
The Distributed Boosting Algorithm
Aleksandar Lazarevic

Center for Information Science and Technology
Temple University, Room 303A, Wachman Hall (038-24)

1805 N. Broad St., Philadelphia, PA 19122, USA
phone: +1-215-204-5908, fax: +1-215-204-5082

aleks@ist.temple.edu

Zoran Obradovic
Center for Information Science and Technology

Temple University, Room 303, Wachman Hall (038-24)
1805 N. Broad St., Philadelphia, PA 19122, USA
phone: +1-215-204-6265, fax: +1-215-204-5082

zoran@ist.temple.edu

ABSTRACT
In this paper, we propose a general framework for distributed
boosting intended for efficient integrating specialized classifiers
learned over very large and distributed homogeneous databases
that cannot be merged at a single location. Our distributed boost-
ing algorithm can also be used as a parallel classification tech-
nique, where a massive database that cannot fit into main com-
puter memory is partitioned into disjoint subsets for a more effi-
cient analysis. In the proposed method, at each boosting round the
classifiers are first learned from disjoint datasets and then ex-
changed amongst the sites. Finally the classifiers are combined
into a weighted voting ensemble on each disjoint data set. The
ensemble that is applied to an unseen test set represents an en-
semble of ensembles built on all distributed sites. In experiments
performed on four large data sets the proposed distributed boost-
ing method achieved classification accuracy comparable or even
slightly better than the standard boosting algorithm while requir-
ing less memory and less computational time. In addition, the
communication overhead of the distributed boosting algorithm is
very small making it a viable alternative to the standard boosting
for large-scale databases.

Keywords
Boosting, distributed learning, classifier ensembles.

1. INTRODUCTION
The number and the size of databases are rapidly growing in vari-
ous business and scientific fields thus resulting in an exceptional
opportunity to develop automated data mining techniques for
extracting useful knowledge from massive data sets. This problem
may be further complicated by the fact that in many cases, the
databases are located at multiple distributed sites. Data may be
distributed across a set of sites or computers for several reasons.
For example, several data sets concerning business information
(e.g. telephone or credit card fraud) might be owned by separate
organizations that have competitive reasons for keeping the data
private. In addition, these data may be physically dispersed over
many different geographic locations. However, business organiza-
tions may be interested in enhancing their own models by ex-
changing useful information about the data.

In this paper, we propose a novel technique of combining classifi-
ers from multiple sites using a boosting technique [6]. Boosting
uses adaptive sampling of patterns to generate a highly accurate
ensemble of many weak classifiers whose individual global accu-
racy is only moderate. In boosting, the classifiers in the ensemble
are trained serially, with the weights on the training instances
adjusted adaptively according to the performance of the previous
classifiers. The main idea is that the classification algorithm
should concentrate on the instances that are difficult to learn.

Our distributed boosting algorithm is designed for learning when
disjoint data sets from multiple sites cannot be merged together.
However, it can also be applied to parallel learning, where the
huge training data set is split into several sets that reside on a
parallel computer with several processors. In the proposed
method, the classifiers are first learned from disjoint datasets at
each boosting round and then exchanged amongst the sites. The
exchanged classifiers are then combined, and finally, their
weighted voting ensemble is constructed on each disjoint data set.
The ensemble that is applied to an unseen test set represents an
ensemble of ensembles built locally on all distributed sites. The
performance of ensembles is used to update the probabilities of
drawing the data samples in succeeding boosting iterations. Our
experimental results indicate that this method is computationally
effective and comparable to or even slightly better in achieved
accuracy than when boosting is applied to the centralized data.

2. RELATED WORK
To solve the problem of learning from very large and distributed
databases, some researchers have proposed incremental learning
techniques, usually involving direct modifications of standard
learning algorithms, such as decision trees [12] and rule learner
[4]. An alternative and fairly general method for distributed learn-
ing is to combine different multiple predictors in a “black-box”
manner. Different meta-learning techniques explored at the Jam
project [3] were proposed in order to coalesce the predictions of
classifiers trained from different partitions of the training set.
Similarly, a knowledge probing approach [7] for distributed learn-
ing from homogeneous data sites in the first phase learns a set of
base classifiers in parallel, and in the second, the meta-learning is
applied to combine the base classifiers. The advantage of the
meta-learning approach is that it is algorithm-independent, it can
be used to scale up many learning algorithms, and it ensures the
privacy of data at multiple sites.

