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Abstract 

 
In this paper, we propose a novel technique for the ef-

ficient prediction of multiple continuous target variables 
from high-dimensional and heterogeneous data sets using 
a hierarchical clustering approach. The proposed ap-
proach consists of three phases applied recursively: 
partitioning, localization and prediction. In the 
partitioning step, similar target variables are grouped 
together by a clustering algorithm. In the localization 
step, a classification model is used to predict which group 
of target variables is of particular interest. If the 
identified group of target variables still contains a large 
number of target variables, the partitioning and 
localization steps are repeated recursively and the 
identified group is further split into subgroups with more 
similar target variables. When the number of target 
variables per identified subgroup is sufficiently small, the 
third step predicts target variables using localized predic-
tion models built from only those data records that 
correspond to the particular subgroup. Experiments 
performed on the problem of damage prediction in 
complex mechanical structures indicate that our 
proposed hierarchical approach is computationally more 
efficient and more accurate than straightforward methods 
of predicting each target variable individually or 
simultaneously using global prediction models.  
1. Introduction 
 

Many large-scale data analysis problems very often 
involve an investigation of high dimensional and hetero-
geneous databases, where different prediction models are 
responsible for different regions [7, 9]. In addition, these 
large data sets sometimes have extremely large numbers 
of target (output) variables (order of thousands or hun-
dred of thousands of target variables) that need to be pre-
dicted and the task of predicting all of them may seem 
daunting. For instance, in a manufacturing process we 
may want to predict various quality aspects of a product 
from the parameter settings used in the manufacturing. In 

financial markets, given econometric variables as predic-
tors, the goal may be to predict changes in the valuations 
of the stocks in large number of industry groups [2]. 
These scenarios are often characterized with the presence 
of strong correlation among target variables, and incorpo-
rating this knowledge into learning process may produce 
more efficient and accurate prediction models. Grouping 
highly correlated target variables naturally fits into the 
general problem of learning multiple target variables, 
which can be described through three prediction levels: 1) 
is there any change among target variables; 2) which tar-
get variables have been changed; and 3) how much these 
target variables have changed. 

In this paper, we propose a novel technique for effi-
cient prediction of multiple continuous target variables 
from high-dimensional and heterogeneous data sets using 
a hierarchical clustering approach. Instead of predicting 
target variables individually or simultaneously using 
global prediction models, which are built considering all 
data records, the proposed approach consists of three 
phases applied recursively: (1) partitioning of data set (2) 
localization of groups of interesting target variables, and 
(3) the prediction of target variables. In the partitioning 
step, similar data records are first grouped using cluster-
ing algorithm and then corresponding groups of similar 
target variables are identified. In the localization step, a 
classification model is used to predict which group of the 
target variables needs to be further investigated. If the 
identified group of target variables still contains large 
number of target variables, then the partitioning and lo-
calization steps are repeated recursively and the identified 
group is further split into subgroups with more similar 
target variables. When the number of target variables per 
identified subgroup is sufficiently small, the prediction 
phase takes place and the target variables are predicted 
using localized prediction models that are built not using 
all data records from entire data set, but using only those 
data records that correspond to the particular subgroup. 

Significant research work has been done in the area of 
predicting multiple target variables. Some of these ap-
proaches include multitask learning [3], learning to learn 



[1], curds and whey algorithm [2], clustering learning 
tasks [15] and learning internal representations [6]. A key 
feature that distinguishes our work from these existing 
algorithms is that our approach learns a very large num-
ber of target variables by exploring problem-specific in-
terrelationships among them. In addition, it decomposes 
the complex problem of predicting multiple target vari-
ables from the global data set into many simpler ones 
where particular target variables are predicted using only 
relevant set of data records as well as relevant features. 

