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ABSTRACT 
In this paper, we propose a general framework for distributed 
boosting intended for efficient integrating specialized classifiers 
learned over very large and distributed homogeneous databases 
that cannot be merged at a single location. Our distributed boost-
ing algorithm can also be used as a parallel classification tech-
nique, where a massive database that cannot fit into main com-
puter memory is partitioned into disjoint subsets for a more effi-
cient analysis. In the proposed method, at each boosting round the 
classifiers are first learned from disjoint datasets and then ex-
changed amongst the sites. Finally the classifiers are combined 
into a weighted voting ensemble on each disjoint data set. The 
ensemble that is applied to an unseen test set represents an en-
semble of ensembles built on all distributed sites. In experiments 
performed on four large data sets the proposed distributed boost-
ing method achieved classification accuracy comparable or even 
slightly better than the standard boosting algorithm while requir-
ing less memory and less computational time. In addition, the 
communication overhead of the distributed boosting algorithm is 
very small making it a viable alternative to the standard boosting 
for large-scale databases. 
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1. INTRODUCTION 
The number and the size of databases are rapidly growing in vari-
ous business and scientific fields thus resulting in an exceptional 
opportunity to develop automated data mining techniques for 
extracting useful knowledge from massive data sets. This problem 
may be further complicated by the fact that in many cases, the 
databases are located at multiple distributed sites. Data may be 
distributed across a set of sites or computers for several reasons. 
For example, several data sets concerning business information 
(e.g. telephone or credit card fraud) might be owned by separate 
organizations that have competitive reasons for keeping the data 
private. In addition, these data may be physically dispersed over 
many different geographic locations. However, business organiza-
tions may be interested in enhancing their own models by ex-
changing useful information about the data. 

In this paper, we propose a novel technique of combining classifi-
ers from multiple sites using a boosting technique [6]. Boosting 
uses adaptive sampling of patterns to generate a highly accurate 
ensemble of many weak classifiers whose individual global accu-
racy is only moderate. In boosting, the classifiers in the ensemble 
are trained serially, with the weights on the training instances 
adjusted adaptively according to the performance of the previous 
classifiers. The main idea is that the classification algorithm 
should concentrate on the instances that are difficult to learn. 

Our distributed boosting algorithm is designed for learning when 
disjoint data sets from multiple sites cannot be merged together. 
However, it can also be applied to parallel learning, where the 
huge training data set is split into several sets that reside on a 
parallel computer with several processors. In the proposed 
method, the classifiers are first learned from disjoint datasets at 
each boosting round and then exchanged amongst the sites. The 
exchanged classifiers are then combined, and finally, their 
weighted voting ensemble is constructed on each disjoint data set. 
The ensemble that is applied to an unseen test set represents an 
ensemble of ensembles built locally on all distributed sites. The 
performance of ensembles is used to update the probabilities of 
drawing the data samples in succeeding boosting iterations. Our 
experimental results indicate that this method is computationally 
effective and comparable to or even slightly better in achieved 
accuracy than when boosting is applied to the centralized data. 

2. RELATED WORK 
To solve the problem of learning from very large and distributed 
databases, some researchers have proposed incremental learning 
techniques, usually involving direct modifications of standard 
learning algorithms, such as decision trees [12] and rule learner 
[4]. An alternative and fairly general method for distributed learn-
ing is to combine different multiple predictors in a “black-box” 
manner. Different meta-learning techniques explored at the Jam 
project [3] were proposed in order to coalesce the predictions of 
classifiers trained from different partitions of the training set. 
Similarly, a knowledge probing approach [7] for distributed learn-
ing from homogeneous data sites in the first phase learns a set of 
base classifiers in parallel, and in the second, the meta-learning is 
applied to combine the base classifiers. The advantage of the 
meta-learning approach is that it is algorithm-independent, it can 
be used to scale up many learning algorithms, and it ensures the 
privacy of data at multiple sites. 