Recently, boosting has received extensive theoretical and empiri-
cal study, but most of the published work focuses on improving
the accuracy of a classifier over the same single, centralized data
set that is small enough to fit into the main computer memory. So
far, there has not been much research on using the boosting tech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD 2001, August 2001, San Francisco, CA.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

nique for distributed learning. The only exception was boosting
for scalable and distributed learning [5], where each classifier was
trained using a small fraction of the training set. In this distributed
version, the classifiers were trained either from random samples
(r-sampling) or from disjoint partitions of the data set (d-
sampling). In r-sampling, a fixed number of examples were ran-
domly picked from the weighted training set (without replace-
ment), where all examples had equal chance of being selected. In
d-sampling, the weighted training set was partitioned into a num-
ber of disjoint subsets, where the data from each site was taken as
a d-sample. At each round, a different d-sample was given to the
weak learner. Both methods can be used for learning over very
large data sets, but d-sampling is more appropriate for distributed
learning, where data at multiple sites cannot be pulled together to
a single site. The reported experimental results indicated that their
distributed boosting is either comparable to or better than learning
single classifiers over the complete training set, but only in some
cases comparable to boosting over the complete data set.

3. METHODOLOGY
The modifications of the boosting algorithm that we propose here
are variants of the AdaBoost.M2 procedure [6], which proceeds in
a series of T rounds. In every round t, a weak learning algorithm is
called and presented with a different distribution Dt that is altered
by emphasizing particular training examples. The distribution is
updated to give wrong classifications higher weights than correct
classifications. The entire weighted training set is given to the
weak learner to compute the weak hypothesis ht. At the end, all
weak hypotheses are combined into a final hypothesis hfn.

The boosting algorithm may be appropriate for distributed learn-
ing for several reasons: it can be applied to a wide variety of al-
gorithms, it is superior to other combining methods and its
weighted voting ensemble can easily scale the magnitudes of clas-
sifiers giving a large weight to a strong hypothesis thus correcting
wrong classifications of weaker hypotheses. In addition, a natural
way of learning in a distributed environment is by combining
classification predictors. Our aim, hence, is to exploit all of these
advantages in order to apply boosting to distributed learning.

As classifiers, we trained multilayer (2-layered) feedforward neural
network models with the number of hidden neurons equal to the
number of input attributes, and with the number of output nodes
equal to the number of classes, where the predicted class is from
the output with the largest response. We used two learning algo-
rithms: resilient propagation [11] and Levenberg-Marquardt [8].

3.1 The Framework for Distributed Learning
The objective of our distributed boosting algorithm is to effi-
ciently construct a prediction model using data at multiple sites
such that the prediction accuracy is similar to boosting when all
the data are centralized at a single site. Towards such an objective,
we propose several modifications of the boosting algorithm within
the general framework presented at Figure 1. All distributed sites
perform the learning procedure at the same time.

Assume there are k distributed sites, where site j contains set Sj
with mj examples, j = 1,…k. Data sets Sj contain the same attrib-
utes and do not necessarily have the same size. During the boost-
ing rounds, site j maintains a local distribution ∆j,t and local
weights wj,t that directly reflect the prediction accuracy on that site.

Howe
tained
single
In ord
sampl
= 1,…

•

•

•

•

•

•

1.

2.
3.
4.

5.

6.

7.
8.

9.

10

11

•
On site j, (j = 1…k) we are given set Sj {(xj,1, yj,1), …
,(

jj mjmj yx ,, ,)} xj,i ∈Xj, with labels yj,i ∈Yj = {1, …,C},

j = 1…k. Let Bj = {(i,yj): i = 1, …, mj, yj ≠ yj,i}.
On each site j initialize the distribution ∆j,1 over the exam-
ples, such that ∆j,1(i) = 1/mj, and compute the sums

∑
∈ jSi

j i)(1,∆∆∆∆ of all the elements in distributions ∆j,1.