The proposed hierarchical approach has two main ad-
vantages over existing techniques for predicting large 
numbers of target variables from high-dimensional and 
heterogeneous databases. First, it is computationally more 
efficient, since it uses less number of training records as 
well as a fewer number of features. Second, the clusters 
obtained at each partitioning level correspond only to 
small subsets of similar target variables and tend to be 
more homogeneous than the entire data set. Therefore, 
when predicting target variables, more accurate prediction 
models can be constructed more efficiently by using only 
the local data from corresponding clusters instead of the 
entire global data set. 

The effectiveness of the proposed approach is demon-
strated by applying it to scientific simulation data sets 
(Finite Element Analysis) for damage prediction in com-
plex mechanical structures. Our experiments performed 
on the large-scale complex civilian structures indicate that 
the proposed method is computationally more effective 
and more accurate than straightforward approaches of 
predicting each target variable individually or simultane-
ously using global prediction models. An extended ver-
sion of this paper is available in [8]. 
 
2. Problem description 
 

Given a high-dimensional heterogeneous data set D 
with a large number of continuous target variables (Table 
1), the problem consists of effectively and accurately pre-
dicting real value of all target variables. The typical data 
layout used in predicting multiple target variables is 
shown in Table 1, where data set D contains data records 
d1, d2, … , dN, i = 1, …, N. Each data record di is de-
scribed with the pair {f, E}, where f = {f1, f2, … , fm} is 
the feature set, while E = {E1, E2, … , En} is the set of 
target variables. Each data record di in the data set D per-
tains to a specific state depending on domain knowledge. 

One of the problems that exhibit these characteristics 
corresponds to damage detection in complex mechanical 
structures. This phenomenon includes localized softening 
or cracks in a certain neighborhood of a structural com-
ponent due to high operational loads, or the presence of 
flaws due to manufacturing defects. In general, there are 
three levels of damage identification: 1. Recognition - 

qualitative indication that damage might be present in the 
structure; 2. Localization - information about the probable 
position of the damage in the structure 3. Assessment - 
estimate of the extent of severity of the damage in the 
structure. Structural damages in mechanical structures 
usually result in static deformations and changes in dy-
namic characteristics such as natural frequencies and the 
mode shapes. In our work, structural damage is assumed 
to be associated with structural stiffness: a reduction in 
Young's modulus or modulus of elasticity (E) [14]. 

Table 1. A typical input to data mining model for 
damage detection in mechanical structures. 

Features (Frequencies) Target variables Data 
records f1 f2 . . . fm E1 E2 . . . En 

d1 72.833 151.67 . . . 213.45 0.5E E . . . E 
d2 73.45 152.56 . . . 213.65 0.6E E . . . E 
. . . . . . . . . . . . . . . . . . . . . . . . . . .
dN 74.01 153.01 . . . 214.21 E E . . . 0.7E

 
Since mechanical structures may be represented with a 

certain number of structural elements, the problem of 
predicting multiple target variables in damage detection in 
mechanical structures is reduced to predicting the inten-
sity of the damage in structural elements {E1, E2, … , En} 
(Table 1) using dynamic characteristics (e.g., natural fre-
quencies, mode shapes) as features {f1, f2, … , fm} (Table 
1). 

Standard analytical techniques for this problem em-
ploy mathematical models to approximate the relation-
ships between specific damage conditions and changes in 
the structural response or dynamic properties [4]. Al-
though recent research work [12, 14] has shown that neu-
ral networks may provide a potential solution for damage 
prediction, these studies are restricted to very small mod-
els with a small number of target variables (order of ten). 

 
3. Methodology 
3.1. Hierarchical Partitioning 

To partition target variables, there is a need to define 
similarity between them using domain specific knowl-
edge. Although in this paper we focus on spatial domains 
that incorporate extra constrains, the proposed method is 
general and may be applied to any domain. In spatial do-
mains, variables may be similar if they are spatially close 
to each other or if they are symmetric according to some 
symmetry axis. Therefore, the simplest method for parti-
tioning target variables into similar groups is to perform 
manual partitioning of target variables by incorporating 
heuristics describing spatial locality of target variables 
(e.g. locations of target variables). For example, Figure 1 
illustrates manual partitioning of the airplane structure. 



