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Abstract—Given a user-specified minimum correlation threshold � and a market-basket database with N items and T transactions, an
all-strong-pairs correlation query finds all item pairs with correlations above the threshold �. However, when the number of items and
transactions are large, the computation cost of this query can be very high. The goal of this paper is to provide computationally efficient
algorithms to answer the all-strong-pairs correlation query. Indeed, we identify an upper bound of Pearson’s correlation coefficient for
binary variables. This upper bound is not only much cheaper to compute than Pearson’s correlation coefficient, but also exhibits
special monotone properties which allow pruning of many item pairs even without computing their upper bounds. A Two-step All-
strong-Pairs corElation queRy (TAPER) algorithm is proposed to exploit these properties in a filter-and-refine manner. Furthermore,
we provide an algebraic cost model which shows that the computation savings from pruning is independent of or improves when the
number of items is increased in data sets with Zipf-like or linear rank-support distributions. Experimental results from synthetic and
real-world data sets exhibit similar trends and show that the TAPER algorithm can be an order of magnitude faster than brute-force
alternatives. Finally, we demonstrate that the algorithmic ideas developed in the TAPER algorithm can be extended to efficiently
compute negative correlation and uncentered Pearson’s correlation coefficient.

Index Terms—Association analysis, data mining, Pearson’s correlation coefficient, statistical computing.

�

1 INTRODUCTION

GIVEN a large set of items and observation data sets about
cooccurring items, association analysis is concerned

with identification of strongly related (e.g., as measured by
Pearson’s correlation coefficient [22]) subsets of items.
Association analysis is a core problem in data mining and
databases. It plays an important role in many application
domains such as market-basket analysis [2], climate studies
[25], public health [8], and bioinformatics [17]. For instance,
association analysis in market-basket study can reveal how
the sales of a product are related to the sales of other
products. This type of information can be useful for sales
promotions, catalog design, and store layout.

The focus of this paper is on computing an all-strong-pairs
correlation query that returns pairs of high positively
correlated items (or binary attributes). The all-strong-pairs
correlation query problem can be formalized as follows:
Given a user-specified minimum correlation threshold � and
a market-basket database with N items and T transactions,
an all-strong-pairs correlation query finds all item pairs with
correlations above the minimum correlation threshold �.

However, as the number of items and transactions in the
data set increases, the computation cost for an all-strong-

pairs correlation query becomes prohibitively expensive. For
example, consider a database of 106 items, which may
represent the collection of books available at an e-commerce
Web site. Answering the all-strong-pairs correlation query
from such a massive database requires computing the

correlations of 106

2

� �
� 0:5� 1012 possible item pairs. Thus,

it may not be computationally feasible to apply a brute-force

approach to compute correlations for all half-trillion pairs,

particularly when the number of transactions in the data set

is also very large.

1.1 Related Work

Jermaine [13] investigated the implication of incorporating
chi-square (�2) [22] based queries to data-cube computa-
tions. He showed that finding the subcubes that satisfy
statistical tests such as �2 is inherently NP-hard, but can be
made more tractable using approximation schemes. Jer-
maine [14] also presented an iterative procedure for high-
dimensional correlation analysis by shaving off part of the
database via feedback from human experts. Finally,
Brin et al. [4] proposed a �2-based correlation rule mining
strategy. However, �2 does not possess a desired upward
closure property for exploiting efficient computation [9].

This paper focuses on the efficient computation of
statistical correlation for all pairs of items. Given n items,
a traditional brute-force approach computes Pearson’s
correlation coefficient for all n

2

� �
¼ nðn�1Þ

2 item pairs. This
approach is often implemented using matrix algebra in a
statistical software package as the “correlation matrix” [15]
function, which computes Pearson’s correlation coefficient
for all pairs of columns. This approach is applicable to but
not efficient for the case of Boolean matrices, which can
model market-basket-type data sets. Recently, Ilyas et al. [12]
proposed a more efficient method for identifying correlated

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 4, APRIL 2006 493

. H. Xiong is with the Management Science and Information Systems
Department, Rutgers University, 180 University Avenue, Newark, NJ
07102. E-mail: hui@rbs.rutgers.edu.

. S. Shekhar and V. Kumar are with the Department of Computer Science
and Engineering, University of Minnesota, 200 Union Street SE,
Minneapolis, MN 55455. E-mail: {shekhar, kumar}@cs.umn.edu.

. P.-N. Tan is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824-1226.
E-mail: ptan@cse.msu.edu.

Manuscript received 6 Nov. 2004; revised 15 June 2005; accepted 23 Aug.
2005; published online 17 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0394-1104.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



pairs. In this method, the sampling techniques are applied
to exploit efficient computation. As a result, this method
cannot avoid false-positive and false-negative correlations.

In contrast, unlike the correlation-matrix approach, the
method proposed in this paper does not need to compute
all n

2

� �
pairs. In particular, for market-basket-type data sets

with a Zipf-like rank-support distribution, we show that
only a small portion of the item pairs needs to be examined.
In the real world, Zipf-like distributions have been
observed in a variety of application domains, including
commercial retail data, Web click streams, and telecommu-
nication data. Also, we show that our method is complete
and correct since we do not apply any approximation
schemes, such as sampling techniques.

1.2 Contributions

In our preliminary work [28], we provide an upper
bound of Pearson’s correlation coefficient for binary
variables. The computation of this upper bound is much
cheaper than the computation of the exact correlation,
since this upper bound can be computed as a function of
the support of individual items. Furthermore, we show
that this upper bound has a special 1D monotone
property that allows elimination of many item pairs even
without computing their upper bounds, as shown in
Fig. 1. The x-axis in the figure represents the set of items
having a lower level of support than the support for
item xi. These items are sorted from left to right in
decreasing order of their individual support values. The
y-axis indicates the correlation between each item x and
item xi. Upperboundðxi; xÞ represents the upper bound of
correlationðxi; xÞ and has a monotone decreasing beha-
vior. This behavior guarantees that an item pair ðxi; xkÞ
can be pruned if there exists an item xj such that
upperboundðxi; xjÞ < � and suppðxkÞ < suppðxjÞ.

A Two-step All-strong-Pairs corrElation queRy (TA-
PER) algorithm is proposed to exploit this 1D monotone
property in a filter-and-refine manner, which consists of
two steps: filtering and refinement. In the filtering step,
many item pairs are filtered out using the easy-to-
compute upperboundðxi; xÞ and its monotone property. In
the refinement step, the exact correlation is computed for
remaining pairs to determine the final query results. In
addition, we have proved the completeness and correct-
ness of TAPER and provided an algebraic cost model to
quantify the computational savings. As demonstrated by
our experiments on both real and synthetic data sets,
TAPER can be an order of magnitude faster than brute-
force alternatives and the computational savings by
TAPER are independent or improve when the number
of items is increased in data sets with common Zipf [29]
or linear rank-support distributions.

In this paper, we identify that the upper bound of
Pearson’s correlation coefficient for binary variables has
special 2D monotone properties. Indeed, besides the
1D monotone property mentioned above, the upper
bound has another 1-D monotone property, as shown
in Fig. 2a. The x-axis in the figure represents a sorted
item list in ascending order of their individual support
values. The y-axis indicates the correlation between item
xi and x. In this case, the item xi is fixed and the upper
bound of correlationðx; xiÞ is monotonically decreasing
with the increase of the support value of item x.