Each site j broadcasts the computed sums and makes a ver-
sion of the global distribution Dj,1, by initializing the j-th in-

terval [∑ ∑
−

= =
+

1

1 1
,1

j

p

j

p
pp mm] in the distribution Dj,1 with val-

ues 1/mj.
Each site renormalizes the Dj,1 with a normalization factor
such that Dj,1 is a distribution.
For j = 1 … k (For all distributed sites)

For t = 1, 2, 3, 4, … T
Draw the indices of the examples according to the distri-
bution Dj,t and make a sample Qj,t from the instances
whose indices belong to the j-th interval of Dj,t.
Train a weak learner Lj,t on the sample Qj,t.
Broadcast a classifier learner Lj,t to all distributed sites.
Create an ensemble Ej,t by combining the learners Lj,t, j =
1…k from all distributed sites.
Using the ensemble Ej,t compute weak hypothesis hj,t:
X × Y → [0, 1].
Compute the pseudo-loss of hypothesis hj,t:

 εj,t =)),(),(1)(,(
2
1

,,,,,
),(

, jijtjijijtj
Byi

tj yxhyxhyi
j

+−⋅ ∑
∈

∆∆∆∆

Set βj,t = εj,t / (1 - εj,t)
Compute wj,t(i,yj)=(1/2)⋅(1-hj,t(xj,i, yj) + hj,t(xj,i,yi,j)/ p

jacc ,

p ∈ {0, 1,2}
Compute Vj,t =)

),(
, ,(j

jj

yiw
Byi

tj∑
∈

 and broadcast it to all dis-

tributed sites.
. Create a weight vector Uj,t, such that the j-th interval

[∑ ∑
−

= =
+

1

1 1
,1

j

p

j

p
pp mm] is the weight vector wj,t, while the

values in the q-th interval, q≠j, q=1,…,k are set to Vq,t/mq.
. Update Dj,t: Dj,t+1 (i, yj) =),(

,,,
,)/),((jtj yiU

tjtjjtj ZyiD ββββ⋅ ,
where Zj,t is a normalization constant chosen such that Dj,t+1
is a distribution. The values in the j-th interval of the Dj,t af-
ter normalization make the local distribution ∆j,t.

Output the final hypothesis:
Figure1. The distributed boosting framework

ver, our goal is to emulate the global distribution Dt ob-
 through iterations when standard boosting is applied to a
 data set obtained by merging all sets from distributed sites.
er to create such a distribution that will result in similar
ing as when all data are centralized, the weight vectors wj,t, j
,k from all distributed sites are merged into a joint weight

),()1log(maxarg ,
1 ,1

jtj

T

t tj

k

jYy
fn yxhh ⋅= ∑∑

= =∈ ββββ

vector wt, such that the q-th interval of indices

[∑ ∑
−

= =
+

1

1 1
,1

q

p

q

p
pp mm] in the weight vector wt corresponds to the

weight vector wq,t from the q-th site. The weight vector wt is used
to update the global distribution Dt as in step 5 at Figure 1. How-
ever, merging all the weight vectors wj,t requires a huge amount of
time for broadcasting, since they directly depend on the size of the
distributed data sets. In order to reduce this transfer time, instead
of the entire weight vectors wj,t, only the sums Vj,t of all their ele-
ments are broadcast (step 9 in Figure 1). Since data site j samples
only from set Sj, there is no need to know exact values of the ele-
ments in the weight vectors wq,t (q ≠ j, q =1, …k) from other dis-
tributed sites. Instead, it is sufficient to know only how many data
examples need to be sampled from the site q.

Therefore, each site j creates a weight vector Uj,t (step 10, Figure

1), where its j-th interval [∑ ∑
−

= =
+

1

1 1
,1

j

p

j

p
pp mm] represents the

weight vector wj,t, while all the other intervals that correspond to
the weight vectors from other distributed sites may be set arbitrar-
ily such that the values inside the q-th interval of indices (q ≠ j)
sum to the value Vq,t. The simplest method is to set all values in
the q-th interval to the value Vq,t/mq. Using this method, expensive
broadcasting of the huge weight vectors is avoided, while still pre-
serving the information which site is more difficult to learn and
where more examples need to be sampled.

As a result, each site at round t maintains its version Dj,t of the
global distribution Dt, and its local distribution ∆j,t. At each site j,
the samples in boosting rounds are drawn according to the distri-
bution Dj,t, but the sampled training set Qj,t for site j is created
only from those data points that match the indices drawn from the
j-th interval in the distribution Dj,t (step 1, Figure 1). The classifi-
ers Lj,t are constructed on each of the samples Qj,t and then ex-
changed among the distributed sites at each boosting round t.
Since all sites contain a set of classifiers Lj,t, j = 1…k, the next
steps involve creating an ensemble Ej,t by combining these classi-
fiers and computing a composite hypothesis hj,t. The local weight
vectors wj,t are updated at each site j in order to give wrong classi-
fications higher weights than correct classifications (step 8, Figure
1) and then their sums Vj,t are broadcast to all distributed sites.
Each site j updates its local version Dj,t according to the created
weight vector Uj,t. At the end, the composite hypotheses hj,t from
different sites and different boosting iterations are combined into
a final hypothesis hfn.