   
Figure 1. Manual partitioning of the airplane 

However, the manual partitioning approach is re-
stricted to using only visual characteristics of mechanical 
structures, and many hidden characteristics inherent for 
the problem may not be available for sub-structuring. 
Therefore, our alternative approach groups similar target 
variables {E1, E2, … , En} using features {f1, f2, … , fm} 
that characterize them, since the features usually indi-
rectly incorporate the information about spatial locality 
and symmetry of target variables, and may incorporate 
any other similarities. For example, in damage detection 
problem, frequencies provide information about locality 
and symmetry of structural elements, but they also pro-
vide information about the correlation among target vari-
ables, which is not available in the manual partitioning. 
Therefore, by using particular set of features, it is possible 
to group similar target variables that are either close or 
symmetric in 3D space. In such a way, data records with 
similar set of features belong to one group of target vari-
ables, while data records that have different features from 
a specific set of features correspond to different groups. 
When the identified group needs to be further partitioned, 
different and/or additional set of features that bring addi-
tional knowledge needs to be considered (e.g., higher 
frequencies in damage detection problem) in order to dis-
tinguish among similar target variables already identified. 

The proposed hierarchical clustering based approach 
for partitioning groups of target variables and predicting 
their values is presented in Figure 2. As input arguments, 
the proposed algorithm takes entire data set D (Table 1) 
and m1 features {f1, f2, … , fm1} considered at that level of 
partitioning. The first step in the proposed algorithm in-
volves applying the clustering algorithm with similar 
specified features {f1, f2, … , fm1}. One of the biggest 
challenges of applying a clustering algorithm is to select 
right set of features {f1, f2, … , fm1} that will be used at 
particular level of clustering, but this choice depends on 

specific domain and is typically determined using expert 
background knowledge. This grouping is performed using 
several clustering algorithms (k-way clustering algo-
rithms with repeated bisections, direct k-way clustering, 
agglomerative clustering and a graph partitioning cluster-
ing approach) from the CLUTO clustering package [16]. 
Another challenge in clustering is to determine the opti-
mal number of discovered clusters. The methodology that 
we employ here is to discover a relatively small number 
(between 3 and 10) of well-balanced clusters. 

Figure 2. Partitioning algorithm for discovering 
groups of similar target variables, identifying the 
group of interest and predicting the values of 
target variables. 

Identifying interesting groups of target variables. 
When the clusters of data records with similar features are 
identified, the next step is to identify their corresponding 
groups of similar target variables (e.g., to identify the 
structures of similar structural elements in damage detec-
tion problem). Although obtained clusters usually do not 
contain contiguous data records, for simplicity assume 
that obtained clusters are presented in Figure 3. 

Clusters Ci, i = 1, …, k from Figure 3 contain particu-
lar data records as sets of particular features {f1, f2, … , 
fm1}. For example, cluster C1 contains data records d11, …, 

1,1 nd , where n1 is the number of data records in the cluster 

C1. Each data record from a particular cluster Ci deter-
mines which particular target variable is set or which par-
ticular target variable is of particular interest. For in-
stance, if data record d11 that belongs to the cluster C1 is 

Algorithm Partitioning(D, m1) 
• Given: set with data records D ={d1, d2, … , dN}, where 

each di = {f1, … , fm, E1, … , En}, i = 1, …, N. 
• Select the set of low natural frequencies {f1, f2, …, fm1}, 

where m1 << m. 
• Apply clustering algorithm on the following data set {f1, f2, 

…, 
1mf } and obtain k clusters C1, C2, …., Ck, where the 

criterion for obtaining optimal clusters was identification of 
well balanced clusters. 

• Identify k substructures S1, S2, … , Sk such that they corre-
spond to identified clusters C1, C2, …., Ck. 

• For i = 1, …, k 
o Predict the existence of damage in substructure Si using 

classification model. 
o If there is the damage in the substructure Si,  
� If the substructure Si is not sufficiently small: 

• Chose the set of low natural frequencies  
{

1mf , 11+mf , …, 
2mf }, where m1 < m2  < m. 