Fig. 2 shows 2D monotone properties of the upper
bound. In the figure, for an item list {1, 2, 3, 4, 5, 6}, which is
sorted by item support in nonincreasing order, the upper
bound of item pairs is decreasing following the arrow
direction. For instance, the upper bound of item pair {5, 6} is
greater than that of item pair {4, 6}. Also, the upper bound
of item pair {1, 2} is greater than that of item pair {1, 3}.

With 2D monotone properties of the upper bound, we
can further refine the TAPER algorithm by reducing the
upper bound computation in the coarse-filter step. We
show that the number of upper bound computations is
reduced from nðn�1Þ

2 to 2n� 3 for the worst case. In addition,
we present experimental results to show this computational
improvement.

Finally, the method proposed in this paper is not limited
to finding all pairs of high positively correlated pairs. We
show that the algorithmic ideas developed in the TAPER
algorithm can also be extended for identifying pairs of high
negatively correlated pairs and for efficiently computing
uncentered Pearson’s correlation coefficient. To this end, we
provide the theoretical basis, algorithmic ideas, and experi-
mental results for such an extension.
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Fig. 1. Illustration of the filtering techniques. (The curves are only used

for illustration purposes.)

Fig. 2. (a) A monotone property of the upper bound. (b) Illustration of 2D monotone properties of the upper bound.



1.3 Scope and Outline

The scope of the all-strong-pairs correlation query problem
proposed in this paper is restricted to market-basket
databases with binary variables and the correlation compu-
tational form is Pearson’s correlation coefficient for binary
variables, which is also called the � correlation coefficient.

Note that the all-strong-pairs correlation query problem
is different from the standard association rule mining
problem [1], [3], [4], [5], [6], [7], [10], [11], [19], [20], [21],
[26]. Given a set of transactions, the objective of association-
rule mining is to extract all subsets of items that satisfy a
minimum support threshold. Support measures the fraction
of transactions that contain a particular subset of items. The
notions of support and correlation may not necessarily
agree with each other. This is because item pairs with high
support may be poorly correlated, while those that are
highly correlated may have very low support. For instance,
suppose we have an item pair {A, B}, where suppðAÞ ¼
suppðBÞ ¼ 0:8 and suppðA;BÞ ¼ 0:64. Both items are
uncorrelated because suppðA;BÞ ¼ suppðAÞsuppðBÞ. In con-
trast, an item pair {A, B} with suppðAÞ ¼ suppðBÞ ¼
suppðA;BÞ ¼ 0:001 is perfectly correlated despite its low
support. Patterns with low support but high correlation are
useful for capturing interesting associations among rare
anomalous events or rare but expensive items such as gold
necklaces and earrings.

The remainder of this paper is organized as follows:
Section 2 presents basic concepts. In Section 3, we introduce
the upper bound of Pearson’s correlation coefficient for
binary variables. Section 4 proposes the TAPER algorithm.
In Section 5, we analyze the TAPER algorithm in the areas
of completeness, correctness, and computation gain.
Section 6 discusses how to generalize our method. In
Section 7, we present the experimental results. Finally, we
draw conclusions and suggest future work in Section 8.

2 PEARSON’s CORRELATION COEFFICIENT

In statistics, a measure of association is a numerical index
which describes the strength or magnitude of a relationship
among variables. Although literally dozens of measures
exist, they can be categorized into two broad groups:
ordinal and nominal. Relationships among ordinal variables
can be analyzed with ordinal measures of association such
as Kendall’s tau [16] and Spearman’s rank correlation
coefficient [18]. In contrast, relationships among nominal
variables can be analyzed with nominal measures of
association such as Pearson’s correlation coefficient and
measures based on chi-square [22].

The � correlation coefficient [22] is the computation form
of Pearson’s correlation coefficient for binary variables. In
this section, we describe the � correlation coefficient and
show how it can be computed using the support measure of
association-rule mining [1].

In a 2� 2 two-way table shown in Table 1, the calculation
of the � correlation coefficient reduces to

� ¼
Pð00ÞPð11Þ � Pð01ÞPð10Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð0þÞPð1þÞPðþ0ÞPðþ1Þ

p ; ð1Þ

where PðijÞ, for i ¼ 0; 1 and j ¼ 0; 1, denotes the number of
samples which are classified in the ith row and jth column
of the table. Furthermore, we let PðiþÞ denote the total
number of samples classified in the ith row and we let PðþjÞ
denote the total number of samples classified in the
jth column. Thus, PðiþÞ ¼

P1
j¼0 PðijÞ and PðþjÞ ¼

P1
i¼0 PðijÞ.

In the two-way table, given that N is the total number of
samples, we can transform (1) as follows:

� ¼
ðN � Pð01Þ � Pð10Þ � Pð11ÞÞPð11Þ � Pð01ÞPð10Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð0þÞPð1þÞPðþ0ÞPðþ1Þ
p

¼
NPð11Þ � ðPð11Þ þ Pð10ÞÞðPð01Þ þ Pð11ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð0þÞPð1þÞPðþ0ÞPðþ1Þ
p

¼
Pð11Þ
N �

Pð1þÞ
N

Pðþ1Þ
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð0þÞ
N

Pð1þÞ
N

Pðþ0Þ
N

Pðþ1Þ
N

q
Hence, when adopting the support measure of association-
rule mining [1], for two items A and B in a market-basket
database, we have suppðAÞ ¼ Pð1þÞ=N , suppðBÞ ¼ Pðþ1Þ=N ,
and suppðA;BÞ ¼ Pð11Þ=N . With support notations and the
above new derivations of (1), we can derive the support
form of the � correlation coefficient as shown below in (2):

� ¼ suppðA;BÞ � suppðAÞsuppðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞð1� suppðAÞÞð1� suppðBÞÞ

p ð2Þ

Example 1. Consider the market-basket database shown in

Fig. 3. For item 1 and item 2 in the database, we can

construct a two-way table as shown in Table 2. Then, by (1),

we get � ¼ 1�8�1�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�9�2�8
p ¼ 2

3 . Also, since suppð1; 2Þ ¼ 0:8,

suppð1Þ ¼ 0:9, and suppð2Þ ¼ 0:8, by (2), we get � ¼
0:8�0:8�0:9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:8�0:9�0:1�0:2
p ¼ 0:08

0:12 ¼ 2
3 . As can be seen, the results from

the two equations are identical. Finally, � correlation
coefficients for other item pairs can be computed
similarly. Fig. 3b shows � correlation coefficients for all
item pairs.
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TABLE 1
A Two-Way Table of Item A and Item B

Fig. 3. An example database.



3 PROPERTIES OF THE � CORRELATION

COEFFICIENT

In this section, we present some properties of the
� correlation coefficient. These properties are useful for the
efficient computation of all-strong-pairs correlation queries.

3.1 An Upper Bound

In this subsection, we propose an upper bound of the
� correlation coefficient for a given pair fA; Bg in terms of
the support value of item A and the support value of item B.

