
m( )+

n

S(0)=> {n— 1)}

=2

FHO%1(5))

I
3
B
=
!
NgE

:n(n—l)—Z%(l—Gz)—Zj92
=n(n—1)— ~(n—1)(1 -6 ("_1)2(”+2)92
— (=)= 2a-6? (”;2)92)
n—an a n+2 9
= (- - (- - )
Since the pruning ratio y(6) = STG),
L e - BZ0CE = (=0 =)
S A(0) = (n—2)— (25 — (n+2))(1 6%



Also, we know supp(4,) = f(n) =a—m xn >0,
a
= —>n
"a
= 2— >2n> (n+2), whenn > 2
m

Thus, we can derive three rules as follows:

rulel: 6§ /= (1-60%) \,= ~(0)
rule2: a/m \ = (2%—(n+2)) = y(0) S

rule3: n = (2%—(71—}—2)) N o= () S

Therefore, the claim that the pruning ratio of the TAPER
algorithm is increased with the decrease of the ratio a/m,
the increase of the correlation threshold 6, and the increase
of the number of items holds .

CASE III: A Generalized Zipf Distribution.

In this case, the rank-support function has a generalized
Zipf distribution and f(k) = 5, where ¢ and p are con-
stants and p > 1. When p is equal to 1, the rank-support
function has a Zipf distribution. In the real world, Zipf-
like distributions has been observed in a variety of applica-
tion domains, including commercial retail data, Web click-

streams, and telecommunication data.

Lemma 6 When a database has a generalized Zipf rank-
support distribution f(k) and f(k) = 5, for a user-
specified minimum correlation threshold 0, the pruning ra-
tio of the TAPER algorithm increases with the increase of p
and the correlation threshold 0, where 0 < § < 1.

Proof: Since the rank-support function f(k) = 5, the in-

verse function f~1(y) = (5)% Accordingly,
- : c |1 J
FHOFG) = (e)r = =
e ey

Applying Equation 5, we get:
S(0) =) {n— ("))}
j=2

=n(n—1)=>_ 1 (6°f())

Since the pruning ratio y(6) = @,

nn 1) - e

2
= 7(9) = n(n—1) o
2
n+21
= ) =2— —
’Y() n 0%
Thus, we can derive two rules as follows:
21
rulel: 0 S = n: oz = v(0) S
p
21
rule2: p S = n:; 0—2 N = () S

Therefore, the claim that the pruning ratio of the TAPER
algorithm increases with the increase of p and the correla-
tion threshold 6 holds.

6 Experimental Results

In this section, we present extensive experiments to eval-
uate the performance of the TAPER algorithm. Specifically,
we demonstrate: (1) a performance comparison between the
TAPER algorithm and a brute-force approach, (2) the effec-
tiveness of the proposed algebraic cost model, and (3) the
scalability of the TAPER algorithm.

6.1 The Experimental Setup

Our experiments were performed on both real and syn-
thetic data sets. Synthetic data sets were generated such that
the rank-support distributions follow Zipf’s law, as shown
in Figure 7. Note that, in log-log scales, the rank-support
plot of a Zipf distribution will be a straight line with a slope
equal to the exponent P in the Zipf distribution. A sum-
mary of the parameter settings used to generate the synthetic
data sets is presented in Table 1, where T is the number of
transactions, N is the number of items, C is the constant of
a generalized Zipf distribution, and P is the exponent of a
generalized Zipf distribution.

Table 1. Parameters of synthetic data sets.

Data set name T N C |P
P1.tab 2000000 | 1000 | 0.8 | 1
P2.tab 2000000 | 1000 | 0.8 | 1.25
P3.tab 2000000 | 1000 | 0.8 | 1.5
P4.tab 2000000 | 1000 | 0.8 | 1.75
P5.tab 2000000 | 1000 | 0.8 | 2

The real data sets were obtained from two different ap-
plication domains, one from journalism and one from the
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Figure 7. The plot of the Zipf rank-support
distributions of synthetic data sets in log-log
scale.

retail industry. The LA1 data set is part of the TREC-5 col-
lection ! and contains news articles from the Los Angeles
Times. This data set has 29704 items and 3204 transac-
tions. In contrast, the real retail data set is a masked data
set obtained from a large mail-order company. This data set
has 14462 items and 57671 transactions.

The purpose of our experiments was to answer the fol-
lowing questions:

1. How does the relative performance of the TAPER algo-
rithm compare with that of the brute-force approach?

2. How do the computation savings of the TAPER algo-
rithm vary with correlation thresholds?

3. When data sets have a linear rank-support distribution,
what is the effect of the slope m on the performance of
the TAPER algorithm?

