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Abstract

Advances in geographical information systems (GIS) and
supporting data collection technology has resulted in the
rapid collection of a huge amount of spatial data.
However, known data mining techniques are unable to
fully extract knowledge from high dimensional data in
large spatial databases, while data analysis in typical
knowledge discovery software is limited to non-spatial
data. Therefore, the aim of the software system for spatial
data analysis and modeling (SDAM) presented in this
article was to provide flexible machine learning tools for
supporting an interactive knowledge discovery process in
large centralized or distributed spatial databases. SDAM
offers an integrated tool for rapid software development
for data analysis professionals as well as systematic
experimentation by spatial domain experts without prior
training in machine learning or statistics. When the data
are physically dispersed over multiple geographic
locations, the SDAM system allows data analysis and
modeling operations to be conducted at distributed sites
by exchanging control and knowledge rather than raw
data through slow network connections.

1. Introduction

In recent years, the contemporary data mining
community has developed a plethora of algorithms and
methods used for different tasks in knowledge discovery
within large databases. Yet few are publicly available, and
a researcher who wishes to compare a new algorithm with
existing algorithms, or analyze real data, finds the task
daunting. Furthermore, as algorithms become more
complex, and as hybrid algorithms combining several
approaches are suggested, the task of implementing such

algorithms from scratch becomes increasingly time
consuming.

It is also known that there is no universally best data
mining algorithm across all application domains. To
increase the robustness of data mining systems, one can
use an integrated data mining architecture to apply
different kinds of algorithms and/or hybrid methods to a
given data set. The most common are toolbox
architectures where several algorithms are collected into a
package, from which the most suitable algorithm for the
target problem is somehow chosen. An example is the
Machine Learning Library (MLC++) [1], which is
designed to provide researchers with a wide variety of
tools that can accelerate algorithm development, increase
software reliability, provide comparisons, and display
information visually. This is achieved through a library of
C++ classes and functions implementing the most
common algorithms. In addition, the array of tools
provided by MLC++ gives the user a good starting basis
for implementing new algorithms. Another example,
Clementine [2], is an integrated tool that implements data
mining algorithms of two knowledge discovery
paradigms, namely rule induction and neural networks. It
is designed to enable non-specialists to extract valuable
information from their historical data. With respect to rule
induction, Clementine includes two decision-tree building
algorithms. One is based on ID3 [3] extended to predict
continuous goal attributes so the algorithm can perform
regression as well as classification tasks. The another one
is the well-known C4.5 algorithm [4]. With respect to
neural networks, Clementine includes the back-
propagation algorithm [5], extended with a “pruning”
method mainly for classification tasks and a Kohonen
network [6] for clustering tasks.

Advances in spatial databases have allowed for the
collection of huge amounts of data in various GIS
applications ranging from remote sensing and satellite



telemetry systems, to computer cartography and
environmental planning. A subfield of data mining that
deals with the extraction of implicit knowledge and
spatial relationships not explicitly stored in spatial
databases is called spatial data mining. However, it
appears that no GIS system with significant spatial data
mining functionality is currently available. There has been
some spatial data mining software development, but most
systems are primarily based on minor modifications of the
previous non-spatial data mining systems. The GeoMiner
system [7] is a spatial extension of the relational data
mining system DBMiner [8], which has been developed
for interactive mining of multiple-level knowledge in
large relational databases and data warehouses. The
DBMiner system implements a wide spectrum of data
mining functions, including characterization, comparison,
association, classification, prediction and clustering. By
incorporating several interesting data mining techniques,
including OLAP (On-line Analytical Processing) and
attribute-oriented induction, the system provides a user-
friendly, interactive data mining environment with good
performance. GeoMiner uses the SAND (Spatial and
Nonspatial Data) architecture for the modeling of spatial
databases and includes the spatial data cube construction
module, spatial on-line analytical processing (OLAP)
module, and spatial data mining modules. Another effort
in spatial data mining software is a S-PLUS interface for
ArcView GIS [9]. This software package provides tools
for analyzing specific classes of spatial data (e.g.
geostatistical data, lattice data, spatial point patterns).
However, since S-PLUS is an interpreted language,
functions written in this package seem to be much slower
than their equivalents implemented in C and C++, thus
limiting the practical applications to fairly small
databases.