• Call algorithm Partitioning (Ci, m2) to discover finer 
substructures in the substructure Si. 

� Else (the substructure Si is sufficiently small) 
• Apply localized regression model to predict the 

intensity of the damage for all the elements within 
the identified substructure with the damage.



the result of damage in the structure element E1, it is ap-
parent that this structural element may belong to the cor-
responding group of elements (structure) S1. Therefore, 
all the damaged structural elements that are result of data 
records from the cluster C1 should belong to the group of 
target variables (elements) S1. However, sometimes this 
method will create situations when a specific target vari-
able may belong to more than one group of target vari-
ables. In such scenario, there is a need to determine what 
is the most appropriate group of target variables that the 
particular target variable should belong to. For example, 
in Figure 3, the target variable E1 is set for two data re-
cords from the cluster C1 and for one data record from the 
cluster Ck, and it is not clear whether the target variable 
E1 should belong to the corresponding group S1 or to the 
group Sk. In order to determine the most appropriate 
group of target variables that the specific target variable 
should belong to, we considered three approaches: 
• Maximum value – For each target variable Ei, identify 

the cluster Cf that contains the maximum value of target 
variable Ei. The considered target variable Ei then be-
longs to the group of target variables Sf.  

• Weighted majority – For each target variable Ei, sum 
the values of specific target variables within each clus-
ter and identify the cluster Cf with the largest computed 
value. The considered target variable Ei then belongs to 
the group of target variables Sf. 

• Overlapping – For each target variable Ei, identify all 
clusters Cf for which the target variable Ei is set. The 
considered target variable Ei then belongs to all groups 
of target variables Sf. In this approach one target vari-
able may belong to more than one group. 

Features Target Variables Data 
records f1 f2 F3 … fm E1 E2 E3 … En

d11   *                  
d12          *        

   *                                         
1,1 nd                                           *

. . . . . . . . . 
dk1                   *  
dk2   *                                        

                                           *
knkd ,                     * 

Figure 3. Typical data obtained by employing the 
clustering algorithm (* means that specific target 
variable has damage, e.g. for d11, E1 is damaged). 

3.2. Localization of Interesting Target Variables 
When the groups of similar target variables are identi-

fied, a classification model is used to identify the group of 
target variables that is of specific interest (e.g., in damage 
detection problem, a structure with damaged elements). If 

a data record di,j that belongs to a cluster Ci has a target 
variable which is set within the subgroup Si, the specific 
group of target variables Si is assumed to be of particular 
interest for further analysis and the corresponding data 
record di,j is assigned an “interesting class” label. Other-
wise, if data record di,j does not contain any target vari-
ables which are set within a corresponding group of target 
variables, the “non-interesting” class label is assigned to 
considered data record. For example, in damage detec-
tion, every structure that has damaged elements will have 
“interesting” class label, while structures that do not have 
damaged elements will be labelled as “non-interesting”. 

This procedure is repeated for all the data records 
within all clusters and corresponding groups of target 
variables. As a result, if there are k clusters and k corre-
sponding groups of target variables, k data sets DSi are 
also created, and each of them is used to build a classifier 
that will predict the presence of set target variables within 
the group Si (e.g. the presence of damaged elements in the 
structure). As classification models, we have used multi-
layer (2-layered) feedforward neural network models with 
two output nodes representing both “non-interesting’ and 
“interesting” classes, where the predicted class is from the 
output with the largest response.  Our previous experi-
mental work [9] has shown that this type of neural net-
work is more accurate than a neural network with a single 
output node coding 0 as “non-interesting” and 1 as “inter-
esting” class. The number of hidden neurons was equal to 
the number of input attributes. In order to reduce the 
number of input attributes considered in neural network 
model, dimensionality reduction through principal com-
ponent analysis is also employed. Three learning algo-
rithms were used: resilient propagation [11], conjugate 
gradient backpropagation with Powell-Beale restarts [10], 
and Levenberg-Marquardt [5]. 