Recently, boosting has received extensive theoretical and empiri-
cal study, but most of the published work focuses on improving 
the accuracy of a classifier over the same single, centralized data 
set that is small enough to fit into the main computer memory. So 
far, there has not been much research on using the boosting tech-
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nique for distributed learning. The only exception was boosting 
for scalable and distributed learning [5], where each classifier was 
trained using a small fraction of the training set. In this distributed 
version, the classifiers were trained either from random samples 
(r-sampling) or from disjoint partitions of the data set (d-
sampling). In r-sampling, a fixed number of examples were ran-
domly picked from the weighted training set (without replace-
ment), where all examples had equal chance of being selected. In 
d-sampling, the weighted training set was partitioned into a num-
ber of disjoint subsets, where the data from each site was taken as 
a d-sample. At each round, a different d-sample was given to the 
weak learner. Both methods can be used for learning over very 
large data sets, but d-sampling is more appropriate for distributed 
learning, where data at multiple sites cannot be pulled together to 
a single site. The reported experimental results indicated that their 
distributed boosting is either comparable to or better than learning 
single classifiers over the complete training set, but only in some 
cases comparable to boosting over the complete data set. 

3. METHODOLOGY 
The modifications of the boosting algorithm that we propose here 
are variants of the AdaBoost.M2 procedure [6], which proceeds in 
a series of T rounds. In every round t, a weak learning algorithm is 
called and presented with a different distribution Dt that is altered 
by emphasizing particular training examples. The distribution is 
updated to give wrong classifications higher weights than correct 
classifications. The entire weighted training set is given to the 
weak learner to compute the weak hypothesis ht. At the end, all 
weak hypotheses are combined into a final hypothesis hfn. 

The boosting algorithm may be appropriate for distributed learn-
ing for several reasons:  it can be applied to a wide variety of al-
gorithms, it is superior to other combining methods and its 
weighted voting ensemble can easily scale the magnitudes of clas-
sifiers giving a large weight to a strong hypothesis thus correcting 
wrong classifications of weaker hypotheses. In addition, a natural 
way of learning in a distributed environment is by combining 
classification predictors. Our aim, hence, is to exploit all of these 
advantages in order to apply boosting to distributed learning. 

As classifiers, we trained multilayer (2-layered) feedforward neural 
network models with the number of hidden neurons equal to the 
number of input attributes, and with the number of output nodes 
equal to the number of classes, where the predicted class is from 
the output with the largest response. We used two learning algo-
rithms: resilient propagation [11] and Levenberg-Marquardt [8]. 

3.1 The Framework for Distributed Learning 
The objective of our distributed boosting algorithm is to effi-
ciently construct a prediction model using data at multiple sites 
such that the prediction accuracy is similar to boosting when all 
the data are centralized at a single site. Towards such an objective, 
we propose several modifications of the boosting algorithm within 
the general framework presented at Figure 1. All distributed sites 
perform the learning procedure at the same time. 

Assume there are k distributed sites, where site j contains set Sj 
with mj examples, j = 1,…k. Data sets Sj contain the same attrib-
utes and do not necessarily have the same size. During the boost-
ing rounds, site j maintains a local distribution ∆j,t and local 
weights wj,t that directly reflect the prediction accuracy on that site. 
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such that Dj,1 is a distribution. 
For j = 1 … k (For all distributed sites) 

For t = 1, 2, 3, 4, … T 
Draw the indices of the examples according to the distri-
bution Dj,t and make a sample Qj,t from the instances 
whose indices belong to the j-th interval of Dj,t. 
Train a weak learner Lj,t on the sample Qj,t. 
Broadcast a classifier learner Lj,t to all distributed sites. 
Create an ensemble Ej,t by combining the learners Lj,t, j = 
1…k from all distributed sites. 
Using the ensemble Ej,t compute weak hypothesis hj,t: 
X × Y → [0, 1]. 
Compute the pseudo-loss of hypothesis hj,t: 
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Figure1. The distributed boosting framework 
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weight vector wq,t from the q-th site. The weight vector wt is used 
to update the global distribution Dt as in step 5 at Figure 1. How-
ever, merging all the weight vectors wj,t requires a huge amount of 
time for broadcasting, since they directly depend on the size of the 
distributed data sets. In order to reduce this transfer time, instead 
of the entire weight vectors wj,t, only the sums Vj,t of all their ele-
ments are broadcast (step 9 in Figure 1). Since data site j samples 
only from set Sj, there is no need to know exact values of the ele-
ments in the weight vectors wq,t (q ≠ j, q =1, …k) from other dis-
tributed sites. Instead, it is sufficient to know only how many data 
examples need to be sampled from the site q. 