In addition, different data mining algorithms for spatial
data are implemented in different programming
environments. To allow end-users to benefit from
multiple spatial data mining approaches, there is a need
for the development of a software system, which will
integrate all implemented methods in a single
environment and thus reduce the user’s efforts in planning
their management actions.

Precision agriculture is one of the applications which
may prosper from novel spatial data mining techniques
[10]. Agricultural producers are collecting large amounts
of spatial data using global positioning systems to geo-
reference sensor readings and sampling locations. It is
hoped that these data will result in improved within-field
management and lead to greater economic returns and
environmental stewardship. However, as it is known,
standard data mining methods are insufficient for
precision agriculture, because of the spatial dimension of
data. Therefore, for precision agriculture and other
applications mentioned above, spatial data mining

techniques are necessary in order to successfully perform
data analysis and modeling.

Furthermore, precision agriculture data are inherently
distributed at multiple farms and cannot be localized on
any one machine for a variety of practical reasons
including physically dispersed data sets over many
different geographic locations, security services and
competitive reasons. With the growth of networks this is
often seen in other domains. In such situations, it is
advantageous to have a distributed data mining system
that can learn from large databases located at multiple
data sites. The JAM system [11], intended for learning
from such databases, is a distributed, scalable and
portable agent-based data mining software package that
employs a general approach to scaling data mining
applications. JAM provides a set of learning programs
that compute models from data stored locally at a site, and
a set of methods for combining multiple models learned at
different sites. However, the JAM software system
doesn’t provide any tools for spatial data analysis.

Therefore, our software system attempts to support
flexible spatial data mining in centralized or distributed
scenarios. In addition to providing an integrated tool for
more systematic experimentation to data mining
professionals, our project aims to offer an easy-to-use
data mining software system for non-technical people,
usually experts in their fields but with little knowledge of
data analysis and intelligent data mining techniques.

Our main goal was to construct a test environment for
both standard and spatial data mining algorithms, that
could quickly generate performance statistics (e.g.
prediction accuracy), compare various algorithms on
multiple data sets, implement hybrid algorithms (e.g.
boosting, non-linear regression trees) and graphically
display intermediate results, learned structure and final
prediction results. To efficiently achieve this goal, we
have developed a SDAM (Spatial Data Analysis and
Modeling) software system that executes programs
developed in different environments (C, C++, MATLAB)
through a unified control and a simple Graphical User
Interface (GUI).

A detailed description of software organization and
architecture is presented in Section 2. Software
functionalities are described in Section 3. A summary and
discussion of our on-going research is given in Section 4.

2. Software Organization and Architecture

2.1. Software Organization

The organization of the SDAM software system, shown in
Figure 1, represents an integration of data mining
algorithms in different programming environments under
a unique GUI.
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Figure 2. The organization of the distributed SDAM software system

In this scenario, each distributed site has its own local
data, the SDAM package, file transfer and remote
connection software. The user is able to perform spatial
data mining operations at distributed data sites from the
central GUI machine to build local models without
moving raw data through slow network connections. The
central GUI allows transferring learned models among
sites in order to apply them at other locations or to
integrate them to achieve better global prediction
accuracy. In general, there are several ways for combining
predictions by exchanging models. In first approach, each
user i, i = 1,…N (Figure 2) uses some learning algorithm
on one or more local spatial databases DBi, to produce a
local classifier Ci. Now, all local classifiers can be sent to
a central repository, where these classifiers can be
combined into a new global classifier GC using majority
or weighted majority principle. This classifier GC is now
sent to all the individual users to use it as a possible
method for improving local classifiers. Another
possibility is that each user i sends to every other user the
local classifier Ci. Now, these classifiers Ci can be
combined at local sites using the same methods as before.