Lemma 1. Given an item pair fA; Bg, the support value
suppðAÞ for itemA, and the support value suppðBÞ for itemB,
without loss of generality, let suppðAÞ � suppðBÞ. The upper
bound upperð�fA;Bg) of the � correlation coefficient for
fA; Bg can be obtained when suppðA;BÞ ¼ suppðBÞ and

upperð�fA;BgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðAÞ
1� suppðBÞ

s
: ð3Þ

Proof. According to (2), for an item pair fA; Bg,

�fA;Bg ¼
suppðA;BÞ � suppðAÞsuppðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

suppðAÞsuppðBÞð1� suppðAÞÞð1� suppðBÞÞ
p :

When the support values suppðAÞ and suppðBÞ are
fixed, �fA;Bg is monotone increasing with the increase of
the support value suppðA;BÞ. By the given condition
suppðAÞ � suppðBÞ and the antimonotone property of the
support measure, we get the maximum possible value of
suppðA;BÞ is suppðBÞ. As a result, the upper bound
upper(�fA;Bg) of the � correlation coefficient for an item
pair fA; Bg can be obtained when suppðA;BÞ ¼ suppðBÞ.
Hence,

upperð�fA;BgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðAÞ
1� suppðBÞ

s
:

ut

As can be seen in (3), the upper bound of the � correlation

coefficient for an item pair fA; Bg relies only on the support

value of item A and the support value of item B. In other

words, there is no requirement to get the support value

suppðA;BÞ of an item pair fA; Bg for the calculation of this

upper bound. As already noted, when the number of

items N becomes very large, it is difficult to store the

support of every item pair in the memory, since NðN � 1Þ=2
is a huge number. However, it is possible to store the

support of individual items in the main memory. As a

result, this upper bound can serve as a coarse filter to filter

out item pairs which are of no interest, thus saving I/O cost

by reducing the computation of the support values of those

pruned pairs.

Example 2. Fig. 4 shows all item pairs with their upper

bound values for the example data set shown in Fig. 3. If

we consider item pair {1, 2}, then, by (3), we have

upperð�f1;2gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppð2Þ
suppð1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppð1Þ
1� suppð2Þ

s
¼

ffiffiffiffiffiffiffi
0:8

0:9

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:9

1� 0:8

r
¼ 0:667;

as shown in Fig. 4. Finally, upper bounds of the

� correlation coefficient for other item pairs can be

computed in a similar manner. Fig. 4 shows the upper

bounds and � correlation coefficients for all item pairs.

3.2 2D Monotone Properties

In this section, we present a conditional monotone property

of the upper bound of the � correlation coefficient as shown

below in Lemma 2.

Lemma 2. For an item pair fA; Bg, if we let suppðAÞ >
suppðBÞ and fix item A, the upper bound upperð�fA;BgÞ of

fA; Bg is monotone decreasing with the decrease of the

support value of item B.

Proof. By Lemma 1, we get

upperð�fA;BgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðAÞ
1� suppðBÞ

s
:

For any given two items B1 and B2 with suppðAÞ >
suppðB1Þ > suppðB2Þ, we need to prove upperð�fA;B1gÞ >
upperð�fA;B2gÞ. This claim can be proved as follows:

upperð�fA;B1gÞ
upperð�fA;B2gÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðB1Þ
suppðB2Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðB2Þ
1� suppðB1Þ

s
> 1:

This follows the given condition that suppðB1Þ >
suppðB2Þ and ð1� suppðB1ÞÞ < ð1� suppðB2ÞÞ. tu
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Fig. 4. All pairs in the example database.

TABLE 2
A Two-Way Table of Item 1 and Item 2



Along the same line of Lemma 2, we can also derive
another conditional monotone property of the upper bound
of the � correlation coefficient as follows:

Lemma 3. For a pair of items fA; Bg, let suppðAÞ > suppðBÞ
and fix the item B, the upper bound upperð�fA;BgÞ of fA; Bg
is monotone increasing with the decreasing of the support
value of item A.

Example 3. This example illustrates Lemma 2 and Lemma 3.
As shown in Fig. 4, if item 1 is fixed, the upper bounds of
item pairs {1, 2}, {1, 3}, {1, 4}, {1, 5}, and {1, 6} are in a
decreasing order, which follows Lemma 2. Also, the
upper bounds of item pairs {1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6}
are in an increasing order. This follows Lemma 3.

Lemma 2 and Lemma 3 are 2D monotone properties of
the upper bound. These two lemmas allow us to push the
upper bound into the search algorithm, thus efficiently
pruning the search space. In the following section, we will
introduce how this pruning works.

4 ALGORITHM DESCRIPTIONS

Here, we first present the Two-step All-strong-Pairs
corrElation queRy (TAPER) algorithm to exploit the
proposed upper bound and its monotone properties.

4.1 Overview

The TAPER algorithm is a filter-and-refine query proces-
sing strategy which consists of two steps: filtering and
refinement.

The Filtering Step. In this step, the TAPER algorithm
applies two pruning techniques. The first technique uses the
upper bound of the � correlation coefficient as a coarse
filter. In other words, if the upper bound of the � correlation
coefficient for an item pair is less than the user-specified
correlation threshold, we can prune this item pair right
away. The second pruning technique prunes item pairs
based on special monotone properties of the upper bound
of the � correlation coefficient.

The Refinement Step. In the refinement step, the TAPER
algorithm computes the exact correlation for each surviving
pair from the filtering step and retrieves the pairs with
correlations above the user-specified minimum correlation
threshold as the query results.

Fig. 5 shows the pseudocode of the TAPER algorithm,
which includes the CoarseFilter and Refine procedures. In

the CoarseFilter procedure, monotone properties of the
upper bound of the � correlation coefficient can be used in
two different ways, namely, 1D filtering and 2D filtering.
The details of these two filtering techniques are introduced
in the following sections.

Procedure Refine works as follows: Line 1 gets the
support for the item pair {A, B}. Note that the I/O cost can
be very expensive for line 1 when the number of items is
large since we cannot store the support of all item pairs in
the memory. Line 2 calculates the exact correlation coeffi-
cient of this item pair. If the correlation is greater than the
user-specified minimum correlation threshold, this item
pair is returned as a query result in line 6. Otherwise, the
procedure returns NULL in line 4.

4.2 TAPER 1D: TAPER with 1D Filter

In this section, we illustrate TAPER with 1D filter, denoted
as TAPER 1D. The working mechanism of 1D filtering is
illustrated as the following corollary.

Corollary 1. When searching for all pairs of items with
correlations above a user-specified threshold �, if an item list
fi1; i2; . . . ; img is sorted by item supports in nonincreasing
order, an item pair fia; icg with suppðiaÞ > suppðicÞ can be
pruned if upperð�fia; ibgÞ < � and suppðicÞ � suppðibÞ.

Proof. First, when suppðicÞ ¼ suppðibÞ, we get upperð�ðia; icÞÞ
= upperð�ðia; ibÞÞ < � according to (3) and the given
condition upperð�fia; ibgÞ < �; then we can prune the item
pair fia; icg. Next, we consider suppðicÞ < suppðibÞ. Since
suppðiaÞ > suppðibÞ > suppðicÞ, by Lemma 2, we get
upperð�fia; icgÞ < upperð�fia; ibgÞ < �. Hence, the pair
fia; icg is pruned. tu
Fig. 6 shows the pseudocode of 1D filtering, which works

as follows: Line 1 initializes the variables and creates an
empty query result set P . Lines 2-10 iteratively enumerate
candidate pairs and filter out item pairs whose correlations
are obviously less than the user-specified correlation
threshold �. This is implemented by two loops. Line 2
starts an outer loop. Line 3 specifies reference item A and
line 4 starts a search within each branch. Line 5 specifies the
target item B, and line 6 computes the upper bound of the
� correlation coefficient for item pair {A, B}. In line 7, if this
upper bound is less than the user-specified correlation
threshold �, the search within this loop can stop by exiting
from the inner loop, as shown in line 8. The reason is as
follows: First, the reference item A is fixed in each branch
and it has the maximum support value due to the way we
construct the branch. Also, items within each branch are
sorted based on their support in nonincreasing order. Then,
by Lemma 2, the upper bound of the � correlation
coefficient for the item pair {A, B} is monotone decreasing
with the decrease of the support of item B. Hence, if we find
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Fig. 5. The TAPER algorithm.