 
3.3. Prediction of Target Variables 

If sufficiently large number of target variables are 
available within identified group of particular interest, the 
entire procedure of partitioning the group of target vari-
ables and predicting new subgroups of interests, pre-
sented in Figure 2, is repeated recursively. Otherwise, if 
the group of target variables contains sufficiently small 
numbers of target variables, the localized regression mod-
els that are constructed using only those data records that 
correspond to the identified group are employed to pre-
dict the value of each belonging target variables (e.g., to 
predict the intensity of the damage of belonging structural 
elements). As local regression models, we have trained 2-
layered feedforward neural network models with number 
of hidden neurons equal to the number of input attributes. 

The proposed hierarchical approach can identify simi-
lar target variables that are either close or symmetric in 3-
D space, unlike manual partitioning which only discovers 

Cluster C1 

Cluster Ck 



similar target variables that are close in 3-D space. There-
fore, identified clusters contain more similar data records 
and consequently correspond to more homogeneous re-
gions than data subsets obtained with manual partitioning 
thus causing better prediction performance. 

 
4. Experiments 

 
Predicting damage in mechanical structures using data 

mining techniques requires feature construction and data 
generation steps. For more details about these steps, 
reader is referred to [8]. The electric transmission tower 
(Figure 4), studied in [13], has been chosen to demon-
strate the effectiveness of our approach in damage detec-
tion. The dataset of 1,560 records, 700 natural frequen-
cies (features) and 312 structure elements (target vari-
ables) is generated by failing a random single element by 
a random amount. This data set corresponds to the sce-
nario of 5 failure states per element (312 elements x 5 = 
1560). The training and testing data sets were obtained by 
randomly splitting generated data set into equal partitions. 

We first performed manual partitioning of the electric 
transmission tower into four legs and a head (Figure 4). 
The results of applying the neural network classifiers for 
predicting the existence of the damage within the struc-
tures identified using manual sub-structuring approach is 
given in Table 2. The prediction performance of neural 
network classifiers is measured by computing the overall 
classification accuracy, as well as by computing the re-
call, precision and F-value for each class (since in damage 
detection problem target variable (element) of interest is 
damaged one, we consider “damage” class and. “non-
damage” class). In order to alleviate the effect of neural 
network instability in our experiments, measures for pre-

diction accuracy for each substructure are averaged over 
20 trials of the neural network learning algorithm. 

From Table 2 it can be observed that the manual sub-
structuring approach followed by building neural network 
classification models can be very accurate for predicting 
the presence of damage within the substructures at the 
first level of partitioning. The achieved accuracy was 
higher than 98% for four substructures, while for leg 2, 
the classification accuracy was slightly worse (95.8%). 

When partitioning the electric transmission tower us-
ing the hierarchical clustering approach, one of major 
issues was to select right set of natural frequencies that 
will be used in clustering. Since natural frequencies that 
are easy to be measured in practice are usually less than 
25Hz, the first step typically involves elimination of 
higher frequencies. The second step includes the selection 
of features for the first level of partitioning and according 
to the domain knowledge, usually considers 10-30% of 
the total number of features (frequencies). In order to 
identify the exact number of features for the first level, 
we use a heuristic approach that looks for the largest gap 
between two natural frequencies in the vicinity of some 
round natural frequency (e.g. the biggest gap around 0.5 
Hz or 1Hz). Identifying the number of frequencies that 
needs to be considered at each additional level of parti-
tioning is performed in the same manner. Thus, the first 
level of partitioning was performed employing the 252 
lowest frequencies, since these frequencies were smaller 
than 0.5Hz. 

All five clustering algorithms within the CLUTO 
package were investigated, but only the best results 
achieved with agglomerative approach are reported here. 
We have discovered 5 well balanced clusters Ci, i = 5,1  of

Table 2. The manual sub-structuring based approach employing neural networks for five sub-structures 
by partitioning electric transmission tower. 