More complex methods for combining classifiers
include boosting over very large distributed spatial data
sets. One approach is for each boosting iteration to select
a small random sample of data at each distributed site.
When it is possible we transfer these data sets to a central
repository site to build a global classifier. However, this is
not possible or desirable for some applications and is
inefficient in general. For real distributed learning over
many sites, more sophisticated methods for exchanging
boosting parameters among dispersed sites is required
[15], and this is one of our current research focuses.

2.2. Software Architecture

Due to the complex nature of spatial data
analysis and modeling, the implemented algorithms are
subdivided to six process steps: data generation and
manipulation, data inspection, data preprocessing, data
partitioning, modeling and model integration (Figure 3).
Since not all spatial data analysis steps are necessary in
the spatial data mining process, the data flow arrows in
Figure 3 show which preprocessing steps can be skipped.
The Figure also outlines how the modules are connected
among themselves, how they use the original data, and
how they manipulate the data with intermediate results
and constructed models. An important issue in our
software design is an internal file organization to
document the results of SDAM processes. Two types of
process are documented: pre-modeling and model
construction.  To save pre-modeling information, the
following files are saved:
1) An operation history file, which contains the
information about the data file from which the resulting
file is constructed, the performed operation, the name
with its parameters, and also the eventual resulting
parameters of the performed operation.
2) The resulting file containing the data generated by the
performed operation

To document the model construction process, two files
are saved for every model:
1) A model parameters file with sufficient information
for saving or transforming the model to a different site.
2)  A model information file contains all information
necessary to describe this model to the user.
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3.1. Data Generation and Manipulation

Loading data from existing real-life spatial databases
into the SDAM software requires specifying the database
and a list of attributes. In addition, SDAM includes a
recently developed spatial data simulator which generates
driving attribute layers with spatial properties determined
by the user and target layers according to functions
specified by the user [16]. The data generator can easily
simulate the spatial characteristics of real-life spatial
datasets as shown in Figure 4 where an attribute with
nitrogen-like statistics from a wheat-field has been
generated and its influence on yield variability has been
simulated. Thus, a user can evaluate and experiment with
SDAM using simulated data sets of desired complexity
and size.

The data manipulation module can partition available
data randomly into spatially disjoint training, validation
and test subsets instead of the random (therefore spatially
random) splits common in nonspatial data mining
problems (Figure 5). This avoids overestimating true
generalization properties of a predictor in an environment
where attributes are often highly spatially correlated [17].

Figure 5. Splitting the data into training and
test subregions

After the data are loaded the user can apply available
algorithms according to a default sequence suggested on
the GUI screen or in a user controlled sequence.

3.2. Data Inspection

This module includes several methods for providing
basic and spatial statistics on a region and its attributes.
The basic statistical information includes first order
parameters (mean, variation, etc.) and standard measures
like histograms, scatterplots between two attributes, QQ
plots (for comparing sample distributions with a normal
distribution, as well as for comparing two sample
distributions), and correlation among attributes. All

implemented operations use a graphical interface for
displaying results in form of charts, plots and tables. The
spatial statistical information includes the plot of the
region, and the spatial auto-correlation between data
points in attribute space shown through 2-D and 3-D
perspective figures as well as through different types of
variograms and correlograms [18].

Since our primary concern is related to the spatial
characteristics of the region, we provide 2-D and 3-D
plots, which visually show how the attributes change
through space (Figure 6). Three-dimensional perspective
plots including contour lines can be rotated, panned and
zoomed in order to observe all relevant surface
characteristics of the region.