Therefore, each site j creates a weight vector Uj,t (step 10, Figure 
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weight vector wj,t, while all the other intervals that correspond to 
the weight vectors from other distributed sites may be set arbitrar-
ily such that the values inside the q-th interval of indices (q ≠ j) 
sum to the value Vq,t. The simplest method is to set all values in 
the q-th interval to the value Vq,t/mq. Using this method, expensive 
broadcasting of the huge weight vectors is avoided, while still pre-
serving the information which site is more difficult to learn and 
where more examples need to be sampled. 

As a result, each site at round t maintains its version Dj,t of the 
global distribution Dt, and its local distribution ∆j,t. At each site j, 
the samples in boosting rounds are drawn according to the distri-
bution Dj,t, but the sampled training set Qj,t for site j is created 
only from those data points that match the indices drawn from the 
j-th interval in the distribution Dj,t (step 1, Figure 1). The classifi-
ers Lj,t are constructed on each of the samples Qj,t and then ex-
changed among the distributed sites at each boosting round t. 
Since all sites contain a set of classifiers Lj,t, j = 1…k, the next 
steps involve creating an ensemble Ej,t  by combining these classi-
fiers and computing a composite hypothesis hj,t. The local weight 
vectors wj,t are updated at each site j in order to give wrong classi-
fications higher weights than correct classifications (step 8, Figure 
1) and then their sums Vj,t are broadcast to all distributed sites. 
Each site j updates its local version Dj,t  according to the created 
weight vector Uj,t. At the end, the composite hypotheses hj,t from 
different sites and different boosting iterations are combined into 
a final hypothesis hfn. 

3.2 The Variants of Distributed Boosting 
We explore several variants of the proposed distributed boosting 
algorithm from Figure 1. The algorithms differ in (a) the method 
for combining the classifiers into an ensemble Ej,t (step 4), (b) 
computing a representative hypothesis hj,t (step 5) and (c) updat-
ing the weights wj,t  (step 8). 

In the first distributed learning algorithm, denoted as Competing 
Classifiers from Distributed Sites, the learned classifiers Lj,t from 
all distributed sites are combined such that each data instance on a 
local site is assigned to the classifier with the highest prediction 
confidence on that data pattern. As a result, the composite hy-
pothesis hj,t uses a different classifier Lj,t for each data example. 

Unlike competing classifiers, other distributed learning methods 
involve combining classifiers in order to create an ensemble Ej,t 
and hypothesis hj,t. The simplest combining method is based on 
Simple Majority Voting of Classifiers. If the classifiers Ll,t, l = 
1,…,k, from all sites produce hypotheses hl,j,t on site j, then the 
hypothesis hj,t (step 5, Figure 1) is computed as: 

hj,t = ∑
=

k

l
tjlh

k 1
,,

1  

More sophisticated techniques for distributed learning consider 
weighted combinations of classifiers. In Weighted Majority Vot-
ing of Classifiers, the weights ul,j,t of the classifiers Ll,t from all 
sites are proportional to the accuracy they achieve on the local site 
j. Therefore, if the classifiers Ll,t produce hypotheses hl,j,t on site j, 
then the hypothesis hj,t can be computed as: 
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In Confidence-based Weighting Method, the classifiers from all 
sites are combined using the procedure similar to the boosting 
technique. If the classifiers Ll,t at iteration t produce hypotheses 
hl,j,t on site j that maintains the distribution ∆j,t, then this technique 
of combining classifiers is defined at Figure 2. 
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order to further emphasize sampling from sites that are difficult 
 learning, dividing the weights wj,t by the factor p

jacc  (p = 0, 1 

2) is considered, such that the difference between the weights 
m two sites is further increased. Here, accj corresponds to the 
al accuracy on corresponding site j, and the factor p indicates 
w much we like to increase the difference between the weights 
m different sites. All techniques for updating the weights wj,t 
 also integrated in all methods for distributed boosting involv-
 combining learners. 