3.2 The Variants of Distributed Boosting
We explore several variants of the proposed distributed boosting
algorithm from Figure 1. The algorithms differ in (a) the method
for combining the classifiers into an ensemble Ej,t (step 4), (b)
computing a representative hypothesis hj,t (step 5) and (c) updat-
ing the weights wj,t (step 8).

In the first distributed learning algorithm, denoted as Competing
Classifiers from Distributed Sites, the learned classifiers Lj,t from
all distributed sites are combined such that each data instance on a
local site is assigned to the classifier with the highest prediction
confidence on that data pattern. As a result, the composite hy-
pothesis hj,t uses a different classifier Lj,t for each data example.

Unlike competing classifiers, other distributed learning methods
involve combining classifiers in order to create an ensemble Ej,t
and hypothesis hj,t. The simplest combining method is based on
Simple Majority Voting of Classifiers. If the classifiers Ll,t, l =
1,…,k, from all sites produce hypotheses hl,j,t on site j, then the
hypothesis hj,t (step 5, Figure 1) is computed as:

hj,t = ∑
=

k

l
tjlh

k 1
,,

1

More sophisticated techniques for distributed learning consider
weighted combinations of classifiers. In Weighted Majority Vot-
ing of Classifiers, the weights ul,j,t of the classifiers Ll,t from all
sites are proportional to the accuracy they achieve on the local site
j. Therefore, if the classifiers Ll,t produce hypotheses hl,j,t on site j,
then the hypothesis hj,t can be computed as:

hj,t = ∑∑
==

⋅
k

l
tjl

k

l
tjltjl uhu

1
,,

1
,,,,)(

In Confidence-based Weighting Method, the classifiers from all
sites are combined using the procedure similar to the boosting
technique. If the classifiers Ll,t at iteration t produce hypotheses
hl,j,t on site j that maintains the distribution ∆j,t, then this technique
of combining classifiers is defined at Figure 2.

Fig
bin

In
for

or
fro
loc
ho
fro
are
ing

4.
Ou
firs
sta
the
On
ple
sul
spa
int
spa
and

Th
typ
50
siz
φl,t =)),(),(1)(,(
2
1

,,,,,,,
),(

, jijtjlijijtjl
Syi

tj yxhyxhyi
j

+−⋅ ∑
∈

∆∆∆∆

γl,t = φl,t / (1 - φl,t)
k

hh)1(logmaxarg ⋅=
ure 2. The confidence based technique for weighted com-
ing classifiers from distributed sites

order to further emphasize sampling from sites that are difficult
 learning, dividing the weights wj,t by the factor p

jacc (p = 0, 1

2) is considered, such that the difference between the weights
m two sites is further increased. Here, accj corresponds to the
al accuracy on corresponding site j, and the factor p indicates
w much we like to increase the difference between the weights
m different sites. All techniques for updating the weights wj,t
 also integrated in all methods for distributed boosting involv-
 combining learners.

EXPERIMENTAL RESULTS
r experiments were performed on several data collections. The
t one contained two synthetic spatial data sets with 6561 in-
nces generated using our spatial data simulator [10] such that
 generated data resembled statistics of real-life spatial data.
e data set was used for training and another one for out of sam-
 testing. Since random splitting for spatial domains likely re-
ts in overly optimistic estimates of prediction error (due to
tial correlation in data), the training data set was spatially split

o 3 disjoint data sets, each with 2187 examples. The obtained
tial data sets stemmed from similar homogeneous distributions
 had 5 continuous attributes and 3 equal size classes.

e other three data collections were Waveform, LED and Cover-
e data sets from the UCI repository [2]. For the Waveform set,