4. When data sets have a generalized Zipf rank-support
distribution, what is the effect of the exponent p on the
performance of the TAPER algorithm?

5. What is the scalability of the TAPER algorithm with
respect to database dimensions?

6. How effective is the algebraic cost model for measur-
ing computation savings?

We implemented the TAPER algorithm using C++ and
all experiments were performed on a Sun Ultra 10 work-
station with a 440 MHz CPU and 128 Mbytes of memory
running the SunOS 5.7 operating system.

IThe data set is available at http://trec.nist.gov.
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Figure 8. The performance comparison be-

tween TAPER and a brute-force approach on

the retail data set.

6.2 How does the performance of TAPER com-
pare with that of the brute-force approach?

In this subsection, we present a performance comparison
between the TAPER algorithm and a brute-force approach
using the retail data set. The implementation of the brute-
force approach is similar to that of the TAPER algorithm
except that the filtering mechanism implemented in TAPER
is not included in the brute-force approach.

Figure 8 shows the execution time of the two algorithms
as the correlation thresholds are increased. As can be
seen, the performance of the brute-force approach does not
change much. However, the execution time of the TAPER
algorithm dramatically decreases with the increase of corre-
lation thresholds. In addition, when the correlation thresh-
old is high, the execution time of TAPER can be one order
less than that of the brute-force approach. Finally, even with
the correlation threshold as low as 0.3, TAPER still achieves
much better performance than the brute-force approach.

6.3 How do the computation savings of TAPER
vary with correlation thresholds?

In this section, we present the effect of correlation
thresholds on the computation savings of the TAPER al-
gorithm. Recall that our algebraic cost model shows that
the pruning ratio of the TAPER algorithm increases with
increases of the correlation thresholds for data sets with lin-
ear and Zipf-like distributions. Figure 8 shows a decreasing
trend of the execution time of the TAPER algorithm on the
retail data set as correlation thresholds increase. Although
the rank-support distribution of the retail data set does not
follow Zipf’s law exactly, these experimental results still ex-
hibit a similar trend as the proposed algebraic cost model.



Table 2. Groups of items for the Retail data
set

Group I 11 111
# Items 4700 | 4700 | 4700
# Transactions | 57671 | 57671 | 57671
a/m 10318 | 8149 | 4778
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Figure 9. The plot of the rank-support distri-
butions of the retail data set and its three
item groups with a linear regression fitting
line (trendline).

6.4 What is the effect of the slope m on the per-
formance of the TAPER algorithm?

Recall that the algebraic cost model for data sets with
a linear rank-support distribution provides rules which in-
dicate that the pruning ratio of the TAPER algorithm will
increase with the decrease of the ratio a/m and the pruning
ratio increases with the increase of the correlation thresh-
old. In this subsection, we empirically evaluate the effect of
the ratio a/m on the performance of the TAPER algorithm
for data sets with a linear rank-support distrition.

First, we generated three groups of data from the re-
tail data set by sorting all the items in the data set in non-
decreasing order and then partition them into four groups.
Each of the first three groups contains 4700 items and the
last group contains 362 items. The first three groups are
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Figure 10. The increase of pruning ratios with
the decrease of a/m for data sets with linear
rank-support distribution.

the group data sets shown in Table 2. Figure 9 (a) shows
the plot of the rank-support distribution of the retail data set
and Figure 9 (b), (c), and (d) shows the plots of the rank-
support distributions of three groups of data generated from
the retail data set. As can be seen, the rank-support distri-
butions of the three groups approximately follow a linear
distribution. Table 2 shows some of the characteristics of
these data set groups. As can be seen, each group data set
has the same number of items and transactions but a dif-
ferent a/m ratio. Group I has the highest a/m ratio and
Group III has the lowest a/m ratio. Since the major differ-
ence among these three data set groups is the ratio a/m, we
can apply these data sets to show the impact of the a/m on
the performance of the TAPER algorithm. Figure 10 shows
the pruning ratio of the TAPER algorithm on the data set
with linear rank-support distributions. As can be seen, the
pruning ratio increases as the a/m ratio decreases at differ-
ent correlation thresholds. The pruning ratio also increases
as correlation thresholds are increases. These experimental
results confirm the trend exhibited by the cost model.