Figure 6. 3D perspective of feature layers

The variograms and correlograms are used to
characterize the spatial relationship between data points
for specified attribute. In variograms, a measure of the
dissimilarity between data points for distance h apart is
obtained. This is repeated for all pairs of data points that
are h distance apart and the average squared difference is
obtained. This similarity measure is called g(h). These
values are plotted on an x-y plot with the x axis
representing the distance h, and the y axis representing
g(h) (Figure 7). The software system first plots the
estimated variograms obtained from the experimental
data, and then fits the theoretic variograms to the
estimated ones (Figure 7). The correlograms give the
same information as variograms, except in correlograms,
a measure of similarity between data points is considered.

3.3. Data Preprocessing

Spatial data sets often contain large amounts of data
arranged in multiple layers. These data may contain errors
and may not be collected at a common set of coordinates.



Therefore, various data preprocessing steps are often
necessary to prepare data for further modeling steps. This
module includes the functions shown in Figure 8, which
are described in the rest of this section.

Figure 7. Fitting theoretical variograms to
experimental data

Data Cleaning and Filtering. Due to the high
possibility of measurement noise present in collected data
sets, there is a need for data cleaning. Data cleaning
consists of removing duplicate data points, and removing
value outliers, as well spatial outliers. Data can also be
filtered or smoothed by applying a median filter with a
window size specified by the user.

Figure 8. Data Preprocessing functions

Data Interpolation. In many real life spatial domain
applications, the resolution (data points per area) will vary
among data layers and the data will not be collected at a
common set of spatial locations.  Therefore, it is

necessary to apply an interpolation procedure to the data
to change data resolution and to compute values for a
common set of locations. Deterministic interpolation
techniques such as inverse distance [19] and triangulation
[20] can be used but they do not take into account a model
of the spatial process, or variograms. Interpolation
techniques appropriate for spatial data such as kriging
[19] and interpolation using the minimum curvature
method [21], are often preferable and are provided in the
software system in addition to the regular interpolation
techniques mentioned above.

Data Normalization. The SDAM software system
supports two normalization methods: the transformation
of data to a normal distribution and the scaling of data to a
specified range.

Data Discretization. This step is necessary in some
modeling techniques (association rules, decision tree
learning and all classification problems), and includes
different attribute and target splitting criteria.

Generating New Attributes. Users can generate new
attributes by applying supported operators to a set of
existing attributes.

Feature Selection. In domains with a large number of
attributes this step is often beneficial for reducing
attribute space by removing irrelevant attributes. Several
selection techniques (Forward Selection, Backward
Elimination, Branch and Bound) and various criteria
(inter-class and probabilistic selection criteria) are
supported in order to identify a relevant attribute subset.

Feature Extraction. In contrast to feature selection
where a decision is target-based, variance-based
dimensionality reduction through feature extraction is also
supported. Here, linear Principal Components Analysis
[22] and non-linear dimensionality reduction using 4-
layer feedforward neural networks (NN) [23] are
employed. The transformed data can be plotted in d-
dimensional space  (d = 2, 3) and resulting plots can be
rotated, panned and zoomed to better view possible data
groupings as shown in Figure 9.

3.4. Data Partitioning

Partitioning allows users to split the data set into more
homogenous data segments, thus providing better
modeling results. In a majority of spatial data mining
problems, there are subregions wherein data points have
more similar characteristics and more homogenous
distributions than in comparison to data points outside
these regions. In order to find these regions, SDAM
supports data partitioning according to landscape
attributes or a target value as well as using a quad tree to
split a spatial region along its x and y dimensions into 4
subregions [24] as shown in Figure 10. It also supports k-
means-based and distribution-based clustering designed
for spatial databases [25] and the use of entropy and
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information gain to partition attribute space by means of
regression trees.