000 instances with 21 continuous attributes and three equally
ed classes were generated. The generated data were randomly

tjl
l tlYy

tj
jj

,,
1 ,

, ∑
=∈ γγγγ

split into five sets of 10000 examples each, where four of them
were used for distributed learning, and the fifth data set was used
as a test set. The LED data set was generated with 10000 exam-
ples and 10 classes, where four sets with 1500 examples were
used for training in a distributed environment, and the set with
4000 examples was used for testing. The Covertype data set, cur-
rently one of the largest databases in the UCI Database Reposi-
tory, contains 581012 examples with 54 attributes and 7 target
classes representing the forest cover type for 30 x 30 meter cells
obtained from US Forest Service (USFS) Region 2 Resource In-
formation System [1]. In Covertype data set, 40 attributes are
binary columns representing soil type, 4 attributes are binary col-
umns representing wilderness area, and the remaining 10 are con-
tinuous topographical attributes. Since the training of neural net-
work classifier would be very slow if using all 40 attributes repre-
senting a soil type variable, we transformed them into 7 new or-
dered attributes. These 7 attributes were determined by computing
the relative frequencies of each of 7 classes in each of 40 soil
types. Therefore, we used a 7-dimensional vector with values that
could be considered continuous and therefore more appropriate
for use with neural networks. This resulted in the transformed data
set with 21 attributes. The 149982 data instances separated into 8
disjoint data sets were used for distributed learning, while the
431032 data examples were used for out of sample testing.

4.1 Time Complexity Analysis
The major advantage of the proposed distributed boosting algo-
rithm is that it requires significantly less computational time per
each boosting round since the classifiers are learned on smaller
data sets. Figure 3 shows how the time required for training neural
networks (NN) depends on the number of examples in the training
set for all four reported data sets when measured on a Pentium III
processor with 768 MB of main memory. Analyzing the Figure 3a,
it is evident that the time needed for constructing a NN classifier
on the three times reduced synthetic spatial training set resulted in
more than three times faster computing time, while for LED and
Waveform data sets, four times smaller data set caused more than
four times faster learning (Figure 3b, 3c). Finally, for Covertype
data set, time needed for training a NN on an eight times smaller
data set was more than eight times smaller than time required for
training a NN when using the entire training set (Figure 3d).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Training on spatial set with 6561 instances using LM algorithm

Percentage of data points included in training set

C
om

pu
ta

tio
na

l T
im

e
(in

 s
ec

on
ds

)

33.3% of data set

0
0

10

20

30

40

50

60

70

80

90

100

110

120
Training on LED data set with 6000 instances using LM algorithm

Percentage of instances in training set

C
om

pu
ta

tio
nl

 ti
m

e
(s

ec
on

ds
)

0 10 20 30 40 50 60 70 80 90 100

25 % of data set

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80
Training on Waveform set with 50000 instances using RP algorithm

Percentage of data points included in training set

C
om

pu
ta

tio
na

l T
im

e
(s

ec
on

ds
)

25% of the data set

0
50

100
150
200
250
300
350
400
450
500
550
600

C
om

pu
ta

tio
na

l T
im

e
(s

ec
on

ds
)

 0 10 20 30 40 50 60 70 80 90 100

12.5% of the data set

Percentage of data points included in training set

Training on Covertype set with 149982 instances using RP algorithm

Figure 3. The time needed for learning neural network (NN)
classifiers for different sizes of four different data sets

In order to estimate the speedup of the proposed distributed boost-
ing algorithm, we need to consider a communication overhead
that involves time required for broadcasting the NN classifiers and
the sums Vj,t of the weight vectors wj,t to all sites. The size of the
NN classifiers is directly proportional to the number of input,
hidden and output nodes, and is relatively small in practice. (e.g.,
our implementation of a two-layered feedforward NN with 5 input
and 5 hidden nodes required only a few KB of memory). The
broadcasting of such small classifiers results in very small com-
munication overhead, and when the number of the distributed
sites grows, time needed for broadcasting increases linearly.
However, the true estimate of the communication overhead among
the distributed sites depends on the actual implementation of the
communication amongst them. Assuming that the communication
overhead for small number of distributed sites is negligible com-
paring to the time needed for training a NN classifier, the pro-
posed distributed boosting algorithm achieves a linear speedup
(Figure 4). The scale up is usually measured when increasing the
number of sites and keeping the number of data examples per site
constant. It is obvious that in such situation, time needed for train-
ing NN classifiers on distributed sites is always the same regard-
less of the number of sites. The only variable component is the
communication overhead that is negligible for small number of
sites (up to 10). Therefore it is apparent that the achieved scale up
is close to linear.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Number of distributed sites

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

Synthetic spatial data set
LED data set
Waveform data set

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Number of distributed sites

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
) Covertype data set

Figure 4. The speedup of the distributed boosting algorithm
for different data sets