6.5 What is the effect of the exponent p on the
performance of the TAPER algorithm?

In this subsection, for data sets with a generalized Zipf
rank-support distribution, we examine the effect of the ex-
ponent P on the performance of the TAPER algorithm. We
use the synthetic data sets presented in Table 1 for this ex-
periment. All the synthetic data sets in the table have the
same number of transactions and items. The rank-support
distributions of these data sets follow Zipf’s law but with
different exponent P. Figure 11 shows the pruning ratio
of the TAPER algorithm on data sets with different expo-
nent P. As can be seen, the pruning ratios of the TAPER
algorithm increase with the increase of the exponent P at
different correlation thresholds. Also, we can observe that
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the pruning ratios of the TAPER algorithm increase with
the increase of the correlation thresholds. Recall that the
proposed algebraic cost model for data sets with a general-
ized Zipf distributions provides two rules which confirm the
above two observations.
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Figure 12. The plot of the rank-support dis-
tribution of the LA1 data set in log-log scale.
Although this plot does not follow Zipf’s law
exactly, it does show Zipf-like behavior.

6.6 What is the scalability of the TAPER algo-
rithm with respect to database dimensions?

In this subsection, we show the scalability of the TAPER
algorithm with respect to database dimensions. Figure 12
shows the plot of the rank-support distribution of the LAl
data set in log-log scale. Although this plot does not fol-
low Zipf’s law exactly, it does show Zipf-like behavior. In
other words, the LA1 data set has an approximate Zipf-like
distribution with the exponent P = 1.406. In this experi-
ment, we generated three data sets with the number of items
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Figure 13. The effect of database dimensions
on the pruning ratio for data sets with Zipf-like
rank-support distributions.
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Figure 14. The effect of database dimensions
on the execution time for data sets with Zipf-
like rank-support distributions.

equal to 12000, 18000, and 24000 from the LA data set by
random sampling on the item set. The above three data sets
generated by random sampling can have almost the same
rank-support distributions as the LA1 data set. As a result,
we used these three generated data sets and the LA1 data set
for our scale-up experiments.

For data sets with Zipf-like rank-support distributions,
Figure 13 shows the effect of database dimensions on the
performance of the TAPER algorithm. As can be seen the
pruning ratios of the TAPER algorithm show almost no
change or slightly increase at different correlation thresh-
olds. This indicates that the pruning ratios of the TAPER
algorithm can be maintained when the number of items is
increased. Recall that the proposed algebraic cost model
for data sets with a generalized Zipf distribution exhibits a
similar trend as the result of this experiment.

In addition, Figure 14 shows the execution time for our
scale-up experiments. As can be seen, the execution time
increases linearly with the increase of the number of items



at several different correlation thresholds.

6.7 Summary of the effectiveness of the algebraic
cost model for measuring computation savings
by TAPER

In this subsection, we summarize the experimental re-
sults. First, the algebraic cost model shows that the pruning
ratio increases with increases of the correlation thresholds
for data sets with linear and zipf-like distributions. As illus-
trated in Figures 8, 10, 11, and 13, our experiments do show
this trend. Second, for data sets with linear rank-support
distribution, the algebraic cost model shows that the prun-
ing ratio increases with the decrease of the ratio a/m. Our
experimental results also confirm this, as shown in Figure
10. Third, for data sets with Zipf-like rank-support distribu-
tion, the algebraic cost model shows that the pruning ratio
increases with the exponent p. This is confirmed by our ex-
perimental results, as displayed in Figure 11. Finally, the
algebraic cost model for linear and zipf rank-support distri-
bution indicates that the pruning ratio is insensitive to the
number of items. Our experimental results exhibit a similar
trend, as shown in Figure 13.

7 Conclusion and Future Work

In this paper, we proposed using an upper bound of the
¢ correlation coefficient, which shows a conditional mono-
tonic property. Based on this upper bound, we designed
an efficient two-step filter-and-refine algorithm, called TA-
PER, to search all the item pairs with correlations above a
user-specified minimum correlation threshold. In addition,
we provided an algebraic cost model to quantify the compu-
tation savings of the TAPER algorithm. As demonstrated by
our experimental results on both real and synthetic data sets,
the pruning ratio of the TAPER algorithm can be maintained
or even increases with the increase of database dimensions,
and the performance of the TAPER algorithm confirms the
proposed algebraic cost model.

There are several potential directions for future research.
First, we plan to generalize the TAPER algorithm as a stan-
dard algorithm for efficient computation of other measures
of association. In particular, we will examine the potential
upper bound functions of other measures for their monotone
property. Second, we propose to extend our methodology to
answer correlation-like queries beyond pairs of items.
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