Fig. 6. TAPER 1D: TAPER with a 1D filter.



the first target item B which results in an upper bound
upperð�fA;BgÞ that is less than the user-specified correlation
threshold �, we can stop the search. Line 10 calls the
procedure Refine to compute the exact correlation for each
surviving candidate pair and continues to check the next
target item until no target item is left.

Example 4. To illustrate the TAPER algorithm with 1D filter,
consider a database shown in Fig. 7. To simplify the
discussion, we use an item list {1, 2, 3, 4, 5, 6} that is
sorted by item support in nonincreasing order. For a
given correlation threshold 0.36, we can use Rymon’s
generic set-enumeration tree search framework [24] to
demonstrate how filter-and-refine query processing
works. For instance, for the branch starting from item 1,
we identify that the upper bound of the � correlation
coefficient for the item pair {1, 3} is 0.333, which is less
than the given correlation threshold 0.36. Hence, we can
prune this item pair immediately. Also, since the item list
{1, 2, 3, 4, 5, 6} is sorted by item supports in
nonincreasing order, we can prune pairs {1, 4}, {1, 5},
and {1, 6} by Lemma 2 without any further computation
cost. In contrast, for the traditional filter-and-refine
paradigm, the coarse filter can only prune the item pair
{1, 3}. There is no technique to prune item pairs {1, 4},
{1, 5}, and {1, 6}. Finally, in the refinement step, only
seven item pairs are required to compute the exact
correlation coefficients, as shown in Fig. 7c. More than
half of the item pairs are pruned in the filter step even
though the correlation threshold is as low as 0.36. Please
note that the Rymon’s set-enumeration tree is used for
illustration purposes. In our algorithm, there is no
requirement to construct such a tree structure.

4.3 TAPER 2D: TAPER with 2D Filter

The coarse filter step of TAPER 1D can be improved by
reducing the number of upper bounds to be computed; this
leads to TAPER 2D. Indeed, we can reduce the computation
of upper bounds in each inner loop and produce an
improved coarse filter step as shown in Fig. 8. The key
difference between TAPER 1D and TAPER 2D is that

TAPER 2D records the break point in the last inner loop and
starts computing upper bounds from the recorded point
instead of going through every candidate pair. The
correctness of this additional filtering is guaranteed by the
following corollary:

Corollary 2. Given an item list fi1; i2; . . . ; ing, which is sorted
by item supports in nonincreasing order, the upper bound
computation of an item pair fia; icg with suppðfiagÞ >
suppðficgÞ can be saved if upperð�fia�1; icgÞ > �, where
suppðfia�1gÞ > suppðficgÞ.

Proof. First, we have suppðfia�1gÞ > suppðfiagÞ, since items
are sorted by support in nonincreasing order. Also, by
Lemma 3, we have upperð�fia�1; icgÞ < upperð�fia; icgÞ.
Therefore, upperð�fia; icgÞ > �. As a result, we do not
need to compute the upper bound of fia; icg. tu
TAPER 2D is an improvement over TAPER 1D. The

following Lemma 4 shows that the number of upper bound
computations is reduced from nðn�1Þ

2 in TAPER 1D to 2n� 3
in TAPER 2D for the worst case.

Lemma 4. The number of upper bounds required to compute in
the coarse filter step of TAPER 2D is 2n� 3, where n is the
number of objects in the data set.

Proof. Fig. 8 shows that the number of upper bounds to be
computed is determined by the value k. For each outer
loop, there is an inner loop where the upper bound is
computed. k starts from 2 and ends at n. In each out
loop i, there are at most ki � ki�1 þ 1 number of upper
bound computations. In total, there are

Pn�1
i¼1 ðki � ki�1 þ

1Þ ¼ 2n� 3 number of upper bounds to be computed. tu
Example 5. This example illustrates the coarse-filter steps of

the TAPER algorithm with 1D and 2D filtering. Here, we
use the data set shown in Fig. 7. For the item list {1, 2, 3,
4, 5, 6}, which is sorted by item support in nonincreasing
order, if the correlation threshold is 0:2, the coarse filter
step of TAPER 1D is illustrated in Fig. 9a. In the figure,
the dot line indicates the item pairs whose upper bounds
need to be computed. As can be seen, there are 14 upper-
bound computations. In contrast, as shown in Fig. 9b,
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Fig. 7. Illustration of the filter-and-refine strategy of the TAPER algorithm with 1D filter.



TAPER 2D computes upper bounds for 2n� 3 ¼
2� 6� 3 ¼ 9 number of item pairs, which are {1, 2},
{1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 6}, {4, 6}, and {5, 6}.

5 ANALYSIS OF THE TAPER ALGORITHM

In this section, we analyze TAPER in the areas of
completeness, correctness, and computation savings. Note
that TAPER here will stand for both TAPER 1D and
TAPER 2D to simplify the discussion.

5.1 Completeness and Correctness

Lemma 5. The TAPER algorithm is complete. In other words,
this algorithm finds all pairs which have correlations above a
user-specified minimum correlation threshold.

Proof. The completeness of the TAPER algorithm can be
shown by the following two facts: First, all item pairs in
the database have the opportunity to be checked during
the iteration process. Second, the filtering step only
prunes item pairs if the upper bounds of the � correlation
coefficient for these pairs are less than the user-specified
correlation threshold. This is guaranteed by Corollary 1
as well as Corollary 2. Also, the refinement step only

prunes item pairs whose correlations are less than the
user-specified correlation threshold. The second fact
guarantees that all the pruned item pairs cannot have
correlations above the user-specified minimum correla-
tion threshold. tu

Lemma 6. The TAPER algorithm is correct. In other words,
every pair that both algorithms find has a correlation above a
user-specified minimum correlation threshold.

Proof. The correctness of the TAPER algorithm can be
guaranteed by the refinement step of these two algo-
rithms since the exact correlation of each candidate pair
is calculated in the refinement step and every pair with a
correlation lower than the user-specified correlation
threshold will be pruned. tu

5.2 Quantifying the Computation Savings

This section presents analytical results for the amount of
computational savings obtained by TAPER. First, we
illustrate the relationship between the choices of the
minimum correlation threshold and the size of the reduced
search space (after performing the filtering step). Knowing
the relationship gives us an idea of the amount of pruning
achieved using the upper bound function of correlation.
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Fig. 9. (a) TAPER 1D versus (b) TAPER 2D.

Fig. 8. TAPER 2D: TAPER with a 2D filter.



Fig. 10 illustrates a two-dimensional plot for every
possible combination of support pairs, suppðxÞ and
suppðyÞ. If we impose the constraint that suppðxÞ
� suppðyÞ, then all item pairs must be projected to the
upper left triangle since the diagonal line represents the
condition suppðxÞ ¼ suppðyÞ.

To determine the size of the reduced search space, let us
start from the upper bound of the correlation:

upperð�x;yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðxÞ
suppðyÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðxÞ
1� suppðyÞ

s
< �

¼)suppðxÞð1� suppðyÞÞ < �2suppyðyÞð1� suppðxÞÞ

¼)suppðyÞ > suppðxÞ
�2 þ ð1� �2ÞsuppðxÞ :

ð4Þ

The above inequality provides a lower bound on suppðyÞ
such that any item pair involving x and y can be pruned
using the conditional monotone property of the upper
bound function. In other words, any surviving item pair
that undergoes the refinement step must violate the
condition given in (4). These item pairs are indicated by
the shaded region shown in Fig. 10. During the refinement
step, TAPER has to compute the exact correlation for all
item pairs that fall in the shaded region between the
diagonal and the polyline drawn by (5).

suppðyÞ ¼ suppðxÞ
�2 þ ð1� �2ÞsuppðxÞ ð5Þ

As can be seen from Fig. 10, the size of the reduced search
space depends on the choice of minimum correlation
threshold. If we increase the threshold from 0.5 to 0.8, the
search space for the refinement step is reduced substan-
tially. When the correlation threshold is 1.0, the polyline
from (5) overlaps with the diagonal line. In this limit, the
search space for the refinement step becomes zero.