 Leg 1 Leg 2 Leg 3 Leg 4 Head 

Accuracy 98.2 95.8 98.3 98.5 99.5 
 Classes Non-damage Damage Non-damage Damage Non-damage Damage Non-damage Damage Non-damage Damage
Recall 98.3 97.6 98.93 91.4 99.4 93.6 99.4 93.2 100 98.5 
Precision 99.5 91.9 94.5 94.3 98.6 97.1 98.8 96.5 99.2 100 
F-value 98.9 94.7 96.6 94.7 98.9 95.3 99.1 94.8 99.6 99.2 

Table 3. Classification results for predicting the presence of the damage within the substructures of 
electric transmission tower identified at the first level of partitioning 

 S1 S2 S3 S4 S5 

Accuracy 98.3 99.8 99.5 97.7 99.2 
 Classes Non-damage Damage Non-damage Damage Non-damage Damage Non-damage Damage Non-damage Damage 
Recall 98.5 97.5 100 97.9 99.4 100 98.0 96.9 99.3 99.2 
Precision 99.6 91.7 99.7 100 100 97.2 99.0 93.9 99.6 98.4 
F-value 99.1 94.5 99.9 98.9 99.7 98.6 98.5 95.4 99.4 98.8 



size: 571, 167, 241, 278 and 303 data records. In identify-
ing five substructures corresponding to the discovered 
five clusters, the weighted majority approach achieved the 
best results, and therefore only these results are reported 
here. 

 
Figure 4. Illustrative five sub-structures at the 

first level of clustering employing the algorithm 
Partitioning. (Figure is best viewed in color) 

Figure 4 shows five substructures Si , i = 5,1 , identified 
using the proposed approach, which sizes are 47, 40, 63, 
76 and 86 structural elements respectively. From Figure 4 
it is clear that the proposed algorithm Partitioning (Figure 
2) is able to partition the mechanical structure into spa-
tially close and symmetric sub-structures that are charac-
terized by their low natural frequencies. The results of 
applying the neural network classifiers for predicting the 
existence of the damage within identified structures is 
given in Table 3. It is apparent from Table 3 that the pro-
posed hierarchical partitioning approach achieved similar 
and even better prediction performance when identifying 
the presence of the damage within discovered substruc-
tures. For three substructures (S1, S2 and S3) the achieved 
classification accuracies were slightly (S1) or significantly 
better (S2, S3) for hierarchical clustering approach than 
for the manual partitioning approach, while for other two 
substructures (S4, S5), the achieved classification accura-
cies for hierarchical partitioning approach were slightly 
worse than for the manual partitioning approach. It is 
important to note that the neural network classifiers in 
both cases were constructed using only the features em-
ployed at the first level of partitioning (in this case first 
252 frequencies), since other features (frequencies) are 
irrelevant for predicting the presence of the damage at the 
first level. 

Although the number of elements per substructures 
identified at the first level of hierarchical partitioning is 
still large, we constructed local regression models Rj, j 

= 312,1  for each element from substructures Si, i = 5,1 , 
using only data records from corresponding clusters Ci. 
We used these models then to predict the intensity of the 
damage of particular elements within the substructure Si. 
To compare the predictive power of both manual and hi-
erarchical partitioning, we also constructed local regres-
sion models Mj, j = 312,1 , that are responsible for predict-
ing each of the elements from substructures SMi, i = 5,1 , 
identified using manual approach. Finally, the global neu-
ral network regression models Gj, j = 312,1 , were also 
built using all data records from entire data set. 

For each of these models, the prediction performance 
was measured using the coefficient of determination de-
fined as R2 = 1 – MSE/σ2, where σ is a standard deviation 
of the target variable. R2 value is a measure of the ex-
plained variability of the target variable, where 1 corre-
sponds to a perfect prediction, and 0 to a trivial mean 
predictor. The R2 value for each element from substruc-
tures is again averaged over 10 trials of the neural net-
work learning algorithm. The experimental results of pre-
dicting the intensity of damage in the elements within 
particular substructures are given in Table 4. 