EXPERIMENTAL RESULTS 
r experiments were performed on several data collections. The 
t one contained two synthetic spatial data sets with 6561 in-
nces generated using our spatial data simulator [10] such that 
 generated data resembled statistics of real-life spatial data. 
e data set was used for training and another one for out of sam-
 testing. Since random splitting for spatial domains likely re-
ts in overly optimistic estimates of prediction error (due to 
tial correlation in data), the training data set was spatially split 

o 3 disjoint data sets, each with 2187 examples. The obtained 
tial data sets stemmed from similar homogeneous distributions 
 had 5 continuous attributes and 3 equal size classes. 

e other three data collections were Waveform, LED and Cover-
e data sets from the UCI repository [2]. For the Waveform set, 

000 instances with 21 continuous attributes and three equally 
ed classes were generated. The generated data were randomly 
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split into five sets of 10000 examples each, where four of them 
were used for distributed learning, and the fifth data set was used 
as a test set. The LED data set was generated with 10000 exam-
ples and 10 classes, where four sets with 1500 examples were 
used for training in a distributed environment, and the set with 
4000 examples was used for testing. The Covertype data set, cur-
rently one of the largest databases in the UCI Database Reposi-
tory, contains 581012 examples with 54 attributes and 7 target 
classes representing the forest cover type for 30 x 30 meter cells 
obtained from US Forest Service (USFS) Region 2 Resource In-
formation System [1]. In Covertype data set, 40 attributes are 
binary columns representing soil type, 4 attributes are binary col-
umns representing wilderness area, and the remaining 10 are con-
tinuous topographical attributes. Since the training of neural net-
work classifier would be very slow if using all 40 attributes repre-
senting a soil type variable, we transformed them into 7 new or-
dered attributes. These 7 attributes were determined by computing 
the relative frequencies of each of 7 classes in each of 40 soil 
types. Therefore, we used a 7-dimensional vector with values that 
could be considered continuous and therefore more appropriate 
for use with neural networks. This resulted in the transformed data 
set with 21 attributes. The 149982 data instances separated into 8 
disjoint data sets were used for distributed learning, while the 
431032 data examples were used for out of sample testing. 

4.1 Time Complexity Analysis 
The major advantage of the proposed distributed boosting algo-
rithm is that it requires significantly less computational time per 
each boosting round since the classifiers are learned on smaller 
data sets. Figure 3 shows how the time required for training neural 
networks (NN) depends on the number of examples in the training 
set for all four reported data sets when measured on a Pentium III 
processor with 768 MB of main memory. Analyzing the Figure 3a, 
it is evident that the time needed for constructing a NN classifier 
on the three times reduced synthetic spatial training set resulted in 
more than three times faster computing time, while for LED and 
Waveform data sets, four times smaller data set caused more than 
four times faster learning (Figure 3b, 3c). Finally, for Covertype 
data set, time needed for training a NN on an eight times smaller 
data set was more than eight times smaller than time required for 
training a NN when using the entire training set (Figure 3d). 
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Figure 3. The time needed for learning neural network (NN) 
classifiers for different sizes of four different data sets 

In order to estimate the speedup of the proposed distributed boost-
ing algorithm, we need to consider a communication overhead 
that involves time required for broadcasting the NN classifiers and 
the sums Vj,t of the weight vectors wj,t to all sites. The size of the 
NN classifiers is directly proportional to the number of input, 
hidden and output nodes, and is relatively small in practice. (e.g., 
our implementation of a two-layered feedforward NN with 5 input 
and 5 hidden nodes required only a few KB of memory). The 
broadcasting of such small classifiers results in very small com-
munication overhead, and when the number of the distributed 
sites grows, time needed for broadcasting increases linearly.  
However, the true estimate of the communication overhead among 
the distributed sites depends on the actual implementation of the 
communication amongst them. Assuming that the communication 
overhead for small number of distributed sites is negligible com-
paring to the time needed for training a NN classifier, the pro-
posed distributed boosting algorithm achieves a linear speedup 
(Figure 4). The scale up is usually measured when increasing the 
number of sites and keeping the number of data examples per site 
constant. It is obvious that in such situation, time needed for train-
ing NN classifiers on distributed sites is always the same regard-
less of the number of sites. The only variable component is the 
communication overhead that is negligible for small number of 
sites (up to 10). Therefore it is apparent that the achieved scale up 
is close to linear. 
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Figure 4. The speedup of the distributed boosting algorithm 
for different data sets 