Figure 9. GUI to data preprocessing operation
PCA

Figure 10. Splitting the region using a quad tree

SDAM also supports our recently proposed data
partitioning methods for identifying more homogeneous
sub-fields based on merging multiple fields to identify a
set of spatial clusters using parameters that influence a
target attribute but not the target attribute itself. This is
followed by fitting target prediction models to each
cluster in a training portion of the merged field data and a
similarity-based identification of the most appropriate
regression model for each test point [26]. The another
advanced data partitioning approach in SDAM is based on
developing a sequence of local regressors each having a
good fit on a particular training data subset, constructing
distribution models for identified subsets, and using these
to decide which regressor is most appropriate for each test
data point [27].  The system also implements our iterative

data partitioning scheme based on an analysis of spatially
filtered errors of multiple local regressors and the use of
statistical tests for determining if further partitioning is
needed for achieving homogeneous regions [28].

3.5. Modeling

This module is used to build models which describe
relationships between attributes and target values. For
novice users, an automatic configuration of the
parameters used in the data mining algorithms is
supported. The most appropriate parameters are suggested
to the user, according to the data sets and the selected
model. More experienced data mining experts may
change the proposed configuration parameters and
experiment with miscellaneous algorithm settings. It is
important to emphasize that the application of prediction
methods to spatial data sets requires different partitioning
schemes than simple random selection like in standard
data mining techniques. Therefore, the learning
algorithms use spatial block validation sets during the
training process [17]. Modeling problems are divided into
classification and regression, as shown in Figure 11.

Figure 11. Modeling algorithms organization

The user can select from multiple classification and
regression procedures (Fig. 11). For validity verification,
the user can test learned prediction models on unseen
(test) regions. All prediction results are graphically
displayed, as well as the neural network (NN) learning
process and the learned structures of NN’s and regression
trees. An example of the NN learning process and NN
learned architecture is shown in the Figure 12.

3.6. Models Integration

Given different prediction models, several methods for
improving their prediction accuracy are implemented
through different integration and combining schemes. The
most common integration methods including both
majority and weighted majority are available in the
SDAM software system.
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Figure 12. The GUI of the SDAM process for Neural Networks learning

The more complex bagging method [29] is improved
using spatial block sampling [17]. The boosting algorithm
[30] is also modified in order to successfully deal with
unstable driving attributes which are common in spatial
domains [31].

4. Conclusions and Future Work

This paper introduces a distributed software system for
spatial data analysis and modeling in an attempt at
providing an integrated software package to researchers
and users both in data mining and spatial domain
applications. From the perspective of data analysis
professionals, numerous spatial data mining algorithms
and extensions of non-spatial algorithms are supported
under a unified control and a flexible user interface. We
have mentioned several problems researchers in data
mining currently face when analyzing spatial data, and we
believe that the SDAM software system can help address
these. On the other side, SDAM methods for spatial data
analysis and modeling are available to domain experts for
real-life spatial data analysis needed to understand the
impact and importance of driving attributes and to predict
appropriate management actions.

The most important advantage of the SDAM software
system is that it preserves the benefits of an easy to design
and use Windows-based Graphical User Interface (GUI),
quick programming in MATLAB and fast execution of C
and C++ compiled code as appropriate for data mining
purposes. Support for the remote control of a centralized
SDAM software system through LAN and World Wide
Web is useful when data are located at a distant location
(e.g. a farm in precision agriculture), while a distributed
SDAM allows knowledge integration from data located at
multiple sites.

The SDAM software system provides an open
interface that is easily extendible to include additional
data mining algorithms. Hence, more data mining
functionalities will be incrementally added into the
system according to our research and development plan.
Furthermore, more advanced distributed aspects of the
SDAM software system will be further developed.
Namely, simultaneous multi-user connections and real
time knowledge exchange among learning models in a
distributed system are some of our important coming
tasks.

Our current experimental and development work on
the SDAM system addresses the enhancement of the
power and efficiency of the data mining algorithms on
very large databases, the discovery of more sophisticated



algorithms for spatial data modeling, and the development
of effective and efficient learning algorithms for
distributed environments. Nevertheless, we believe that
the preliminary SDAM software system described in this
article could already be of use to users ranging from data
mining professionals and spatial data experts to students
in both fields.
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