Table 4. Prediction of damage intensity (given in 
R2 values) for those elements within structures 
for which hierarchical clustering approach 
achieves the worst and the best accuracy. 

Structure Element 
Direct 

(global) 
approach 

Manual  
partitioning

Hierarchical 
clustering 
approach 

E15 (worst) < 0 ≈ 0 0.154 
E96 (best) < 0 0.485 0.814 S1 

average* 0.004 0.182 0.447 
E241 (worst) < 0 < 0 0.140 
E263 (best) < 0  0.23 0.411 S2 

average* 0.03 0.172 0.245 
E312 (worst) < 0 0.121 0.148 
E209 (best) < 0 ≈ 0 0.469 S3 

average* 0.005 0.04 0.172 
E102 (worst) < 0 ≈ 0 ≈ 0 

E2 (best) 0.243 ≈ 0 0.357 S4 

average* 0.02 0.04 0.225 
E207 (worst) < 0 ≈ 0 ≈ 0 
E195 (best) < 0 0.218 0.299 S5 

average* 0.007 0.08 0.152 

Since the lack of space did not allow reporting predic-
tion performance for all 312 elements, for each structure 
identified using the hierarchical approach, two elements 
were chosen such that they had the worst and the best 
prediction performance within the particular substructure. 
In addition, the average R2-value of all the elements 
within particular structures is also reported. Since the R2-

Head

Legs



value of predicting particular elements may be less than 0 
in many cases (e.g., –1 or –2 for extremely poor global 
regression models in the direct approach), the average R2-
value for substructures is computed such that the R2-value 
of those models with negative R2-value is assigned zero 
value. Thus, the exceptionally bad regression models will 
not negatively influence the accurate ones. 

It is apparent from Table 4 that both partitioning ap-
proaches produce localized regression models that are 
more accurate as well as require less data records for 
training than the global regression models used in the 
direct approach. In addition, the localized regression 
models built using hierarchical clustering approach are in 
most cases more accurate then localized models obtained 
by manual partitioning. Only in approximately 5-10% of 
the total number of elements, are the models obtained 
from manual partitioning Mi more accurate than the mod-
els Ri constructed in the hierarchical clustering approach. 
For example, the prediction of element E145 that belongs 
to the structure S5 is more accurate when using the local-
ized models obtained through manual partitioning (R2 = 
0.245) than when using the models obtained in hierarchi-
cal clustering based approach (R2 = 0.165). 

The superior prediction performance of local regres-
sion models built through the proposed hierarchical ap-
proach compared to other regression models may be ex-
plained by the fact that local regression models Rj are 
constructed using more similar data records than models 
Mj from manual partitioning and global prediction models 
Gj. Specifically, the similarity of data records in clusters 
originates from elements that are both close and symmet-
ric in 3-D space, while the similarity of data records in the 
data subsets used for building models Mj from manual 
partitioning arise only from elements that are close in 
space. Therefore, the heterogeneity of these data subsets 
is potentially higher than the heterogeneity of data clus-
ters and thus, the corresponding localized models built on 
these data subsets are less accurate. On the other hand, a 
few scenarios where the models Mj built through manual 
partitioning are more accurate then the models Rj built 
through hierarchical clustering may be explained by im-
perfect quality of the obtained clusters. Imperfect clusters 
were probably achieved due to the hidden information in 
domain specific knowledge, which was incorporated into 
the clustering algorithm. 