4.2 Prediction Accuracy Comparison 
To explore whether our distributed boosting can reach similar 
prediction accuracy as the standard boosting algorithm on a cen-
tralized data set, experiments were first performed on three dis-
joint synthetic spatial data sets using competing classifiers among 
sites, simple majority and weighted majority algorithms (Figure 
5a). For each of the graphs shown at Figure 5a, the results were 
achieved for p = 0, as in most of the cases this modification was 
more accurate than if using p = 1 or p = 2 for dividing the weight 
vector wj,t by the factor accp. To investigate how the performance 
of distributed boosting varied with the number of data points used 
for learning, changing the size of the data sets on distributed sites 
was used (Figure 5). The three disjoint data sets used for training 
in distributed boosting were merged into a centralized training 
data set for standard boosting. All boosting methods were tested 
on the same data set with 6561 instances. 
When applying the distributed boosting to Covertype data set, 
eight disjoint, equally-sized data sets were used for learning, 
while the data set with 431032 examples was used for out of sam-
ple testing (Figure 5b). For experiments performed on LED and 
Waveform data sets, four disjoint, equally-sized data sets were 
used for learning and unseen data sets with 4000 and 10000 pat-
terns were used for testing respectively on LED and Waveform 
data sets. However, the experiments performed on these data sets 



showed similar prediction accuracy for all proposed variants of 
boosting algorithm probably due to high homogeneity of data 
(Figure 5c, 5d). 
Results from experiments performed on the synthetic spatial data 
sets indicate that the methods of voting the classifiers constructed 
on multiple sites achieved approximately the same classification 
accuracies as the standard boosting algorithm on merged data 
(Figure 5a), while the method of competing classifiers was always 
significantly less accurate than standard boosting (Figure 5a). This 
was probably due to the fact that none of the classifiers con-
structed on the multiple sites were sufficiently competent for pre-
diction on the unseen test set, and the prediction results were 
comparable or even slightly worse than when making predictions 
from a single distributed site (Figure 5a). 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

 

Figure 5. Out of sample averaged classification accuracies of 
different boosting algorithms distributed over (a) 3 synthetic 
spatial data sets; (b) 8 Covertype data sets (c) 4 LED data sets; 
(d) 4 Waveform data sets (- - - Standard Boosting, … Simple 
Majority,  Weighted Majority, ������������ Competing among classi-
fiers, ×××××××××××× Boosting from a single site) 

When performing the experiments on the Covertype data set (Fig-
ure 5b), the voting algorithms for distributed learning were con-
sistently comparable in prediction accuracy to standard boosting 
on the centralized data. The method of competing classifiers was 
almost as accurate as standard boosting for large data sets, but 
slightly worse than standard boosting for smaller data sets (Figure 
5-b3). It is also noticeable that for achieving the maximal predic-

tion accuracy the larger number of boosting iterations was needed 
for smaller data sets than for larger ones. 
In addition, the effect of dividing the sampling weights wj,t by the 
factor accp, (p = 0,1,2) was investigated for the three distributed 
boosting methods. In general, in the presence of sites that are 
significantly more difficult for learning than the others, a small 
increase in the sampling weights wj,t resulted in achieving the 
maximal prediction accuracy in a fewer number of boosting 
rounds. However, a larger accp factor (p = 2) could cause drawing 
insufficiently large samples from the sites that were easy to learn 
in later boosting iterations. As a consequence, the factor acc2 (p = 
2) could possibly result in method instability and in a drop of 
prediction accuracy. To alleviate this problem, when constructing 
a classifier we required that the size of the data sample drawn in 
the current boosting round had to be at least 15% of the original 
data set size on that site. Otherwise, the best classifier built so far 
on a particular site was used when making a classifier ensemble. 
In our experiments, increasing the weights wj,t usually resulted in 
deteriorating the classification accuracy and in instability of the 
proposed method for smaller data sets (Figure 6-a3), while pre-
serving maximal prediction accuracy for experiments with large 
data sets (Figure 6-a1). 
The performed experiments on LED, Waveform and Covertype 
data sets showed similar prediction accuracy for all explored fac-
tors for updating the sampling weights wj,t (Table 1). This was 
probably due to homogeneous distributions in these data sets, 
where there were no extremely difficult examples that need to be 
emphasized. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Out of sample averaged classification accuracies of 
the (a) simple majority boosting algorithm and (b) confidence-
based weighted combining classifiers on 3 synthetic spatial da-
ta sets (- - - Standard Boosting,    p = 0; … p = 1;  ×××××××××××× p = 2) 