4.2 Prediction Accuracy Comparison
To explore whether our distributed boosting can reach similar
prediction accuracy as the standard boosting algorithm on a cen-
tralized data set, experiments were first performed on three dis-
joint synthetic spatial data sets using competing classifiers among
sites, simple majority and weighted majority algorithms (Figure
5a). For each of the graphs shown at Figure 5a, the results were
achieved for p = 0, as in most of the cases this modification was
more accurate than if using p = 1 or p = 2 for dividing the weight
vector wj,t by the factor accp. To investigate how the performance
of distributed boosting varied with the number of data points used
for learning, changing the size of the data sets on distributed sites
was used (Figure 5). The three disjoint data sets used for training
in distributed boosting were merged into a centralized training
data set for standard boosting. All boosting methods were tested
on the same data set with 6561 instances.
When applying the distributed boosting to Covertype data set,
eight disjoint, equally-sized data sets were used for learning,
while the data set with 431032 examples was used for out of sam-
ple testing (Figure 5b). For experiments performed on LED and
Waveform data sets, four disjoint, equally-sized data sets were
used for learning and unseen data sets with 4000 and 10000 pat-
terns were used for testing respectively on LED and Waveform
data sets. However, the experiments performed on these data sets

showed similar prediction accuracy for all proposed variants of
boosting algorithm probably due to high homogeneity of data
(Figure 5c, 5d).
Results from experiments performed on the synthetic spatial data
sets indicate that the methods of voting the classifiers constructed
on multiple sites achieved approximately the same classification
accuracies as the standard boosting algorithm on merged data
(Figure 5a), while the method of competing classifiers was always
significantly less accurate than standard boosting (Figure 5a). This
was probably due to the fact that none of the classifiers con-
structed on the multiple sites were sufficiently competent for pre-
diction on the unseen test set, and the prediction results were
comparable or even slightly worse than when making predictions
from a single distributed site (Figure 5a).

Figure 5. Out of sample averaged classification accuracies of
different boosting algorithms distributed over (a) 3 synthetic
spatial data sets; (b) 8 Covertype data sets (c) 4 LED data sets;
(d) 4 Waveform data sets (- - - Standard Boosting, … Simple
Majority, Weighted Majority, ������������ Competing among classi-
fiers, ×××××××××××× Boosting from a single site)

When performing the experiments on the Covertype data set (Fig-
ure 5b), the voting algorithms for distributed learning were con-
sistently comparable in prediction accuracy to standard boosting
on the centralized data. The method of competing classifiers was
almost as accurate as standard boosting for large data sets, but
slightly worse than standard boosting for smaller data sets (Figure
5-b3). It is also noticeable that for achieving the maximal predic-

tion accuracy the larger number of boosting iterations was needed
for smaller data sets than for larger ones.
In addition, the effect of dividing the sampling weights wj,t by the
factor accp, (p = 0,1,2) was investigated for the three distributed
boosting methods. In general, in the presence of sites that are
significantly more difficult for learning than the others, a small
increase in the sampling weights wj,t resulted in achieving the
maximal prediction accuracy in a fewer number of boosting
rounds. However, a larger accp factor (p = 2) could cause drawing
insufficiently large samples from the sites that were easy to learn
in later boosting iterations. As a consequence, the factor acc2 (p =
2) could possibly result in method instability and in a drop of
prediction accuracy. To alleviate this problem, when constructing
a classifier we required that the size of the data sample drawn in
the current boosting round had to be at least 15% of the original
data set size on that site. Otherwise, the best classifier built so far
on a particular site was used when making a classifier ensemble.
In our experiments, increasing the weights wj,t usually resulted in
deteriorating the classification accuracy and in instability of the
proposed method for smaller data sets (Figure 6-a3), while pre-
serving maximal prediction accuracy for experiments with large
data sets (Figure 6-a1).
The performed experiments on LED, Waveform and Covertype
data sets showed similar prediction accuracy for all explored fac-
tors for updating the sampling weights wj,t (Table 1). This was
probably due to homogeneous distributions in these data sets,
where there were no extremely difficult examples that need to be
emphasized.