The above analysis shows only the size of the reduced
search space that must be explored during the refinement
step of the TAPER algorithm. The actual amount of pruning
achieved by TAPER depends on the support distribution of
items in the database. To facilitate our discussion, we first
introduce the definitions of several concepts used in the
remainder of this section.

Definition 1. The pruning ratio of the TAPER algorithm is
defined by the following equation:

�ð�Þ ¼ Sð�Þ
T

; ð6Þ

where � is the minimum correlation threshold, Sð�Þ is the
number of item pairs which are pruned before computing their
exact correlations at the correlation threshold �, and T is the
total number of item pairs in the database. For a given

database, T is a fixed number and is equal to n
2

� �
¼ nðn�1Þ

2 ,
where n is the number of items.

Definition 2. For a sorted item list, the rank-support
function fðkÞ is a discrete function which presents the support
in terms of the rank k.

For a given database, let I ¼ fA1; A2; . . . ; Ang be an
item list sorted by item supports in nonincreasing order.
Then item A1 has the maximum support and the rank-
support function fðkÞ ¼ suppðAkÞ, 8 1 � k � n, which is
monotone decreasing with the increase of the rank k. To
quantify the computation savings for a given item Aj

ð1 � j < nÞ at the threshold �, we need to find only the
first item Alðj < l � nÞ such that upperð�fAj;AlgÞ < �. By
Lemma 2, if upperð�fAj;AlgÞ < �, we can guarantee that
upperð�fAj;AigÞ, where l � i � n, is less than the correlation
threshold �. In other words, all these n� lþ 1 pairs can
be pruned without a further computation requirement.
According to Lemma 1, we get

upperð�fAj;AlgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAlÞ
suppðAjÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðAjÞ
1� suppðAlÞ

s
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAlÞ
suppðAjÞ

s

¼

ffiffiffiffiffiffiffiffiffi
fðlÞ
fðjÞ

s
< �) fðlÞ

fðjÞ < �2:

Since the rank-support function fðkÞ is monotone
decreasing with the increase of the rank k, we get
l > f�1ð�2fðjÞÞ. To make the computation simple, we let
l ¼ f�1ð�2fðjÞÞ þ 1. Therefore, for a given item Aj

(1 < j � n), the computation cost for ðn� f�1ð�2fðjÞÞÞ item
pairs can be saved. As a result, the total computation
savings of the TAPER algorithm is shown below in (7). Note
that the computation savings shown in (7) is an under-
estimated value of the achieved computation savings.

Sð�Þ ¼
Xn
j¼2

fn� f�1ð�2fðjÞÞg ð7Þ

Finally, we conduct computation savings analysis on the
data sets with some special rank-support distributions.
Specifically, we consider three special rank-support dis-
tributions: a uniform distribution, a linear distribution, and
a generalized Zipf distribution [29], as shown in the
following three cases.

5.2.1 CASE I: A Uniform Distribution

In this case, the rank-support function fðkÞ ¼ C, where C is
a constant. According to (3), the upper bound of the
� correlation coefficient for any item pair is 1, which is the
maximum possible value for the correlation. Hence, for any
given item Aj, we cannot find an item Al (j < l � n) such
that upperð�fAj;AlgÞ < �, where � � 1. As a result, the total
computation savings Sð�Þ is zero.

5.2.2 CASE II: A Linear Distribution

In this case, the rank-support function has a linear
distribution and fðkÞ ¼ a�mk, where m is the absolute
value of the slope and a is the intercept.
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Fig. 10. An illustration of the reduced search space for the refinement

step of the TAPER algorithm. Only item pairs within the shaded region

must be computed for their correlation.



Lemma 7. When a database has a linear rank-support distribu-
tion fðkÞ and fðkÞ ¼ a�mk (a > 0, m > 0), for a user-
specified minimum correlation threshold �, the pruning ratio of
the TAPER algorithm increases with the decrease of the ratio
a=m, the increase of the correlation threshold �, and the
increase of the number of items, where 0 < � � 1.

Proof. For the given database, let I ¼ fA1; A2; . . . ; Ang be
the item list sorted by item support in nonincreasing
order. Then, item A1 has the maximum support. Also,
let the rank-support function fðkÞ ¼ a�mk, where m
is the absolute value of the slope and a is the
intercept. From the rank-support function fðkÞ, we
can derive the inverse function f�1ðyÞ ¼ a�y

m . Thus,
f�1ð�2fðjÞÞ ¼ a��2ða�mjÞ

m ¼ a
m ð1� �2Þ þ j�2. According to

(7), we can get

Sð�Þ ¼
Xn
j¼2

fn� f�1ð�2fðjÞÞg

¼ nðn� 1Þ �
Xn
j¼2

a

m
ð1� �2Þ �

Xn
j¼2

j�2

¼ nðn� 1Þ � a

m
ðn� 1Þð1� �2Þ � ðn� 1Þðnþ 2Þ

2
�2

¼ ðn� 1Þ n� 2

2
� a

m
� nþ 2

2

� �
ð1� �2ÞÞ:

Since the pruning ratio �ð�Þ ¼ Sð�Þ
T and T ¼ nðn�1Þ

2 ,

) �ð�Þ ¼
ðn� 2Þ � ð2 a

m� ðnþ 2ÞÞð1� �2Þ
n

:

Also, we know suppðAnÞ ¼ fðnÞ ¼ a�mn > 0) 2 a
m ,

> 2n � ðnþ 2Þ; when n � 2.

Thus, we can derive three rules as follows:

rule 1 : � % ) ð1� �2Þ & ) �ð�Þ %;

rule 2 : a=m & ) ð2 a
m
� ðnþ 2ÞÞ & ) �ð�Þ %;

rule 3 : n % ) ð2 a
m
� ðnþ 2ÞÞ=n & ) �ð�Þ % :

Therefore, the claim that the pruning ratio of the TAPER
algorithm is increased with the decrease of the ratio a=m,
the increase of the correlation threshold �, and the
increase of the number of items holds. tu

5.2.3 CASE III: A Generalized Zipf Distribution

In this case, the rank-support function has a generalized
Zipf distribution and fðkÞ ¼ c

kp , where c and p are constants
and p � 1. When p is equal to 1, the rank-support function
has a Zipf distribution.

Lemma 8. When a database has a generalized Zipf rank-support
distribution fðkÞ and fðkÞ ¼ c

kp , for a user-specified minimum
correlation threshold �, the pruning ratio of the TAPER
algorithm increases with the increase of p and the correlation
threshold �, where 0 < � � 1. Furthermore, the pruning ratio
is independent when the number of items is increased.