Table 1. Final classification accuracies (%) for different dis-
tributed algorithms applied on four different data collections 
when dividing the weights wj,t by the factor accp  

Method ↓ Data set → Spatial LED Waveform Covertype

p = 0 82.7 73.4 87.0 72.6 
p = 1 82.6 73.3 86.9 72.7 

Simple  
majority 

p = 2 82.2 73.1 86.8 72.5 
p = 0 84.3 73.4 87.2 73.1 
p = 1 82.9 73.6 87.1 73.2 

Confidence-
based  

weighting p = 2 82.1 73.4 87.1 73.0 
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Finally, we also performed experiments on 3 synthetic spatial data 
sets using the confidence-based method of combining classifiers 
with all three modifications for dividing the weights wj,t by the 
factor accp (p=0,1,2) (Figure 6b). The graphs in Figure 6b show 
that the confidence-based combining classifiers slightly outper-
formed standard boosting applied on centralized data as well as 
the other methods considered for distributed boosting. The im-
provement in prediction accuracy was more significant when 
learning from smaller data sets, but instability was also more evi-
dent for smaller data sets (Fig. 6-b3). The increase in prediction 
accuracy with decreasing the data sets was probably due to the 
fact that the data sets were homogeneous and more data points 
were needed in order to improve the generalizability of our mod-
els. When the number of data instances decreased, there were not 
enough examples to learn data distribution on a single site, but the 
variety of data instances from multiple sites still helped in achiev-
ing diversity of built classifiers. 

Due to homogeneous distributions, the experiments performed on 
LED, Waveform and Covertype data sets again demonstrated the 
small observable difference in accuracy between the standard 
boosting and all variants of confidence-based distributed boosting 
algorithms when p = 0, 1 and 2 (Table 1). 

5. CONCLUSIONS 
A framework for distributed boosting is proposed. It is intended to 
efficiently learn stable non-linear classifiers over large and dis-
tributed homogeneous databases that cannot fit into the computer 
main memory. Experimental results on several data sets indicate 
that the proposed boosting techniques can effectively achieve the 
same or even slightly better level of prediction accuracy than 
standard boosting when applied to centralized data, while the cost 
of learning and memory requirements are considerably lower. 

This paper raised several interesting issues that recently have 
gained a lot of attention. First, successful learning from very large 
and potentially distributed databases imposes major performance 
challenges for data mining, since learning a monolithic classifier 
can be prohibitively slow due to the requirement that all the data 
need to be held in the main memory. Second, many distributed 
data sets cannot be merged together due to a variety of practical 
constraints including data dispersed over many geographic loca-
tions, security services and competitive interests. Third, the pre-
diction accuracy of employed data mining algorithms is of funda-
mental impact for their successful application. Finally, the compu-
tational time required for constructing a prediction model is be-
coming more important as the amount of available data is con-
stantly growing. Our experiments performed on several data sets 
indicate that the proposed boosting techniques successfully over-
come these concerns, thus offering a fairly general method for 
effective and efficient learning in distributed environment. 

Although performed experiments have provided evidence that the 
proposed methods can be successful for distributed learning, fu-
ture work is needed to fully characterize them especially in dis-
tributed environment with heterogeneous databases, where new 
algorithms for selectively combining classifiers from multiple 
sites with different distributions are worth considering. It would 
also be interesting to examine the influence of the larger number 
of distributed sites and their sizes to the achieved prediction accu-
racy, speedup and scale up and to establish a satisfactory trade off. 

A possible drawback of the proposed methods is that a large num-
ber of classifiers and their ensembles are constructed from avail-
able data sets. In such situation, the methods of post-pruning the 
classifiers [9] may be necessary to increase system throughput, 
while still maintaining the achieved prediction accuracy. 
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