Figure 6. Out of sample averaged classification accuracies of
the (a) simple majority boosting algorithm and (b) confidence-
based weighted combining classifiers on 3 synthetic spatial da-
ta sets (- - - Standard Boosting, p = 0; … p = 1; ×××××××××××× p = 2)

Table 1. Final classification accuracies (%) for different dis-
tributed algorithms applied on four different data collections
when dividing the weights wj,t by the factor accp

Method ↓ Data set → Spatial LED Waveform Covertype

p = 0 82.7 73.4 87.0 72.6
p = 1 82.6 73.3 86.9 72.7

Simple
majority

p = 2 82.2 73.1 86.8 72.5
p = 0 84.3 73.4 87.2 73.1
p = 1 82.9 73.6 87.1 73.2

Confidence-
based

weighting p = 2 82.1 73.4 87.1 73.0

0 5 10 15 20

0.85

0.86

0.87

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 5 10 15 20

0.85

0.86

0.87

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 5 10 15 20

0.85

0.86

0.87

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Training on 4 equal size distributed data sets with 10000 instances

Training on 4 equal size distributed data sets with 5000 instances

(d1)

(d2)

(d3)

Training on 4 equal size distributed data sets with 2500 instances

1 3 5 7 9 11 13 15 17 19 21 23 25
0.7

0.705
0.71

0.715
0.72

0.725
0.73

0.735
Training on 4 equal size distributed data sets with 1500 instances

C
la

si
fic

at
io

n
ac

cu
ra

cy

1 3 5 7 9 11 13 15 17 19 21 23 25
0.7

0.705
0.71

0.715
0.72

0.725
0.73

0.735
Training on 4 equal sized distributed data sets with 750 instances

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

1 3 5 7 9 11 13 15 17 19 21 23 25
0.7

0.705
0.71

0.715
0.72

0.725
0.73

0.735
Training on 4 equal size distributed data sets with 375 instances

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(c1)

(c2)

(c3)

0 5 10 15 20
0.69

0.695
0.7

0.705
0.71

0.715
0.72

0.725
0.73 Training on 8 equal size distributed data sets with 18744 instances

0 5 10 15 20
0.69

0.695
0.7

0.705
0.71

0.715
0.72

0.725
0.73 Training on 8 equal size distributed data sets with 9372 instances

0 5 10 15 20
0.69

0.695
0.7

0.705
0.71

0.715
0.72

0.725
0.73 Training on 8 equal size distributed data sets with 4686 instances

(b1)

(b2)

(b3)

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 2187 instances

C
la

si
fic

at
io

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 1107 instances

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 567 instances

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(a1)

(a2)

(a3)

0 10 20 30 40 50 60 70 80 90 100
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84

Training on 3 equal size distributed data sets with 2187 instances

C
la

si
fic

at
io

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84 Training on 3 equal size distributed data sets with 1107 instances

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84 Training on 3 equal size distributed data sets of size 567 instances

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(b1)

(b2)

(b3)

0 10 20 30 40 50 60 70 80 90 100
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 2187 instances

C
la

si
fic

at
io

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 1107 instances

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 10 20 30 40 50 60 70 80 90 100
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83 Training on 3 equal size distributed data sets with 567 instances

Number of boosting iterations

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(a1)

(a2)

(a3)

Finally, we also performed experiments on 3 synthetic spatial data
sets using the confidence-based method of combining classifiers
with all three modifications for dividing the weights wj,t by the
factor accp (p=0,1,2) (Figure 6b). The graphs in Figure 6b show
that the confidence-based combining classifiers slightly outper-
formed standard boosting applied on centralized data as well as
the other methods considered for distributed boosting. The im-
provement in prediction accuracy was more significant when
learning from smaller data sets, but instability was also more evi-
dent for smaller data sets (Fig. 6-b3). The increase in prediction
accuracy with decreasing the data sets was probably due to the
fact that the data sets were homogeneous and more data points
were needed in order to improve the generalizability of our mod-
els. When the number of data instances decreased, there were not
enough examples to learn data distribution on a single site, but the
variety of data instances from multiple sites still helped in achiev-
ing diversity of built classifiers.

Due to homogeneous distributions, the experiments performed on
LED, Waveform and Covertype data sets again demonstrated the
small observable difference in accuracy between the standard
boosting and all variants of confidence-based distributed boosting
algorithms when p = 0, 1 and 2 (Table 1).

5. CONCLUSIONS
A framework for distributed boosting is proposed. It is intended to
efficiently learn stable non-linear classifiers over large and dis-
tributed homogeneous databases that cannot fit into the computer
main memory. Experimental results on several data sets indicate
that the proposed boosting techniques can effectively achieve the
same or even slightly better level of prediction accuracy than
standard boosting when applied to centralized data, while the cost
of learning and memory requirements are considerably lower.