Proof. Since the rank-support function fðkÞ ¼ c
kp , the inverse

function f�1ðyÞ ¼ ðcyÞ
1
p. Accordingly,

f�1ð�2fðjÞÞ ¼ ð c
�2 c

j p
Þ

1
p ¼ j

ð�2Þ
1
p

Applying (7), we get

Sð�Þ ¼
Xn
j¼2

fn� f�1ð�2fðjÞÞg

¼ nðn� 1Þ �
Xn
j¼2

j

ð�2Þ
1
p

¼ nðn� 1Þ � ðn� 1Þðnþ 2Þ
2

1

�
2
p

:

Since the pruning ratio �ð�Þ ¼ Sð�Þ
T and T ¼ nðn�1Þ

2 ,

) �ð�Þ ¼ 2� nþ 2

n

1

�
2
p

:

Thus, we can derive three rules as follows:

rule 1 : � % ) nþ 2

n

1

�
2
p

& ) �ð�Þ %;

rule 2 : p % ) nþ 2

n

1

�
2
p

& ) �ð�Þ %;

rule 3 : n ! 1 ) lim
n!1

nþ 2

n

1

�
2
p

¼ 1

�
2
p

:

Therefore, the claim that the pruning ratio of the
TAPER algorithm increases with the increase of p and the
correlation threshold � holds. Also, Rule 3 indicates that
the pruning ratio is independent when the number of
items is increased in data sets with Zipf distributions.tu

5.3 Dominance Zone Analysis

Here, we provide simple algebraic cost models for the
computational cost of the brute-force algorithm and the
TAPER algorithm. We assume that the total number of
objects in the data set is n.

The main cost of the brute-force algorithm is the cost of
computing nðn�1Þ

2 number of exact correlation coefficients.
Let Ccorr indicate the cost of computing the correlation
coefficient for an item pair. The cost model of the brute-
force algorithm is given as follows:

CostBrute ¼ Oðn2Þ � Ccorr: ð8Þ
The main cost of the TAPER algorithm consists of three
parts: the sorting cost denoted by Csort, the cost of
computing upper bounds denoted by Ctu, and the cost of
computing exact correlation coefficients denoted by Ctc. The
cost model of the TAPER algorithm is given as follows:

CostTAPER ¼ Csort þ Ctu þ Ctc
¼ OðnlognÞ þOðnÞ � Cupper þ ð1� �ð�ÞÞOðn2Þ
� Ccorr:

Where Cupper indicates the cost of computing the upper
bound for an item pair,

CostBrute � CostTAPER
¼ �ð�ÞOðn2Þ � Ccorr �OðnlognÞ �OðnÞ � Ctu:

With the increase of n, the computation savings can be
more dramatic for the TAPER algorithm, particularly for
data sets with nonuniform rank-support distributions,
such as Zipf distributions. Note that Ccorr is much larger
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than Cupper since there is a very expensive computation
cost of finding support values for item pairs when
computing exact correlation coefficients. Indeed, when
the number of objects is large, we cannot store the
support values of all item pairs in the memory, that is,
we may need to scan the whole data set once in order to
find the support value of every item pair.

6 DISCUSSION

In this section, we extend our algorithm for finding item
pairs with strong negative correlations and demonstrate
that the algorithmic ideas developed here can also be
applied to some other association measures, such as
uncentered Pearson’s correlation coefficients.

6.1 Negative Correlations

In this paper, our focus is to find all pairs of high positively
correlated items. However, in some application domains,
there may be interest in knowing pairs of high negatively
correlated items [27]. In the following, we present a lower
bound of the � correlation coefficient.

Lemma 9. Given a pair of items fA; Bg, without loss of
generality, let suppðAÞ � suppðBÞ. The lower bound,
lowerð�fA;BgÞ, of the � correlation coefficient is equal to

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�suppðAÞÞð1�suppðBÞÞ
p if suppðAÞ þ suppðBÞ � 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�suppðAÞÞð1�suppðBÞÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

suppðAÞsuppðBÞ
p if suppðAÞ þ suppðBÞ > 1

:

8>>>><
>>>>:

Proof. According to Equation 2, for an item pair fA; Bg

�fA;Bg ¼
suppðA;BÞ � suppðAÞsuppðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

suppðAÞsuppðBÞð1� suppðAÞÞð1� suppðBÞÞ
p :

When the support values suppðAÞ and suppðBÞ are
fixed, �fA;Bg is monotone decreasing with the decrease of
suppðA;BÞ. Let us consider the following two cases:

CASE 1: if suppðAÞ þ suppðBÞ � 1. The minimum
possible value of suppðA;BÞ is zero. Hence,

lowerð�fA;BgÞ

¼ � suppðAÞsuppðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞð1� suppðAÞÞð1� suppðBÞÞ

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� suppðAÞÞð1� suppðBÞÞ

p :

CASE 2: if suppðAÞ þ suppðBÞ > 1. The minimum possible
value of suppðA;BÞ is equal to suppðAÞ þ suppðBÞ � 1.
Hence,

lowerð�fA;BgÞ

¼ suppðAÞ þ suppðBÞ � 1� suppðAÞsuppðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞð1� suppðAÞÞð1� suppðBÞÞ

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� suppðAÞÞð1� suppðBÞÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p
:

From the above, this lemma holds. tu

We also present a conditional monotone property of the
lower bound of the � correlation coefficient.

Lemma 10. For a pair fA; Bg, let suppðAÞ > suppðBÞ. We have
the following two cases: 1) If suppðAÞ þ suppðBÞ � 1 and
suppðAÞ is fixed, the lowerð�fA;BgÞ is monotone increasing
with the decrease of suppðBÞ. 2) If suppðAÞ þ suppðBÞ > 1
and suppðBÞ is fixed, the lowerð�fA;BgÞ is monotone
increasing with the increase of suppðAÞ.

Proof. Let us consider the following two cases:

CASE 1: suppðAÞ þ suppðBÞ � 1 and suppðAÞ is fixed. By

Lemma 9, we have

lowerð�fA;BgÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� suppðAÞÞð1� suppðBÞÞ

p :

For any given two items B1 and B2 with suppðAÞ >
suppðB1Þ > suppðB2Þ, we need to prove lowerð�fA;B1gÞ
< lowerð�fA;B2gÞ. This claim can be proven as follows:

j lowerð�fA;B1gÞj
j lowerð�fA;B2gÞj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðB1Þ
suppðB2Þ

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðB2Þ
1� suppðB1Þ

s
> 1:

The above follows the given condition that suppðB1Þ >
suppðB2Þ and ð1� suppðB1ÞÞ < ð1� suppðB2ÞÞ. Since
lowerð�fA;BgÞ < 0, we have

lowerð�fA;B1gÞ < lowerð�fA;B2gÞ:

CASE 2: suppðAÞ þ suppðBÞ > 1 and suppðBÞ is fixed. By
Lemma 9, we have

lowerð�fA;BgÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� suppðAÞÞð1� suppðBÞÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p :

For any given two items A1 and A2 with suppðA1Þ >
suppðA2Þ > suppðBÞ, we need to prove lowerð�fA1;BgÞ
> lowerð�fA2;BgÞ. This claim can be proven as follows:

j lowerð�fA1;BgÞj
j lowerð�fA2;BgÞj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðA2Þ
suppðA1Þ

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� suppðA1Þ
1� suppðA2Þ

s
< 1:

The above follows the conditions that suppðA1Þ >
suppðA2Þ and ð1� suppðA1ÞÞ < ð1� suppðA2ÞÞ. S ince
lowerð�fA;BgÞ < 0, we get lowerð�fA1;BgÞ > lowerð�fA2;BgÞ.tu
Based on Lemmas 9 and 10, we can extend the TAPER

algorithm to find all pairs of high negatively correlated
items as well. Note that Pearson’s correlation coefficient has
some limitations when capturing negative correlation
between items with low support. However, in this paper,
our focus is on the computational perspective of Pearson’s
correlation coefficient.