Since the number of elements per structures Si, i = 5,1 , 
identified at the first level is still large, we performed 
additional level of partitioning using algorithm Partition-
ing, (presented in Figure 2) in order to further reduce the 
number of elements per substructure. Each of the clusters 
Ci identified at the first partitioning level was further par-
titioned into clusters Cij using additional 198 lowest fre-
quencies (frequencies smaller than 1.5Hz). The clustering 
was performed using only these 198 frequencies (fre-

quencies f253 to f450), since the lowest 252 frequencies 
used at the first level of partitioning are not useful for 
further identification of similar structure elements. The 
number of clusters identified at the second level varied 
between 3 and 5, and each of these clusters Cij at the sec-
ond level corresponded to particular substructures Sij. The 
results of applying the neural network classifiers for pre-
dicting the existence of the damage within the substruc-
tures identified at the second level of partitioning using 
our proposed hierarchical clustering based approach are 
omitted due to lack of space. Although there was a slight 
decrease in overall classification accuracy when predict-
ing the presence of the damage, especially for structures 
S12, S13 and S43. The achieved prediction performance for 
remaining substructures (using local neural network clas-
sifiers that are also constructed using only data records 
from corresponding clusters Ci) is still very high, larger 
than 97.5% as earlier for the first level of partitioning. 

Our previous experimental results [13] have shown 
that the decrease in the classification performance at the 
second level of manual partitioning was significantly lar-
ger (20–30%) than the drop observed for the proposed 
hierarchical approach. The prediction of the modulus of 
elasticity for elements within the substructures is again 
performed using only the localized regression models 
built after the second level of hierarchical approach. 

Table 5. Prediction of damage intensity (R2 val-
ue) for those elements within structures for 
which hierarchical approach at the first level 
achieves the worst and the best accuracy 

Structure Element 
Hierarchical cluster-

ing approach  
(the first level) 

Hierarchical cluster-
ing approach 

(the second level) 

E15 0.154 0.264 
E96 0.814 0.668 S1 

average 0.447 0.424 
E241 0.140 0.477 
E263 0.411 0.264 S2 

average 0.245 0.294 
E312 0.148 0.243 
E209 0.469 0.431 S3 

average 0.172 0.244 
E102 ≈ 0 0.145 
E2 0.357 0.285 S4 

average 0.225 0.234 
E207 ≈ 0 ≈ 0 
E195 0.299 0.334 S5 

average 0.152 0.195 
 

Table 5 illustrates how the prediction of the modulus 
of elasticity for the same elements investigated within 
substructures at the first level has been changed when 
these substructures are further partitioned. It is apparent 



that for large number of elements, further localization and 
the building of more specific regression models results in 
an improved R2 value, while for some other smaller num-
ber of elements additional localization hurt the prediction 
accuracy. There may be several reasons for such phe-
nomenon. First, at the second level the number of data 
records that are relevant for the damage of the specific 
element may be smaller than the number of data records 
at the first level of partitioning thus causing a possible 
loss of valuable information or potential overfitting of 
neural network regression model. Second, this loss is in-
evitably caused by an imperfect clustering algorithm that 
does not necessarily assign all data records corresponding 
to the damage of specific element to a single cluster. On 
the other side, improvement in prediction performance at 
the second partitioning level is evidently due to the fact 
that are also fewer data records that are irrelevant to the 
damage of a particular element and therefore, localized 
regression models are more accurate. 
 
5. Conclusions 
 

The paper presented a novel general framework for the 
efficient prediction of multiple target variables from high 
dimensional and heterogeneous data sets using the hierar-
chical clustering approach. This approach is especially 
effective where there is a natural relationship among tar-
get variables. A key desirable feature of this scheme is 
that it achieves a reduction in both data records and the 
number of used features, which is of great importance in 
applications where it is difficult to find a large number of 
training records, or when learning a monolithic prediction 
model from very large data sets is prohibitively slow. The 
effectiveness of the approach was demonstrated on the 
problem of damage detection in very large and complex 
mechanical structures. Our experiments indicate that the 
proposed approach can be successfully used to predict the 
presence of damage within the structure, as well as the 
intensity of the damage in any of the several hundred 
structure elements that served as target variables. Fur-
thermore, we have shown that the proposed approach is 
computationally more efficient, more accurate and re-
quires less data records than the direct approach that was 
earlier used for damage detection, as well as the manual 
partitioning approach. 
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