This paper raised several interesting issues that recently have
gained a lot of attention. First, successful learning from very large
and potentially distributed databases imposes major performance
challenges for data mining, since learning a monolithic classifier
can be prohibitively slow due to the requirement that all the data
need to be held in the main memory. Second, many distributed
data sets cannot be merged together due to a variety of practical
constraints including data dispersed over many geographic loca-
tions, security services and competitive interests. Third, the pre-
diction accuracy of employed data mining algorithms is of funda-
mental impact for their successful application. Finally, the compu-
tational time required for constructing a prediction model is be-
coming more important as the amount of available data is con-
stantly growing. Our experiments performed on several data sets
indicate that the proposed boosting techniques successfully over-
come these concerns, thus offering a fairly general method for
effective and efficient learning in distributed environment.

Although performed experiments have provided evidence that the
proposed methods can be successful for distributed learning, fu-
ture work is needed to fully characterize them especially in dis-
tributed environment with heterogeneous databases, where new
algorithms for selectively combining classifiers from multiple
sites with different distributions are worth considering. It would
also be interesting to examine the influence of the larger number
of distributed sites and their sizes to the achieved prediction accu-
racy, speedup and scale up and to establish a satisfactory trade off.

A possible drawback of the proposed methods is that a large num-
ber of classifiers and their ensembles are constructed from avail-
able data sets. In such situation, the methods of post-pruning the
classifiers [9] may be necessary to increase system throughput,
while still maintaining the achieved prediction accuracy.

6. ACKNOWLEDGMENTS
Partial support from NSF-CSE-IIS-9711532 to Zoran Obradovic
and Keith Dunker and from INEEL LDRD Program under DOE
Idaho Operations Office Contract DE-AC07-99ID13727. The
authors are grateful to Dragoljub Pokrajac and Vasilis Mega-
looikonomou for their useful comments.

7. REFERENCES
[1] Blackard, J. Comparison of Neural Networks and Discrimi-

nant Analysis in Predicting Forest Cover Types, Ph.D. dis-
sertation, Colorado State University, (1998).

[2] Blake, C.L. and Merz, C.J.: UCI Repository of machine
learning databases [http://www.ics.uci.edu/~mlearn/MLRe-
pository.html]. Irvine, CA: University of California, Depart-
ment of Information and Computer Science, (1998).

[3] Chan, P. and Stolfo, S. On the Accuracy of Meta-learning for
Scalable Data Mining, Journal of Intelligent Integration of
Information, (Kerschberg L. Ed.), (1998).

[4] Clearwater, S., Cheng, T., Hirsh, H., Buchanan, B. Incre-
mental Batch Learning. In Proceedings of the 6th Interna-
tional Machine Learning Workshop, (1989), 366-370.

[5] Fan, W., Stolfo, S., Zhang, J. The Application of AdaBoost
for Distributed, Scalable and On-line Learning, in Proceed-
ings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, (1999), 362-366.

[6] Freund, Y., and Schapire, R. E. Experiments with a New
Boosting Algorithm, in Proceedings of the 13th International
Conference on Machine Learning, (1996), 325-332.

[7] Guo, Y., Sutiwaraphun, J. Probing Knowledge in Distributed
Data Mining, Proceedings of the 3rd Pacific-Asia Conference
in Knowledge Discovery and Data Mining, Lecture Notes in
Computer Science, Springer, (1999), 1574:443-452.

[8] Hagan, M., Menhaj, M.B. Training Feedforward Networks
with the Marquardt Algorithm. IEEE Transactions on Neural
Networks (1994), 5, 989-993.

[9] Lazarevic, A., Obradovic, Z. The Effective Pruning of Neural
Network Ensembles, in Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, (2001), in
press.

[10] Pokrajac D., Fiez T., Obradovic Z. A Spatial Data Simulator
for Agriculture Knowledge Discovery Applications, in re-
view.

[11] Riedmiller, M., Braun, H. A Direct Adaptive Method for
Faster Backpropagation Learning: The RPROP Algorithm, in
Proceedings of the IEEE International Conference on Neural
Networks, (1993), 586-591.

[12] Utgoff, P. An Improved Algorithm for Incremental Induction
of Decision Trees, in Proceedings of the 11th International
Conference on Machine Learning, (1994), 318-325.

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	The Framework for Distributed Learning
	The Variants of Distributed Boosting

	EXPERIMENTAL RESULTS
	Time Complexity Analysis
	Prediction Accuracy Comparison

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