6.2 An Extension to Uncentered Pearson’s
Correlation Coefficient

Here, we present how to extend the algorithmic ideas
developed in this paper for uncentered Pearson’s correla-
tion coefficient, also known as the cosine measure [23].
Using the support notation, uncentered Pearson’s correla-
tion coefficient is defined as the following equation:

ðfA;BgÞ ¼ suppðfA;BgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p : ð9Þ
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Indeed, similar to the � correlation coefficient, uncentered
Pearson’s correlation coefficient has an upper bound and
this upper bound has a conditional monotone property as
shown in the following.

Lemma 11. Given an item pair fA;Bg, the support value

suppðAÞ for item A, and the support value suppðBÞ for

item B, without loss of generality, let suppðAÞ � suppðBÞ.
The upper bound upperðuncentered ðfA;BgÞÞ of the

uncentered Pearson’s correlation coefficient for an item pair

fA;Bg can be obtained when suppðA; BÞ ¼ suppðBÞ and

upperðuncenteredðfA;BgÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s
:

Proof. According to (9), for an item pair {A, B},

uncenteredðfA;BgÞ ¼ suppðfA;BgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðAÞsuppðBÞ

p :

By the given condition suppðAÞ � suppðBÞ and the

antimonotone property of the support measure, the

upper bound upperðuncenteredðfA;BgÞÞ of uncentered

Pearson’s correlation coefficient can be obtained when

suppðA;BÞ ¼ suppðBÞ. Hence,

upperðuncenteredðfA;BgÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s
:

tu

Lemma 12. For a pair of items fA; Bg, if we let suppðAÞ >
suppðBÞ and fix item A, the upper bound of uncentered

Pearson’s correlation coefficient upperðuncenteredðfA;BgÞ

for item pair fA; Bg is monotone decreasing with the decrease

of the support value of item B.

Proof. Since

upperðuncenteredðfA;BgÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðBÞ
suppðAÞ

s
;

if item A is fixed, the upperðuncenteredðfA;BgÞÞ becomes
one variable function with suppðBÞ as the variable. It can
be seen that this function is monotone decreasing with
the decrease of suppðBÞ. tu
Lemma 11 and Lemma 12 are analogous to Lemma 1 and

Lemma 2, which form the basis of the TAPER algorithm.
Therefore, the algorithmic ideas in the TAPER algorithm
can also be applied to efficiently compute uncentered
Pearson’s correlation coefficient.

7 EXPERIMENTAL RESULTS

In this section, we present the results of experiments to
evaluate the performance of the TAPER algorithm.
Specifically, we demonstrate

1. a performance comparison between TAPER 1D and
a brute-force approach,

2. the effectiveness of the proposed algebraic cost
model,

3. the scalability of the TAPER algorithm,
4. a performance evaluation of the choices between 1-D

and 2-D monotone properties in the coarse-filter step
of TAPER, and

5. the extension of algorithmic ideas developed in
TAPER for computing negative correlation as well as
the uncentered Pearson’s correlation coefficient.

7.1 The Experimental Setup

Our experiments were performed on both real-life and
synthetic data sets. Synthetic data sets were generated such
that the rank-support distributions follow Zipf’s law, as
shown in Fig. 11. Note that, in log-log scales, the rank-
support plot of a Zipf distribution will be a straight line
with a slope equal to the exponent P in the Zipf
distribution. A summary of the parameter settings used to
generate the synthetic data sets is presented in Table 3,
where T is the number of transactions, N is the number of
items, C is the constant of a generalized Zipf distribution,
and P is the exponent of a generalized Zipf distribution.

The real-life data sets were obtained from several
different application domains. Table 4 shows some char-
acteristics of these data sets. The first five data sets in the
table, i.e., pumsb, pumsb*, chess, mushroom, and
connect, are often used as benchmarks for evaluating
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Fig. 11. The plot of the Zipf rank-support distributions of synthetic data

sets in log-log scale.

TABLE 3
Parameters of the Synthetic Data Sets

TABLE 4
Real-Life Data Set Characteristics



the performance of association rule algorithms on dense

data sets. The pumsb and pumsb* data sets correspond to

binarized versions of a census data set from IBM.1 The

difference between them is that pumsb* does not contain

items with support greater than 80 percent. The chess,

mushroom, and connect data sets are benchmark data sets

from the UCI Machine Learning Repository.2 The LA1 data

set is part of the TREC-5 collection (http:trec.nist.gov) and

contains news articles from the Los Angeles Times. Finally,

retail is a masked data set obtained from a large mail-

order company.
Experimental Platform. We implemented TAPER using

C++ and all experiments were performed on a Sun Ultra 10

workstation with a 440 MHz CPU and 128 Mbytes of

memory running the SunOS 5.7 operating system.

7.2 TAPER 1-D versus the Brute-Force Approach
In this section, we present a performance comparison
between TAPER 1D and a brute-force approach using
several benchmark data sets from IBM, the UCI Machine
Learning Repository, and some other sources, such as retail
stores. The implementation of the brute-force approach is
similar to that of TAPER 1D except that the filtering
mechanism implemented in TAPER 1D is not included in
the brute-force approach.

Fig. 12 shows the relative computation performance of
TAPER 1-D and the brute-force approach on the pumsb,
pumsb*, and retail data sets. As can be seen, the
performance of the brute-force approach does not change
much for any of the three data sets. However, the execution
time of TAPER 1D can be an order of magnitude faster than
the brute-force approach even if the minimum correlation
threshold is low. For instance, as shown in Fig. 12a, the
execution time of TAPER 1D on the pumsb data set is one
order of magnitude less than that of the brute-force
approach at the correlation threshold 0.4. Also, when the
minimum correlation threshold increases, the execution
time of TAPER 1D dramatically decreases on the pumsb
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Fig. 12. TAPER 1D versus a brute-force approach on the (a) pumbsb, (b) pumbsb*, and (c) retail data sets.

Fig. 13. The pruning effect of TAPER on (a) pumsb, pumsb*, and retail data sets.

Fig. 14. The pruning effect of TAPER on UCI (a) connect, (b) mushroom, and (c) chess data sets.

1. These data sets were obtained from IBM Almaden at http://
www.almaden.ibm.com/cs/quest/demos.html (June 2005).

2. These data sets and data content descriptions are available at http://
www.ics.uci.edu/~mlearn/MLRepository.html (June 2005).



data set. Similar computation effects can also be observed
on the pumsb* and retail data sets, although the
computation savings on the retail data set is not as
significant as it is on the other two data sets.

To better understand the above computation effects, we
also present the pruning ratio of TAPER (both TAPER 1D
and TAPER 2D) on these data sets. As illustrated in Fig. 13,
the pruning ratio of TAPER on the retail data set is much
smaller than that on the pumsb and pumsb* data sets. This
smaller pruning ratio explains why the computation
savings on retail is less than that on the other two data
sets. Also, Fig. 14 shows the pruning ratio of TAPER on the
UCI connect, mushroom, and chess data sets. The
pruning ratios achieved on these data sets are comparable
with the pruning ratio we obtained on the pumsb data set.
This indicates that TAPER also achieves much better
computation performance than the brute-force approach
on UCI benchmark data sets.

7.3 The Effect of Correlation Thresholds
In this section, we present the effect of correlation thresholds
on the computation savings of TAPER (both TAPER 1D and
TAPER 2D). Recall that our algebraic cost model shows that
the pruning ratio of TAPER increases with increases of the
correlation thresholds for data sets with linear and Zipf-like
distributions. Fig. 13 shows such an increasing trend of the
pruning ratio on thepumsb,pumsb*, andretaildata sets as
correlation thresholds increase. Also, Fig. 14 shows a similar
increasing trend of the pruning ratio on the UCI benchmark
datasets including mushroom, chess, and connect.

One common feature of all the above data sets is the
skewed nature of their rank-support distributions. As a
result, these experimental results still exhibit a trend similar
to that of the proposed algebraic cost model, although the
rank-support distributions of these data sets do not follow
Zipf’s law exactly.

7.4 The Effect of the Slope m
Recall that the algebraic cost model for data sets with a
linear rank-support distribution provides rules which
indicate that the pruning ratio of TAPER (both TAPER 1D
and TAPER 2D) increases with the decrease of the ratio a=m
and the pruning ratio increases with the increase of the
correlation threshold. In this subsection, we empirically
evaluate the effect of the ratio a=m on the performance of
the TAPER algorithm for data sets with a linear rank-
support distribution.

First, we generated three groups of data from the retail
data set by sorting all the items in the data set in non-
decreasing order and then partitioning them into four
groups. Each of the first three groups contains 4,700 items
and the last group contains 362 items. The first three groups
are the group data sets shown in Table 5. Fig. 15a shows the
plot of the rank-support distribution of the retail data set
and Figs. 15b, 15c, and 15d show the plots of the rank-
support distributions of three groups of data generated
from the retail data set. As can be seen, the rank-support
distributions of the three groups approximately follow a

linear distribution. Table 5 lists some of the characteristics
of these data-set groups. Each group has the same number
of items and transactions but a different a=m ratio. Group I
has the highest a=m ratio and Group III has the lowest a=m
ratio. Since the major difference among these three data-set
groups is the ratio a=m, we can apply these data sets to
show the impact of the a=m on the performance of the
TAPER algorithm. Fig. 16 shows the pruning ratio of the
TAPER algorithm on the data set with linear rank-support
distributions. As expected, the pruning ratio increases as
the a=m ratio decreases at different correlation thresholds.
The pruning ratio also increases as correlation thresholds
are increased. These experimental results confirm the trend
exhibited by the cost model as shown in Lemma 7.

7.5 Effect of the Exponent p
In this subsection, we examine the effect of the exponent P
on the performance of TAPER (both TAPER 1D and
TAPER 2D) for data sets with a generalized Zipf rank-
support distribution. We used the synthetic data sets
presented in Table 3 for this experiment. All the synthetic
data sets in the table have the same number of transactions
and items. The rank-support distributions of these data sets
follow Zipf’s law but with different exponent P . Fig. 17
displays the pruning ratio of the TAPER algorithm on data
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TABLE 5
Groups of Items for the Retail Data Set

Fig. 15. The rank-support distributions of the retail data set and its three
item groups with a linear regression fitting line (trendline). (a) Retail data
set. (b) Group I. (c) Group II. (d) Group III.

Fig. 16. Pruning ratios with the decrease of a/m for data sets with linear
rank-support distribution.



sets with different exponent P . Again, the pruning ratios of
the TAPER algorithm increase with the increase of the
exponent P at different correlation thresholds. Also, we can
observe that the pruning ratios of the TAPER algorithm
increase with the increase of the correlation thresholds.
Recall that the proposed algebraic cost model for data sets
with a generalized Zipf distributions provides two rules
which confirm the above two observations.

7.6 The Scalability of TAPER
In this subsection, we show the scalability of the TAPER
algorithm with respect to database dimensions. Fig. 18a
showstheplotof therank-supportdistributionoftheLA1data
set in log-log scale. Although this plot does not follow Zipf’s
law exactly, it does show Zipf-like behavior. In other words,
the LA1 data set has an approximate Zipf-like distribution
with the exponent P ¼ 1:406. In this experiment, we gener-
ated three data sets, with 12,000, 18,000, and 24,000 items,

respectively, from the LA1 data set by random sampling on
the item set. Due to the random sampling, the three data sets
can have almost the same rank-support distributions as the
LA1 data set. As a result, we used these three generated data
sets and the LA1 data set for our scale-up experiments.

For data sets with Zipf-like rank-support distributions,
Fig. 18b shows the effect of database dimensions on the
performance of the TAPER algorithm. As can be seen, the
pruning ratios of the TAPER algorithm show almost no
change or slightly increase at different correlation thresh-
olds. This indicates that the pruning ratios of the TAPER
algorithm can be maintained when the number of items is
increased. Recall that the proposed algebraic cost model for
data sets with a generalized Zipf distribution exhibits a
similar trend as the result of this experiment.

Finally, in Fig. 18c, we show that the execution time for
our scale-up experiments increases linearly with the
increase of the number of items at several different
minimum correlation thresholds.

7.7 Evaluation of the Choices Between 1D and
2D Monotone Properties

Here, we present a performance evaluation of the choices
between 1D and 2D monotone properties in the coarse-filter
step of the TAPER algorithm. Fig. 19 shows the execution
time of TAPER 1D and TAPER 2D on the UCI connect,
mushroom, and chess data sets. In the figure, we can see
that the execution time of TAPER 2D can be 10-15 percent
less than that of TAPER 1D for the various correlation
thresholds. This computation savings is due to the fact that
TAPER 2D reduces the number of upper bounds that need
to be computed as demonstrated by Lemma 4.
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Fig. 18. (a) The plot of the rank-support distribution of the LA1 data set in log-log scale. (b) The effect of database dimensions on the pruning ratio for
data sets with Zipf-like rank-support distributions. (c) The effect of database dimensions on the execution time for data sets with Zipf-like rank-
support distributions.

Fig. 19. TAPER 1D versus TAPER 2D on the pumsb, pumsb*, and retail data sets.

Fig. 17. The increase of pruning ratios with the increase of p for data
sets with Zipf-like distribution.



7.8 The Extension of Algorithmic Ideas Developed
in TAPER

In this subsection, we present experimental results to show
the effectiveness of extending algorithmic ideas developed
in the TAPER algorithm for computing the cosine measure
as well as negative correlation coefficients. Fig. 20 shows the
pruning ratios for computing the cosine measure (uncen-
tered Pearson’s correlation coefficient) on the UCI con-

nect, mushroom, and chess data sets. Once again, the
pruning ratios achieved on these data sets are quite
significant. This indicates that the algorithmic ideas
developed in TAPER can also achieve good computation
performance for computing the cosine measure. Finally,
Fig. 21 shows the pruning ratios for computing negative
correlation on the UCI connect, mushroom, and chess

data sets. The pruning ratios achieved in this case are even
better than those for computing positive correlation.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we designed an efficient two-step filter-and-
refine algorithm, called TAPER, to search all the item pairs
with correlations above a user-specified minimum correla-
tion threshold. TAPER uses an upper bound of the
� correlation coefficient, which shows 2D monotonic proper-
ties. In addition, we provided algebraic cost models to
measure the computation performance of the TAPER algo-
rithms. As demonstrated by our experimental results on both
real and synthetic data sets, the pruning ratio of TAPER can
be maintained or even increases with the increase of database
dimensions, and the performance of TAPER confirms the
proposed algebraic cost model. Finally, we showed that the
algorithmic ideas developed in the TAPER algorithm can be
extended to efficiently compute uncentered Pearson’s corre-
lation coefficients as well as negative correlation.

There are several potential directions for future research.
First, we are interested in studying how to specify
statistically meaningful correlation thresholds. Second, we
plan to efficiently compute the top-k correlated item pairs.
Finally, we will investigate an efficient solution for
correlation detection using Bayesian and Markov models.
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